光离子化检测器(PID)传感器的便携式毒气检测装置
- 格式:pdf
- 大小:152.05 KB
- 文档页数:3
《便携式气相色谱仪(光离子化检测器)校准规范》(征求意见稿)编制说明《便携式气相色谱仪(光离子化检测器)校准规范》标准编制组二〇一九年十月目录一、任务来源与编制情况................ 错误!未定义书签。
二、规范制定的目的和意义.............. 错误!未定义书签。
三、规范制定的原则和依据.............. 错误!未定义书签。
四、工作过程.......................... 错误!未定义书签。
五、规范制定的主要内容及说明.......... 错误!未定义书签。
一、任务来源与编制情况项目名称:便携式气相色谱仪(光离子化检测器)校准规范项目统一编号:JJFZ(建材)012-2018根据《工业和信息化部办公厅关于印发2018年行业计量技术规范修订计划的通知》工信厅科函【2018】210号文要求,由中国科学院电子学研究所牵头,北京市劳动保护科学研究所,天津电子检测所,南通东昌环保,长园深瑞继保自动化有限公司等单位组成的便携式气相色谱仪(光离子化检测器)校准规范编写小组,对规范进行制定。
二、规范制定的目的和意义工业废气、建筑材料与家具有害气体释放、汽车尾气排放及突发性环境污染事件等均直接威胁到人们的生命与财产安全,迫切需要针对环境污染及毒害气体快速、准确、高灵敏的现场检测新技术。
针对建筑材料及家具释放的VOCs监测、突发性环境污染毒害气体监测、工业园区VOCs的监测及追踪溯源等,国内外大多采用GC-FID(氢火焰离子化检测器)检测技术标准,但该技术存在以下问题:(1) GC-FID在检测烷烃、芳香烃、多环芳烃等VOCs化合物时,其检测灵敏度比PID低5-10倍;(2) GC-FID需要的气源更多,需要空气、高纯载气还有高危的氢气,一方面增加了系统体积,不利于便携性,另一方面,高危氢气很容易造成安全事故。
而便携式光离子化气相色谱仪是一种具有高灵敏度、应用范围广的广谱检测仪,与传统检测方法相比具有体积小、精度高、功耗低、响应快、可连续测试、等突出优点,可检测离子电位不大于12eV的化合物,如烷烃、芳香族、多环芳烃、醛类、酮类、脂类、胺类、有机磷、有机硫化物以及一些有机金属化合物。
光离子检测器(PID )的应用这里介绍一些光离子检测器(PID )或者传感器的基本常识以帮助使用者正确使用PID 传感器。
1. 什么是光离子检测器(PID )和传感器:利用高能量的紫外光来使检测物从分子状态离子化成离子和电子从而检测目标物质。
因此光离子检测器包括:空紫外源或者紫外灯、驱动紫外灯电子系统、气体离子化室以及离子和电子收集电极。
如果把这些都打包在一起就构成PID 传感器。
PID 一般检测低浓度的挥发性有机物VOC 和少量气态无机物质。
2. PID 如何工作:当高能量的真空紫外光照射到VOC 气体分子上,VOC 就会被离子化产生有机物正离子和电子。
如果在离子化区域间加一对收集电极,那么电子就会流向正极,而正离子就会流向负极,从而形成电流。
而且这个电流大小与离子和电子以及VOC 浓度成正比。
因此只要测电流就可知道样品中VOC 浓度。
3. 什么是挥发性有机化合物:挥发有机化合物(VOC )是指常温下明显或者完全挥发成气体的有机化合物(含碳的)。
一般分子量比较小或者沸点低的有机化合物。
4. PID 能够检测哪些物质:PID 一般能够检测大多数挥发性有机物VOC 和少量气态无机物质。
但是也有少量VOC 不能被检测。
PID 能否检测某种VOC 是根据PID 灯的输出能量和VOC 的电离能(IP )来判断。
如果PID 紫外灯的输出能量大于VOC 分子的电离能,PID 就能检测这种VOC 。
PID 紫外灯的能量是由灯内惰性气体以及紫外灯窗口材料决定,常用紫外灯分为9.8eV 、10.6eV 和11.7eV 的三种灯。
其中10.6eV 紫外灯—C-C=C —(VUV 光源)(VOC 气体)正极电子 正离子负极常用于大多数VOC检测。
9.8eV灯用于苯或者苯衍生物检测。
11.7eV由于窗口材料特殊,寿命较短,主要用于特殊VOC检测。
VOC的电离能在工具书有机化合物的物理性能表中能够查到。
5.如何选择光离子源-紫外灯:紫外灯选择是根据检测物质(VOC)以及灯的灵敏度和寿命来选择。
PID传感器检测VOC原理
PID传感器是一种常用于揭示挥发性有机化合物(VOCs)浓度的传感器。
VOCs是一类在常温下轻易挥发的有机化合物,包括多种化学物质,如苯、甲醛和二甲苯等。
这些VOCs通常来自化工厂、汽车尾气、涂料、溶剂、清洁剂等多种环境中的源头。
1.紫外线光源:传感器中包含一个紫外线(UV)光源,通常是一种低压汞灯。
该光源产生了具有特定波长的紫外线辐射,通常为10.6eV。
2.电离室:传感器中有一个电离室,该电离室由两个电极组成,一个称为阳极,另一个称为阴极。
阳极上有一个电极环,可以产生电场。
3.离子产生:当气体样品通过传感器时,紫外线光源照射在气体中的VOCs上,使其吸收能量并电离。
VOCs分子电子被紫外线光源能量激发,自由电子与正离子形成离子对。
4.电流测量:离子对在电场的作用下向阳极移动,产生电流。
该电流在传感器中的测量电路中被放大,然后测量和记录。
5.浓度计算:根据电离室中的电流大小和其他一些参数,可以计算出VOCs浓度。
测量电路中通常有一个校准曲线或者算法,可以将电流转换为对应的VOCs浓度。
为了准确测试VOCs浓度,PID传感器的使用需要进行定期的校准和维护。
校准可以通过将传感器暴露在已知浓度的参考气体中进行。
维护方面,常见的操作包括清洁传感器以去除附着物、更换紫外线光源和定期检查和调整测量电路。
总之,PID传感器是一种常用于检测VOCs浓度的传感器。
它基于紫外线光电离原理,通过测量离子产生的电流来计算VOCs的浓度。
然而,使用PID传感器需要定期校准和维护,以确保准确可靠的测量结果。
pid光离子化传感器原理PID光离子化传感器(Photoionization Detector, PID)是一种常用于气体检测和监测的传感器。
它可用于检测挥发性有机化合物(Volatile Organic Compounds,简称VOCs)的浓度,广泛应用于环境监测、工业安全、室内空气质量等领域。
在本文中,我将深入介绍PID光离子化传感器的原理、工作过程和应用。
1. PID光离子化传感器的原理PID光离子化传感器的工作原理基于光电离技术,其主要组件包括紫外(UV)光源、光电离室和电离室。
具体的工作原理如下:1.1 紫外光源:PID传感器的紫外光源通常使用氙灯。
氙灯电击激发氙气产生紫外光,该紫外光的波长在10.6至11.7电子伏特(eV)之间。
1.2 光电离室:光电离室是PID传感器中的关键组件。
当紫外光照射到光电离室中的气体分子时,该气体分子会吸收光能,并获得足够的能量以电离成正离子和电子。
1.3 电离室:电离室中的正离子和电子会受到电场的驱动,正离子被吸引到负极板,而电子则被吸引到正极板。
这个过程会产生一个电流信号,其强度与气体分子的浓度成正比。
2. PID光离子化传感器的工作过程PID光离子化传感器的工作过程分为三个步骤:光电离、电化学放大和信号读取。
2.1 光电离:当紫外光照射到光电离室中的气体分子时,气体分子会吸收光能并电离成正离子和电子。
2.2 电化学放大:电离室中的正离子和电子受到电场的作用,由于不同质量的正离子和电子在电场中的移动速度不同,它们会分别在负极板和正极板上积累电荷。
这一过程会引起一个电流信号。
2.3 信号读取:PID传感器会将电流信号转换为相应的电压信号,然后经过放大和滤波等处理后,最终转换为浓度值。
该浓度值可以在PID 仪器上显示或通过数据接口输出。
3. PID光离子化传感器的应用PID光离子化传感器由于其高灵敏度、快速响应和广泛的测量范围,在许多领域都有重要的应用。
光离子检测仪(PID)原理与应用_仪器仪表光离子技术原理光离子检测仪(以下简称PID)能有效地用于多种危害物质的检测 ,最大程度保护使用者的安全。
市面上检测危害物质的方法有很多种,和其它方法比较起来,PID原理具有响应速度快、操作简单、维护方便、体积小巧及检测精度高等优势,经常用于检测挥发性有机化合物(VOCs)。
PID检测仪采用光致电离的原理来检测气体,当PID灯照射到待检测气体时,气体吸收能量被激活产生离子游动,失去电子(e-)的物质变成带正电荷的离子,这个过程被称之为电离作用,下图可以帮助我们理解光致电离的过程。
大多数元素和化合物都可以被离子化,但所需能量有所不同,而这种将化合物离子化的能量被称之为”电离能”(IP),它以电子伏特(eV)为计量单位,对于气体和蒸汽来说,一般IP的范围从7eV - 16eV不等,IP为 7eV的物质则非常容易被电离,IP介于12eV – 16eV的物质则非常难被电离。
常见物质的电离能(IP)如下:物质名称电离能(IP)苯 9.25 己烷 10.13 甲苯 8.82 苯乙烯 8.47 甲基乙基 9.51 二甲苯 8.65 磷化氢 9.87 PID Lamp PID电离化学物质时会产生一个微弱的电流,该电流与物质浓度成比例,换算成ppm显示在屏幕上。
PID用紫外灯来电离化学物质,紫外灯的尺寸与普通手电筒灯泡近似,发出足够强度的红外光电离化学物质。
10.6eV灯可以电离所有IP低于10eV化学物质。
当然,10.6eV灯也能电离所有9.8eV灯可电离的物质。
有少数物质(如甲醇、甲醛等)需要使用11.7eV灯才能电离,而11.7eV灯由于原理性缺陷导致寿命极短(几个月),因此很多使用者使用其它方法来测量这类物质。
PID 能测量哪些物质 PID检测有机化合物比如苯、甲苯和二甲苯,也可检测某些无机物,比如NH3.通常来说,被检测化合物包括C原子,即可被PID检测到,当然也有特例,比如CH4、CO是不能被PID检测到的。
PID光离子传感器PID光离子传感器产品描述:PID光离子传感器适用于各种环境和特殊环境中的挥发性有机物PID光离子气体浓度和泄露,在线检测及现场声光报警,对危险现场的作业安全起到了预警作用,此仪器采用进口的电化学传感器和微控制器技术,具有信号稳定,精度高,重复性好等优点,防爆接线方式适用于各种危险场所,并兼容各种控制器,PLC,DCS 等控制系统,可以同时实现现场报警和远程监控,报警功能,4-20mA标准信号输出,继电器开关量输出。
PID光离子传感器产品特性:进口电化学传感器具有良好的抗干扰性能,适用寿命8年。
采用先进微处理技术,响应速度快,测量精度高,稳定性和重复性好。
检测现场具有具有现场声光报警功能,气体浓度超标即时报警,是危险场所作业的安全保障。
4现场带背光大屏幕LCD显示,直观显示气体浓度,类型,单位,工作状态等。
5独立气室,更换传感器无须现场标定,传感器关键参数自动识别。
6全量程范围温度数字自动跟踪补偿,保证测量准确性。
检测气体:空气中的PID光离子气体检测范围:0~100ppm,0~200ppm,0~1000ppm,0~1000ppm,0~5000ppm,100%LEL可选。
分别率:0.01ppm(0~100ppm);0.1ppm(0~1000ppm);1ppm(0~10000ppm以上);0.1LEL.工作方式:固定式连续工作,扩散式,管道式,流通时,泵吸式可选。
检测误差:≦1%(F.S)响应时间:≦10S输出信号:电流信号输出4-20MA报警方式:2路无源节点信号输出,报警点可设置。
工作环境:-20℃~50℃(特殊要求:(-40℃~+70℃)相对湿度:≦90%RH工作电压:DC12~30V传感器寿命:3年防爆形式:探头变送器及传感器均为隔爆型。
防爆等级:Exd II CT6连接电缆:三芯电缆(单根线径≧1.5mm);建议选用屏蔽电缆。
连接距离:≦1000m.防护等级:IP65.外形尺寸:183X143X107mm.重量:1.5Kg.检测气体:空气中的PID光离子气体检测范围:0-100ppm、500ppm、1000ppm、5000ppm、0-100%LEL分辨率:0.1ppm、0.1%LEL显示方式:液晶显示温湿度:选配件,温度检测范围:-40~120℃,湿度检测范围:0-100%RH检测方式:扩散式、流通式、泵吸式可选安装方式:壁挂式、管道式检测精度:≤±3%线性误差:≤±1%响应时间:≤20秒(T90)零点漂移:≤±1%(F.S/年)恢复时间:≤20秒重复性:≤±1%信号输出:①4-20mA信号:标准的16位精度4-20mA输出芯片,传输距离1Km②RS485信号:采用标准MODBUS RTU协议,传输距离2Km③电压信号:0-5V、0-10V输出,可自行设置④脉冲信号:又称频率信号,频率范围可调(选配)⑤开关量信号:标配2组继电器,可选第三组继电器,继电器无源触点,容量220VAC3A/24VDC3A传输方式:①电缆传输:3芯、4芯电缆线,远距离传输(1-2公里)②GPRS传输:可内置GPRS模块,实时远程传输数据,不受距离限制(选配)接收设备:用户电脑、控制报警器、PLC、DCS、等报警方式:现场声光报警、外置报警器、远程控制器报警、电脑数据采集软件报警等报警设置:标准配置两级报警,可选三级报警;可设置报警方式:常规高低报警、区间控制报警电器接口:3/4″NPT内螺纹、1/2″NPT内螺纹,同时支持2种电器连接方式防爆标志:ExdII CT6(隔爆型)壳体材料:压铸铝+喷砂氧化/氟碳漆,防爆防腐蚀防护等级:IP66工作温度:-30~60℃工作电源:24VDC(12~30VDC)工作湿度:≤95%RH,无冷凝尺寸重量:183×143×107mm(L×W×H)1.5Kg(仪工作压力:0~100Kpa器净重)标准配件:说明书、合格证质保期:一年PID光离子传感器简单介绍:PID光离子传感器●自动温度补偿,零点,满量程漂移补偿●防高浓度气体冲击的自动保护功能●全软件校准功能,用户也可自行校准,用3个按键实现,操作简单●二线制4-20mA输出PID光离子传感器应用场所医药科研、制药生产车间、烟草公司、环境监测、学校科研、楼宇建设、消防报警、污水处理、工业气体过程控制石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、、锅炉房、垃圾处理厂、隧道施工、输油管道、加气站、地下燃气管道检修、室内空气质量检测、危险场所安全防护、航空航天、军用设备监测等。
美国华瑞PGM-7320VOC检测仪一、产品介绍MiniRAE3000是一款广谱手持式挥发性有机化合物(VOC)气体检测仪,采用RAE最新的第三代光离子化检测器(PID),提高了检测精度和响应时间,检测范围达到0.1-15000ppm,选择无线传输模块可以实现与控制台的无线数据传输和远程监控。
二、技术参数1、尺寸:25.5×7.6×6.4cm2、重量:738g(含锂电池)3、采样方式:泵吸式4、外壳材质:工程塑料,橡胶外套5、防护等级:IP66(开机)/IP67(关机),完全防尘,可水淋6、电磁辐射:EMI/RF等级:EMC Directive2004/108/EEC7、工作温度:-20℃~50℃8、环境湿度:0%~95%相对湿度(无冷凝)9、产品认证:ATEX认证:II2G EEx ia IIC T4UL/cUL/CSA认证:Class I, Division1,Group A,B,C,DIECEx认证:Ex ia IIC T410、显示屏:大屏幕图形LCD显示、带自动背景灯11、显示语言:中文/英语+符号12、显示内容:实时检测值、TWA值、STEL值、峰值、电池电压、日期时间、温度13、按键:1个操作键、2个功能键、1个照明灯开关14、报警方式:95dB@30cm蜂鸣器,红色LED15、报警信号:气体超标、电池电压不足、传感器故障、电池电量不足报警16、报警设置:单独设置TWA、STEL和高/低报警限值17、数据存储:内置存储260000点的数据容量(1分钟间隔约2个月)记录内容包括日期、时间、序列号、用户ID、检测点ID等18、采样间隔:1-3600秒可调19、数据通讯:USB(通过底座)、RS232(通过旅行充电器)、可选内置蓝牙模块下载检测数据、上传仪器参数设定;可选内置无线模块实现无线数据传输20、泵流速:450~550cc/min21、电池:4.2V/3300mAH可充电锂离子电池,碱性电池盒使用4个AA电池22、运行时间:可连续工作16小时(视工作环境和使用频率)23、充电时间:8小时24、标定方式:两点/三点式零点/扩展标定25、传感器:标配10.6eV(可选9.8/11.7eV)紫外灯的PID传感器26、分辨率:0.1ppm27、响应时间:(T90):2s28、检测精度:10-2000ppm异丁烯标定点的±3%29、传感器参数UV灯类型检测范围————————————————10.6eV0.1~15000ppm9.8eV0.1~5000ppm11.7eV0.1~2000ppm —————————————————三、主要特点1、第三代PID传感器,响应时间短,检测范围宽2、大屏幕图文液晶显示,图形菜单显示3、自动背光显示,内置照明灯,便于黑暗环境使用4、内置温度湿度压力传感器,自动湿度补偿,保证测量精度5、无需任何工具快速更换传感器和电池6、自动识别紫外灯型号7、传感器和紫外灯自动清洁8、内置蓝牙和无线传输模块,实现实时无线传输9、多国语言显示,支持中文10、防护等级高,完全防尘,可直接用水清洗11、内置强力吸气泵12、使用大容量锂电池和碱性电池13、支持AutoRAE自动标定系统四、标准配置1、PGM-7320主机,含传感器及UV灯2、锂电池、充电/数据下载底座3、橡胶保护套4、进气管及水阱过滤器5、操作说明书6、资料及软件光盘7、便携软包五、应用领域工业安全监测、室内空气质量检测、危险物质检测、环境保护监测以上信息来自青岛聚创环保设备有限公司。
便携式VOC检测仪的功能参数是怎样的1.测量原理:便携式VOC检测仪根据挥发性有机化合物的浓度通过气体传感器的变化来判断,并将结果显示在仪器的屏幕上。
常用的测量原理包括电化学、PID(光离子化检测器)等。
2. 测量范围:便携式VOC检测仪一般会有不同的量程可供选择,以适应不同环境中VOCs浓度的变化。
常见的量程范围从低ppb(10^-9)到高ppm(10^-6)。
3.响应时间:响应时间是指便携式VOC检测仪从检测到VOCs存在的时间到结果显示的时间。
一般情况下,响应时间应该尽可能短,以便及时采取相应的防护措施。
4.精确度:精确度是指便携式VOC检测仪测量结果与标准值之间的差异。
通常使用测量误差或绝对误差来表示。
精确度一般应在可接受范围内。
5.分辨率:分辨率是指便携式VOC检测仪能够分辨的最小变化量。
对于VOCs的检测仪器,一般分辨率越高,能够检测到的细微变化也越小。
6.显示方式:便携式VOC检测仪的显示方式多种多样,可以是数字显示,也可以是液晶显示。
一些高级的型号还可以通过蓝牙或者USB接口将数据传输到计算机或者移动设备上进行分析和记录。
7.数据存储与导出:便携式VOC检测仪通常具有数据存储功能,可以将检测的数据存储在内部存储器中。
同时,也可以通过USB接口或者无线传输将数据导出到计算机或者移动设备上。
8.电池寿命:便携式VOC检测仪一般使用可充电电池,电池寿命直接影响仪器的使用时间。
一般情况下,电池寿命越长,使用时间越长。
9.机械结构:便携式VOC检测仪一般是手持式的,机械结构应该轻便、坚固,方便携带和使用。
10.抗干扰能力:环境中常常存在各种干扰物质,便携式VOC检测仪应具有一定的抗干扰能力,以保证测试结果的准确性。
11.自动校准与自动清洗功能:为了保持测试结果的准确性,便携式VOC检测仪通常具有自动校准和自动清洗功能,可以自动校准零点和气体浓度。
12.报警功能:便携式VOC检测仪一般会设置一定的报警阈值,当VOCs浓度超过设定值时会触发报警,以提醒使用者采取相应的措施。
使用PID 进行10%LEL 的检测根据国家规定,进入密闭空间首先要检测的项目就是是否有可燃气体的存在,在进入密闭空间之前,可燃气体的浓度必须低于10%的LEL(爆炸下限),而目前用于测量LEL 都是惠司通电桥形式的催化燃烧型的传感器。
尽管它可以应用于各个方面,但它的问题是对很多特殊化合物的灵敏度不足,或者这些化合物会使传感器中毒。
而此时PID(光离子化检测器)却可以提供一种可靠的、高精度的和不会中毒的测量密闭空间中10%LEL 的检测方法。
LEL 传感器的原理一个惠司通电桥LEL 传感器就是一个由两个燃烧元件的简单的小电炉,其中一个元件上涂覆有催化剂(如铂),两个元件都被加热到一个不能燃烧的温度,但涂有催化剂的元件却可以“燃烧”浓度低得多的化合物。
燃烧使该元件变热,同时电阻变大,惠司通电桥可以测量出这种同LEL 相关的电阻差别。
但不幸的是,惠司通电桥也可能因为“燃烧”过度而损坏失效,从而无法得到正确的安全提示,而这种失效只能用标准气体才能测试出来。
燃烧型传感器的局限性1、 “较重的”碳氢化合物很难扩散进LEL 传感器传感器,,从而降低输出有些“较重的”(低蒸汽压/高沸点)的碳氢化合物蒸汽很难通过LEL 传感器的烧结金属隔火栅,而这种隔火栅使每个LEL 传感器都具有了防止传感器本身引起待测易燃易爆气体燃烧和爆炸的可能,但不会阻隔像甲烷、乙烷、丙烷等进入传感中的惠司通电桥。
然而,低蒸汽压的碳氢化合物,比如汽油、煤油、松节油、溶剂等很难通过隔火栅,这样到达惠司通电桥的蒸汽量就很少,传感器的反应也就比较差。
2、常见化合物会使LEL 传感器中毒既使在最好的情形下,惠司通电桥型的LEL 传感器也很难测量更多的碳氢化合物。
同时,常见的工业化学品也可能降低甚至损坏LEL 检测器的性能。
有的影响非常迅速(急性中毒),有些又可能相当缓慢(慢性中毒)。
就同人中毒一样,传感器的中毒也同“毒剂”的剂量有关。
LEL 传感器的急性中毒: 含硅化合物 含铅化合物 含硫化合物 含磷化合物六甲基二硅氮烷(HMDS)这些化合物仅要几个ppm 的量就可能降低惠司通电桥传感器的性能。
PID?和?FID?的区别????光离子化检测器(简称?PID)和火焰离子化检测器(简称?FID)是对低浓度气体和有机蒸汽具有很好灵敏度的检测器,优化的配置可以检测不同的气体和有机蒸汽。
这两种技术都能检测到?ppm 水平的浓度,但是它们所采用的是不同的检测方法。
每种检测技术都有它的优点和不足,针对特殊的应用就要选用最适合的检测技术来检测。
总的来说,PID?体积小巧、重量轻、使用简单,因此它具有很好的便携性能。
?PID?和?FID?的工作方式?????PID?时,? ????FID?为何?PID?????因为PID??????>?FID??????????PID?和?FID?9.8、10.6?和隔绝装置,控制火焰,使传感器具有防爆性能。
当有大分子缓慢扩散到?FID?的传感器时往往补偿了响应的不足,而?PID?可通过选择不同能量的灯来避免一些化合物的干扰,或者选择最高能量的灯来检测最广谱的化合物,因此可以说?FID?与?PID?相比是一个更广谱的检测器它没有任何选择性。
甲烷的响应和干扰?????FID?常用甲烷来标定,但是?PID?对甲烷没有任何的响应,需要有一个?12.6eV的紫外光源才能将甲烷离子化,目前?PID?是不能做到的。
因此?FID?是检测天然气(主要有甲烷组成)的有利武器。
另一方面,PID?能很好的检测垃圾填埋场的有毒?VOC,如果用?FID?来检测垃圾填埋场的VOC 那么现场的甲烷气体会对?FID?产生极大的干扰。
两者的检测极限、范围和线性????FID能检测1-50000ppm;PID能检测1ppb-4000ppm或0.1ppm-10000ppm的VOC,PID可以检测更低浓度的VOC,在高浓度?(>1000ppm)?情况下,FID有更好的线性。
高湿度????一般情况,湿度对?FID?没有任何影响,因为火焰能将湿度清除,除非有水直接进入到传感器中。
PID?在高湿度情况下会降低响应,通过对传感器的清理和维护可以避免因湿度产生的滞后响应。