均值滤波和中值滤波
- 格式:doc
- 大小:965.50 KB
- 文档页数:14
均值滤波和中值滤波
均值滤波和中值滤波是图像处理的两种常用的滤波算法,它们的目的都是为了去掉图像中的噪声,以使图像变得更清晰,以满足下一步处理所需。
均值滤波是一种很常见的滤波算法。
该算法通过统计一定形状的邻域窗口内像素的灰度值,将窗口中各点像素的灰度值求平均,然后将新的灰度值赋给窗口中的每一点像素,从而进行滤波。
由于噪声的特性,噪声点往往灰度值低于其它像素,因此采用均值滤波的过滤效果良好,能够很好的消除噪声,但是也会消除掉有帮助的图像信息,因此多数情况下只是用于滤除少量的随机噪声,而不能用于去除椒盐噪声。
中值滤波则是另一种常用的滤波算法。
它的原理是通过统计一定范围内像素的中位数来进行滤波。
先以块为单位,确定该块中某一点处的灰度值。
然后,把该点所在连通区域的所有点的灰度值读取出来排序,去掉最大值和最小值,再求中间的中位数,将这个中位数作为该点处的灰度值,从而进行滤波处理。
中值滤波主要用于滤除椒盐噪声,可以更好的保留原始图像的信息,但是它的耗时较多,且由于中位数的计算,比较麻烦。
总之,均值滤波和中值滤波作为图像滤波的两种常用技术,具有他们各自良好的应用特点和优势,根据不同的情况和需求,可以采用适当的技术进行滤波,以满足下一步处理的条件。
单片机中常用滤波算法在单片机中,滤波算法是非常常用的技术,用于去除信号中的噪声或干扰,提取出真正的有效信号。
滤波算法的选择取决于不同的应用场景和信号类型,下面将介绍几种常用的滤波算法。
1.均值滤波均值滤波是最简单且常用的滤波算法之一、它通过计算一定数量数据点的平均值来平滑信号。
具体实现上,可以使用一个滑动窗口,每次将最新的数据点加入窗口并去除最旧的数据点,然后计算窗口内数据点的平均值作为滤波后的输出值。
均值滤波对于去除高频噪声效果较好,但对于快速变化的信号可能会引入较大的延迟。
2.中值滤波中值滤波也是常用的滤波算法,它对信号的一组数据点进行排序,然后选择中间值作为滤波后的输出值。
与均值滤波不同,中值滤波可以有效去除椒盐噪声和脉冲噪声等突变噪声,但可能对于连续变化的信号引入较大的误差。
3.最大值/最小值滤波最大值/最小值滤波是一种简单有效的滤波算法,它通过选取一组数据点中的最大值或最小值作为滤波后的输出值。
最大值滤波可以用于检测异常峰值或波动,最小值滤波则可用于检测异常低谷或衰减。
4.加权移动平均滤波加权移动平均滤波是对均值滤波的改进,它引入权重因子对数据点进行加权平均,以更好地适应信号的动态变化。
常见的权重分配方式有线性加权和指数加权,可以根据实际需求进行调整。
5.卡尔曼滤波卡尔曼滤波是一种最优滤波算法,其主要应用于估计系统状态,包含两个步骤:预测和更新。
预测步骤用于根据上一时刻的状态和系统模型,预测当前时刻的状态;更新步骤通过测量值对预测值进行修正,得到最终的估计值。
卡尔曼滤波具有较好的估计精度和实时性,但对于复杂系统,可能涉及较高的计算量。
除了上述常见的滤波算法,还有一些针对特定应用的滤波算法值得一提,如带通滤波、带阻滤波、滑动平均滤波等。
在实际工程应用中,滤波算法的选择需要根据具体应用场景和信号特点进行权衡,寻找最适合的算法以获得满意的滤波效果。
中值滤波和均值滤波中值滤波和均值滤波是数字图像处理中常用的两种滤波方法,它们在图像去噪和平滑处理中起着重要的作用。
本文将从原理、应用以及优缺点等方面介绍这两种滤波方法。
一、中值滤波中值滤波是一种非线性滤波方法,其基本原理是用像素点周围邻域内的中值来代替该像素点的灰度值。
中值滤波可以有效地去除图像中的椒盐噪声和脉冲噪声,同时能够保持图像的边缘信息。
其处理过程如下:1.选取一个模板,模板的大小根据噪声的程度来确定;2.将模板中的像素点按照灰度值大小进行排序,取其中位数作为中心像素点的灰度值;3.将中心像素点的灰度值替换为中值;4.重复以上步骤,对整个图像进行滤波。
中值滤波的优点是能够有效地去除椒盐噪声和脉冲噪声,同时保持图像的边缘信息。
然而,中值滤波也存在一些缺点,例如不能处理高斯噪声和均匀噪声,对图像细节信息的保护效果较差。
二、均值滤波均值滤波是一种线性平滑滤波方法,其基本原理是用像素点周围邻域内的平均值来代替该像素点的灰度值。
均值滤波可以有效地去除高斯噪声和均匀噪声,同时能够保持图像的整体平滑。
其处理过程如下:1.选取一个模板,模板的大小根据滤波效果来确定;2.计算模板内所有像素点的灰度值的平均值;3.将中心像素点的灰度值替换为平均值;4.重复以上步骤,对整个图像进行滤波。
均值滤波的优点是能够有效地去除高斯噪声和均匀噪声,同时能够保持图像的整体平滑。
然而,均值滤波也存在一些缺点,例如不能处理椒盐噪声和脉冲噪声,对图像细节信息的保护效果较差。
中值滤波和均值滤波在图像处理中各有优劣。
中值滤波适用于去除椒盐噪声和脉冲噪声,能够保持图像的边缘信息,但在处理高斯噪声和均匀噪声时效果较差。
而均值滤波适用于去除高斯噪声和均匀噪声,能够保持图像的整体平滑,但对于细节信息的保护效果较差。
在实际应用中,根据图像的特点和噪声的类型选择合适的滤波方法是很重要的。
如果图像受到椒盐噪声和脉冲噪声的影响,可以选择中值滤波进行去噪处理;如果图像受到高斯噪声和均匀噪声的影响,可以选择均值滤波进行平滑处理。
均值滤波,高斯滤波,中值滤波均值滤波,高斯滤波和中值滤波是数字图像处理中常用的三种平滑滤波技术,用于降低图像噪声和去除图像中的不相关细节。
本文将对这三种滤波方法进行介绍、比较和分析。
一、均值滤波均值滤波是一种简单的平滑滤波方法,它的原理是用滤波窗口内像素的平均值来代替中心像素的值。
具体来说,对于滤波窗口内的每个像素,计算其邻域内所有像素的平均值,然后将结果作为中心像素的值。
这样可以有效地平滑图像并去除高频噪声。
然而,均值滤波的缺点是它不能很好地保留图像的边缘信息,使得图像看起来模糊且失去细节。
二、高斯滤波高斯滤波是一种基于高斯分布的平滑滤波方法,它认为像素点的邻域内的像素值与中心像素点的距离越近,其权重越大。
它的滤波过程是在滤波窗口内,对每个像素点进行加权平均。
加权的权重由高斯函数决定,距离中心像素点越近的像素点的权重越大,距离越远的像素点的权重越小。
通过这种加权平均的方式,可以更好地保留图像的细节和边缘信息,同时有效地去除噪声。
高斯滤波的唯一缺点是计算复杂度较高,特别是对于大型滤波窗口和高分辨率图像来说。
三、中值滤波中值滤波是一种统计滤波方法,它的原理是用滤波窗口内像素的中值来代替中心像素的值。
具体来说,对于滤波窗口内的每个像素,将其邻域内的像素按照大小进行排序,然后将排序后像素的中值作为中心像素的值。
中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,能够保持图像的边缘信息,避免了均值滤波和高斯滤波的模糊问题。
然而,中值滤波的缺点是不能去除高斯噪声和高频噪声,因为当滤波窗口内的像素含有这些噪声时,中值滤波会产生失真效果。
比较和分析:三种滤波方法各有优劣,应根据实际需求选择合适的滤波方法。
均值滤波是最简单、计算复杂度最低的方法,在去除高斯噪声和低频噪声方面效果较差,但对边缘信息的保留效果较差。
高斯滤波通过加权平均的方式更好地保留了图像的细节和边缘信息,适用于处理高斯噪声并且具有一定的平滑效果。
中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,并保持了图像的边缘信息,但对于高斯噪声和高频噪声则效果较差。
中值和均值滤波算法中值滤波和均值滤波是常用的图像处理算法,用于降低图像噪声的影响。
它们都属于非线性滤波算法,即输出像素值不仅取决于输入像素值,还取决于输入像素值周围的像素值。
中值滤波算法通过将像素值排序并选择中间值作为输出值来实现图像平滑。
具体步骤如下:1.对于图像中的每个像素点,确定一个窗口大小,该窗口覆盖了该像素点及其邻域像素点。
2.将这些像素值排序,并选择排序后的中间值作为输出像素值。
3.重复上述步骤,直到对所有像素点进行操作。
中值滤波算法的优点是可以有效地去除椒盐噪声等脉冲噪声,但会对图像的细节进行模糊处理,从而使图像失去一些细节信息。
均值滤波算法则是将窗口内所有像素值的平均值作为输出像素值。
具体步骤如下:1.对于图像中的每个像素点,确定一个窗口大小。
2.将窗口内所有像素值求和,并除以窗口中像素点的数量,得到均值作为输出像素值。
3.重复上述步骤,直到对所有像素点进行操作。
均值滤波算法的优点是能够在平滑图像的同时保留图像的细节信息,但对于噪声的去除效果相对较差。
在中值滤波和均值滤波算法中,窗口大小是一个重要的参数。
较小的窗口大小可较好地保留图像的细节信息,但噪声去除效果相对较差;而较大的窗口大小可以更好地去除噪声,但会导致图像模糊。
中值滤波和均值滤波算法都有一些改进方法。
例如,自适应中值滤波算法可以根据像素值的分布动态调整窗口大小,从而更好地去除噪声。
另外,加权平均滤波算法可以根据像素点的重要性赋予不同的权重,从而更好地平衡去噪和保留细节的效果。
总之,中值滤波和均值滤波是两种常用的图像处理算法,可以有效地去除噪声,平滑图像。
选择哪种算法取决于具体的应用场景和需求。
数字与图像处理报告
姓名:罗钰婧班级:12信国学号:20121378032
1.均值滤中值滤波对去除噪声
⑴.椒盐噪声:出现位置是随机的,但噪声的幅值是基本相同的。
对于椒盐噪声,中值滤波比均值滤波好。
因为椒盐噪声图像中既有干净点又有污染点,中值滤波是选适当的点来代替污染点,随意处理效果好;
而噪声均值不为0,所以均值滤波不能很好的去除椒盐噪声。
⑵.高斯噪声:出现位置是一定的(每一个点上),噪声的幅值是随机的。
对于高斯噪声,均值滤波比中指滤波好。
因为图像中每个点都是污染点,中值滤波找不到合适的干净点。
而正态分布的均值为0,所以均值滤波可以较好的减弱噪声。
对于中值滤波,可以发现取的领域越大,图像越模糊。
因为随着领域变大,精度降低。
同中值滤波,可以发现取的领域越大,图像越模糊。
2.傅里叶变换频谱图
3.伪彩色。
采样数据处理的滤波方法常用的采样数据处理滤波方法包括以下几种:1.均值滤波:均值滤波是一种简单的滤波方法,通过计算邻域内像素的平均值来平滑信号。
均值滤波适用于平稳信号,但对于包含较多噪声的信号效果不佳。
2.中值滤波:中值滤波是一种非线性滤波方法,其原理是取邻域内像素的中值作为滤波后的像素值。
中值滤波可以有效地去除脉冲噪声,适用于脉冲和椒盐噪声较多的信号。
3.加权平均滤波:加权平均滤波是一种根据信号的重要性分配不同权重的滤波方法。
通过设定权重,可以使得滤波后的信号更加接近于感兴趣的特征。
加权平均滤波适用于对信号的一些频率成分进行强调或削弱的场合。
4.卡尔曼滤波:卡尔曼滤波是一种适用于线性系统的最优滤波方法。
卡尔曼滤波考虑了测量误差和状态估计误差,并通过状态估计误差的协方差矩阵来自适应地调整滤波参数。
卡尔曼滤波适用于需要估计信号动态变化的场合。
5.无限脉冲响应滤波:无限脉冲响应(IIR)滤波是一种递归滤波方法。
通过设计合适的滤波器结构和参数,可以实现对信号的高频成分和低频成分的滤波控制。
IIR滤波器具有低延迟和较小的计算量,适用于实时处理和低功耗应用。
6.有限脉冲响应滤波:有限脉冲响应(FIR)滤波是一种非递归滤波方法。
FIR滤波器通过设计滤波器系数来实现对信号的频率响应进行控制。
FIR滤波器对线性相位响应和宽带特性的要求较高,适用于需要较高精度和较好稳定性的应用。
除了以上提到的常见滤波方法,还有许多其他滤波方法,如小波变换滤波、退化结果滤波和谱平滑滤波等。
不同的滤波方法适用于不同的信号处理任务和应用场景。
在选择滤波方法时,需要综合考虑信号的特点、滤波效果和算法复杂度等因素。
平均值滤波,中值滤波等
平均值滤波,轻松去噪。
你知道平均值滤波吗?简单来说,就是把一堆数据加起来,然
后除以数据的数量,得到一个平均值。
就像你算一堆数的平均分一样。
在数字世界里,这样做可以平滑数据,减少那些烦人的噪声。
就像你过滤掉照片上的小斑点,让照片更清晰一样。
中值滤波,专为异常值而生。
中值滤波可是个高手,专门对付那些不听话的异常值。
它不是
简单地算平均值,而是把数据从小到大排个队,然后挑中间的那个
数出来。
这样,那些极端的噪声值就被排除在外了,数据看起来就
舒服多了。
就像你在一堆人中挑个中等身高的,这样就不容易受极
端高矮的人影响了。
数字滤波,为啥这么重要?
哎呀,数字滤波可重要了!你想想,现在啥不是数字的?数据、信号、图片,都得靠数字来处理。
数字滤波就像给这些数字信息洗
个澡,把杂质都洗掉,让它们更干净、更清楚。
不管是平均值滤波还是中值滤波,都是为了让我们的数字世界更加美好、更加有序。
所以,别小看它们哦!。
均值滤波,中值滤波,最⼤值滤波,最⼩值滤波
均值滤波:
均值滤波是图像处理中常⽤的⼿段,从频率域观点来看均值滤波是⼀种低通滤波器,⾼频信号将被去掉,因此可以帮助消除图像尖锐噪声,实现图像平滑,模糊等功能。
理想的均值滤波是⽤每个像素和它周围像素计算出来的均值替换图像中每个像素。
采样Kernel数据通常是3x3的矩阵,如下所⽰:
从左到右,从上到下计算图像中的每个像素,最终得到处理后的图像。
均值滤波可以加上两个参数,即迭代次数,kernel数据⼤⼩。
⼀个相同⼤⼩的kernel,经过多次迭代效果会越来越好。
同样:迭代次数相同,均值滤波的效果就越明显。
中值滤波:
中值滤波也是消除图像噪声最常见的⼿段之⼀,特别是消除椒盐噪声,中值滤波的效果要⽐均值滤波更好。
中值滤波和均值滤波唯⼀的不同是,不是⽤均值来替换中⼼每个像素,⽽是将周围像素和中⼼像素排序以后,取中值,⼀个3x3⼤⼩的中值滤波如下:
最⼤最⼩值滤波:
最⼤最⼩值滤波是⼀种⽐较保守的图像处理⼿段,与中值滤波类似,⾸先要排序周围像素和中⼼像素值,然后将中⼼像素的值与最⼩和最⼤像素值⽐较,如果⽐最⼩值⼩,则替换中⼼像素为最⼩值,如果中⼼像素值⽐最⼤值⼤,则替换中⼼像素为最⼤值。
⼀个Kernel矩阵为3x3的最⼤最⼩滤波如下:。
均值滤波与自适应中值滤波的仿真与实现摘要图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵,然而在图像使用和传输过程中,不可避免会受到噪声的干扰,因此为了恢复原始图像,达到好的视觉效果,需要对图像进行滤波操作。
根据噪声种类不同,可以采用不同的滤波方法,均值滤波是典型的线性滤波算法,能够有效滤波图像中的加性噪声,而中值滤波器是能够有效滤除脉冲噪声的非线性滤波器,但传统中值滤波去脉冲噪声的性能受滤波窗口尺寸的影响较大, 在抑制图像噪声和保护细节两方面存在矛盾。
本文首先对不同均值滤波器在处理不同噪声方面的优缺点进行了分析,然后分别用中值滤波器和自适应中值滤波器对被椒盐噪声污染的图像进行了滤波操作,发现自适应中值滤波方法不仅可以有效滤波椒盐噪声,同时还可以有效地克服中值滤波器造成图像边缘模糊的缺点。
1.均值滤波均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素点和其本身像素点。
再用模板中的全体像素的平均值来代替原来像素值。
均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。
线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其邻近的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度值g(x,y),即g(x,y)=1/m ∑f(x,y), m为该模板中包含当前像素在内的像素总个数。
均值滤波能够有效滤除图像中的加性噪声,但均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊。
均值滤波主要有算术均值滤波,几何均值滤波,谐波均值滤波以及逆谐波均值滤波,本文只对算术均值滤波,几何均值滤波和逆谐波均值滤波进行研究。
其中几何均值滤波器所达到的平滑度可以与算术均值滤波器相比,但在滤波过程中丢失更少的图象细节。
逆谐波均值滤波器更适合于处理脉冲噪声,但它有个缺点,就是必须要知道噪声是暗噪声还是亮噪声,以便于选择合适的滤波器阶数符号,如果阶数的符号选择错了可能会引起灾难性的后果。
下面分别对算术平均滤波,几何平均滤波和逆谐波均值滤波对不同噪声的滤波效果进行仿真分析。
1.1算术平均滤波,几何平均滤波和逆谐波均值滤波对高斯噪声进行滤波A 原始图像B 高斯噪声污染的图像C 用3x3算术均值滤波器滤波后图像D 用3x3几何均值滤波器滤波后图像E Q=-1.5的逆谐波滤波器滤波后图像F Q=1.5的逆谐波滤波器滤波后图像图一均值滤波(高斯噪声)如图一所示,图A为原始图像,图B为被高斯噪声污染的图像,图C为用3x3算术均值滤波处理后的图像,图D为用3x3几何均值滤波处理后的图像,图E为用Q=-1.5的逆谐波均值滤波处理后的图像,图F为用Q=1.5的逆谐波均值滤波处理后的图像。
与图B进行比较,图C,D,E,F经均值滤波处理后视觉效果明显改善,说明均值滤波能有效滤除图像中的高斯噪声。
将图C,D,E与图A进行对比可以看出,对图像进行均值滤波后,图像细节处变得模糊了,说明均值滤波在去除噪声的同时也破坏了图像的细节部分。
将图C与图D进行对比,可以发现,图D中的细节部分保留得较多,说明几何均值滤波与算术均值滤波器相比,在滤波过程中丢失更少的图像细节。
将图E,图F与图A进行对比可以发现,当Q为正数时,处理后图像中黑色线条比原图变细了,当Q为负数时,处理后图像中黑色线条比原图变粗了,说明当Q为正数时,逆谐波滤波器会从黑色物体边缘移走一些黑色像素,而当Q为负数时,逆谐波滤波器会从亮色物体边缘移走一些白色像素。
1.2算术平均滤波,几何平均滤波和逆谐波均值滤波对椒盐噪声进行滤波A 原始图像B 椒盐噪声污染的图像C 用3x3算术均值滤波器滤波后图像D 用3x3几何均值滤波器滤波后图像E Q=-1.5的逆谐波滤波器滤波后图像F Q=1.5的逆谐波滤波器滤波后图像图二均值滤波(椒盐噪声)如图二所示,图A为原始图像,图B为被椒盐噪声污染的图像,图C为用3x3算术均值滤波处理后的图像,图D为用3x3几何均值滤波处理后的图像,图E为用Q=-1.5的逆谐波均值滤波处理后的图像,图F为用Q=1.5的逆谐波均值滤波处理后的图像。
与图B进行比较,图C,D,E,F经均值滤波处理后的图像中仍有很多噪声点,椒盐噪声并没有完全去除,并且滤波后图像比原图要模糊,说明均值滤波不能很好的滤除椒盐噪声,这是因为椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有暗点也有亮点。
且其噪声的均值不为0,所以均值去滤波不能很好地除噪声点。
将图E,F分别于图B进行对比可以发现,当Q为负数时,图B 中的“盐噪声”(亮点)被滤除了,但“胡椒”(黑点)噪声保留了下来;当Q为正数时,图B中的“胡椒噪声”被滤除了,但“盐”噪声保留了下来。
说明当Q为正数时,逆谐波均值滤波对“胡椒”噪声有很好的滤除作用,当Q为负数时,逆谐波均值滤波对“盐”噪声有很好的滤除作用。
但逆谐波均值滤波不能同时滤除“胡椒”噪声和“盐”噪声,因为Q值在一次处理过程中是确定的。
1.3算术平均滤波,几何平均滤波和逆谐波均值滤波对均匀分布噪声进行滤波A 原始图像B 均匀分布噪声污染的图像C 用3x3算术均值滤波器滤波后图像D 用3x3几何均值滤波器滤波后图像E Q=-1.5的逆谐波滤波器滤波后图像F Q=1.5的逆谐波滤波器滤波后图像图三均值滤波(均匀分布噪声)如图三所示,图A为原始图像,图B为被均匀分布噪声污染的图像,图C为用3x3算术均值滤波处理后的图像,图D为用3x3几何均值滤波处理后的图像,图E为用Q=-1.5的逆谐波均值滤波处理后的图像,图F为用Q=1.5的逆谐波均值滤波处理后的图像。
与图B进行比较,图C,D,E,F经均值滤波处理后的图像,噪声分量明显减少了,图像效果有了很大改善,说明均值滤波能有效滤除图像中的均匀分布噪声。
1.4 结论(1)均值滤波对高斯噪声和均匀分布噪声的抑制作用是比较好的,但对椒盐噪声的影响不大,在削弱噪声的同时整幅图像总体也变得模糊,其噪声仍然存在。
(2)经均值滤波处理后的图像边缘和细节处模糊变得模糊,说明均值滤波在去除噪声的同时也破坏了图像的细节部分。
(3)逆谐波均值滤波器能够减少和消除图像中的椒盐噪声。
当Q 为正数时,逆谐波均值滤波对“胡椒”噪声有很好的滤除作用,当Q为负数时,逆谐波均值滤波对“盐”噪声有很好的滤除作用。
但逆谐波均值滤波不能同时滤除“胡椒”噪声和“盐”噪声。
2.中值滤波中值滤波是一种常用的非线性平滑滤波器,其基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值来替换,其主要功能是让周围像素灰度值差别比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点,所以中值滤波对于滤除图像的椒盐噪声非常有效。
常规中值滤波器对长拖尾概率分布的噪声能起到良好的平滑效果。
不仅如此,它在消除噪声的同时还具有保护边界信息的优点,对图像中的某些细节起到保护作用,因而在图像去噪处理中得到了比较广泛的应用。
但是常规中值滤波去脉冲噪声的性能受滤波窗口尺寸的影响较大,而且它在抑制图像噪声和保护细节两方面存在一定的矛盾:取的滤波窗口越小,就可较好地保护图像中某些细节,但滤除噪声的能力会受到限制;反之,取的滤波窗口越大就可加强噪声抑制能力,但对细节的保护能力会减弱。
这种矛盾在图像中噪声干扰较大时表现得尤为明显。
根据经验:在脉冲噪声强度大于0.2时常规中值滤波的效果就显得不令人满意了。
但是由于常规中值滤波器所使用的滤波窗口大小是固定不变的,所以我们在选择窗口大小和保护细节两方面只能做到二选一,这样矛盾始终得不到解决。
因此,单单采用常规中值滤波的方法在图像去噪应用中是远远不够的,这就需要寻求新的改进算法来解决这一矛盾。
自适应中值滤波器的滤波方式和常规的中值滤波器一样,都使用一个矩形区域的窗口Sxy,不同的是在滤波过程中,自适应滤波器会根据一定的设定条件改变(即增加)滤波窗的大小,同时当判断滤波窗中心的像素是噪声时,该值用中值代替,否则不改变其当前像素值。
这样用滤波器的输出来替代像素(x,y)处(即目前滤波窗中心的坐标)的值。
自适应中值滤波器可以处理噪声概率更大的脉冲噪声,同时能够更好地保持图像细节,这是常规中值滤波器做不到的。
下面我们分别用常规中值滤波和自适应中值滤波对被椒盐噪声污染的图像进行滤波后的效果进行分析。
2.1 利用中值滤波对被椒盐噪声污染的图像进行滤波A 原始图像B 被椒盐噪声污染的图像C 常规中值滤波后的图像D 自适应中值滤波后的图像图四 中值滤波如图四所示,图A 是原始图像,图B 是加了椒盐噪声的图像,图C 是经过常规中值滤波器滤波后的图像,图D 是自适应中值滤波后的图像。
将图C ,D 与图B 进行对比可以看出,中值滤波对滤除椒盐图像噪声效果比较明显。
将图C 与图D 进行对比可以看出,利用自适应中值滤波滤除椒盐噪声效果明显好于常规中值滤波,自适应中值滤波克服了中值滤波不能有效的保持图像细节的问题。
在去除图像椒盐噪声的同时,还能够保持图像比较清晰的轮廓。
自适应中值滤波器能够很好的处理图像的细节和边缘,使图像更加细腻,清晰,给人以良好的视觉冲击。
2.2 结论(1)中值滤波对去除“椒盐”噪声可以起到很好的效果,因为椒盐噪声只在画面中的部分点上随机出现,所以根据中值滤波原理可知,通过数据排序的方法,将图像中未被噪声污染的点代替噪声点的值的概率比较大,因此噪声的抑制效果很好。
(2)中值滤波与均值滤波相比,在去除图像椒盐噪声的同时还能够保持图像比较清晰的轮廓。
(3)自适应中值滤波器与常规中值滤波相比,能够更好的处理图像的细节和边缘,使图像更加细腻,清晰,给人以良好的视觉冲击。
在图像处理过程中,消除图像的噪声干扰是一个非常重要的问题,本文利用matlab软件,采用中值和均值滤波的方式,对带有椒盐噪声的图像进行处理,经过滤波后的图像既适合人眼的视觉感觉又能够消除图像中的干扰影响。
通过本次试验我们可以看到中值滤波对于滤除图像的“椒盐”噪声非常有效,它可以做到既去除噪声又能保护图像的边缘,从而获得较满意的复原效果,尤其在滤除叠加白噪声和长尾叠加噪声方面显出极好的性能。
但均值滤波效果一般。
因此中值滤波是图像处理所不可缺少的,许多类型的图像噪声都可以利用中值滤波法加以除噪。
3.MATLAB 程序3.1.I=imread('dianlu.tif');subplot(231),imshow(I);title('A 原始图像');I1=double(imnoise(I,'gaussian',0.06));subplot(232),imshow(I1,[]);title('B 高斯噪声污染的图像');I2=imfilter(I1,fspecial('average',3));subplot(233),imshow(I2,[]);title('C 用3x3均值滤波器滤波后图像');I3=exp(imfilter(log(I1),fspecial('average',3)));subplot(234),imshow(I3,[]);title('D 用3x3几何滤波器滤波后图像');Q=-1.5;I4=imfilter(I1.^(Q+1),fspecial('average',3))./imfilter(I1.^Q,fspecial ('average',3));Q=1.5;I5=imfilter(I1.^(Q+1),fspecial('average',3))./imfilter(I1.^Q,fspecial ('average',3));subplot(235),imshow(I4,[]);title('E Q=-1.5逆谐波滤波器滤波后图像');subplot(236),imshow(I5,[]);title('F Q=1.5逆谐波滤波器滤波后图像');3.2.I=imread('dianlu.tif');subplot(231),imshow(I);title('A 原始图像');I1=double(imnoise(I,'salt & pepper',0.02));subplot(232),imshow(I1,[]);title('B 椒盐噪声污染的图像');I2=imfilter(I1,fspecial('average',3));subplot(233),imshow(I2,[]);title(' C 用3x3均值滤波器滤波后图像');I3=exp(imfilter(log(I1),fspecial('average',3)));subplot(234),imshow(I3,[]);title(' D 用3x3几何滤波器滤波后图像');Q=-1.5;I4=imfilter(I1.^(Q+1),fspecial('average',3))./imfilter(I1.^Q,fspecial ('average',3));Q=1.5;I5=imfilter(I1.^(Q+1),fspecial('average',3))./imfilter(I1.^Q,fspecial ('average',3));subplot(235),imshow(I4,[]);title(' E Q=-1.5逆谐波滤波器滤波后图像'); subplot(236),imshow(I5,[]);title(' F Q=1.5逆谐波滤波器滤波后图像');3.3.I=imread('dianlu.tif');subplot(231),imshow(I);title(' A 原始图像');I1=double(imnoise(I,'speckle',0.05));subplot(232),imshow(I1,[]);title(' B 均匀分布噪声污染的图像');I2=imfilter(I1,fspecial('average',3));subplot(233),imshow(I2,[]);title(' C 用3x3均值滤波器滤波后图像');I3=exp(imfilter(log(I1),fspecial('average',3)));subplot(234),imshow(I3,[]);title(' D 用3x3几何滤波器滤波后图像');Q=-1.5;I4=imfilter(I1.^(Q+1),fspecial('average',3))./imfilter(I1.^Q,fspecial ('average',3));Q=1.5;I5=imfilter(I1.^(Q+1),fspecial('average',3))./imfilter(I1.^Q,fspecial ('average',3));subplot(235),imshow(I4,[]);title(' E Q=-1.5逆谐波滤波器滤波后图像'); subplot(236),imshow(I5,[]);title(' F Q=1.5逆谐波滤波器滤波后图像');3.4.I=imread('dianlu.tif');J=imnoise(I,'salt & pepper',0.1);[m,n]=size(J);F=zeros(m,n);for i=1:mfor j=1:nif J(i,j)>190F(i,j)=1;endif J(i,j)<40F(i,j)=1;endendendR = medfilt2(J);R1=R;for i=1:mfor j=1:nif F(i,j)==0R1(i,j)=J(i,j);endendendsubplot(2,2,1);imshow(I);title('A原始图像');subplot(2,2,2);imshow(J); title('B 被椒盐噪声污染的图像');subplot(2,2,3);imshow(R);title('C 常规中值滤波后的图像');subplot(2,2,4);imshow(R1);title('D 自适应中值滤波后的图像'); 如有侵权请联系告知删除,感谢你们的配合!。