杂化轨道理论与价电子对互斥理论的异同
- 格式:doc
- 大小:53.00 KB
- 文档页数:4
杂化轨道理论与价层电子对互斥理论的互补性
近年来,随着计算技术的发展以及新兴领域的探索,仪器化分子物理已经得到了飞速发展。
杂化轨道理论和价层电子对互斥理论是分子物理自然规律研究的两个重要方面,也是当前研究的关键范畴。
杂化轨道理论是传统的量子力学理论的重要延伸,它的推导及应用目的在于研究原子或分子的自旋极化效应以及质子和电子的结构。
在微观世界中电子或原子具有抗干涉性,在实验中,研究者可能会遇到电子无法被精确描述,杂化轨道理论能够更好地描述电子的情况。
另一方面,价层电子波函数理论是应用量子力学研究化合物的主要技术,它使用精确的波函数描述化合物的结构、性质、反应性等性质特征,涵盖了极化力学、体系反应性、离域分析、结构动力学等精确的本征性质。
杂化轨道理论和价层电子对互斥理论是互补的:杂化轨道理论可以根据自旋极化效应和电子结构准确地描述原子或分子,而价层电子波函数理论则精准地覆盖宏观性质,如极化力学、反应性等,这两者互补对互斥理论是极大的帮助。
总之,杂化轨道理论和价层电子对互斥理论的互补性为研究原子或分子物理提供了一定的参考价值,从而促进分子物理的进一步发展。
杂化轨道理论和价层电子波函数理论是畅通了理论研究和实验应用之间的桥梁,为科学研究提供了可靠的理论参照。
杂化轨道理论一般只考虑中心原子的杂化情况和σ/π键成键情况,但未考虑到配体的空间位置对其的影响;但在配体较多、空间结构复杂的情况下,杂化轨道的可选择的轨道较多,需要考虑各种组合方式,解释能力较弱。
价电子对互斥理论,考虑到了了中心原子于周围配位原子/孤对电子之间的形态,但是是基于σ键电子对和孤对电子之间的相互排斥作用,未考虑到π键的形态和配位原子对中心原子的影响,对存在多重键的多中心结构无法很好地解释。
分子轨道理论将轨道组合的范围,从杂化轨道中的中心原子扩展到了整个分子,考虑到了中心原子与配体的能级相互作用;但是其计算量较大,得到的冗余信息较多(比如配体的轨道实际上是不会和中心原子的全满的内层轨道组合的);而且基于原始原子轨道能级的排布,未考虑到中心原子事先通过轨道杂化、再组成分子轨道的可能性(或者说,需要把中心原子的轨道杂化和整个分子的轨道组合共同考虑才行)。
1 杂化轨道:在形成分子的过程中,由于原子间的相互影响,若干类型不同而能量相近的原子轨道相互混杂,重新组合成一组能量相等,成分相同的新轨道,这一过程称为杂化。
经过杂化而形成的新轨道叫做杂化轨道,杂化轨道与其他原子轨道重叠时形成σ共价键。
原子在形成分子的过程中,为了使所成化学键强度更大,更有利于体系能量的降低,总趋向于将原来的原子轨道进一步线性组合,以形成新的原子轨道。
价键理论的论证价键理论对共价键的本质和特点做了有力的论证,但它把讨论的基础放在共用一对电子形成一个共价键上,在解释许多分子、原子的价键数目及分子空间结构时却遇到了困难。
例如C原子的价电子是2s22p2,按电子排布规律,2个s电子是已配对的,只有2个p电子未成对,而许多含碳化合物中C都呈4价而不是2价,可以设想有1个s电子激发到p轨道去了。
那么1个s轨道和3个p 轨道都有不成对电子,可以形成4个共价键,但s和p的成键方向和能量应该是不同的。
而实验证明:CH4分子中,4个C-H共价键是完全等同的,键长为114pm,键角为109°28'。
杂化轨道理论与价层电子对互斥理论应用于分子构型的比较研
究
朱斌
【期刊名称】《西华师范大学学报(自然科学版)》
【年(卷),期】2003(024)002
【摘要】介绍了杂化轨道理论和价层电子对互斥理论的基本要点和在分析分子的几何构型方面的应用,并对它们进行了比较研究.相对而言,杂化轨道理论比价层电子对互斥理论应用范围较广,在大学化学教学中应重点讲授.
【总页数】5页(P240-244)
【作者】朱斌
【作者单位】四川职业技术学院生化系,四川,遂宁,629000
【正文语种】中文
【中图分类】O641.122
【相关文献】
1.试论价层轨道的杂化——兼论杂化轨道理论与价层电子对互斥理论的统一 [J], 邓玉良
2.杂化轨道理论与价层电子对互斥理论的互补性 [J], 席改卿
3.价层电子对互斥理论与杂化轨道理论 [J], 罗学潭
4.议谈“价层电子对互斥理论”判断分子构型的竞赛教学 [J], 孙晓妮
5.杂化轨道理论与价层电子对互斥理论的互补性 [J], 王新中
因版权原因,仅展示原文概要,查看原文内容请购买。
杂化轨道理论与价电子对互斥模型【考纲要求】1.了解杂化轨道理论及简单的杂化轨道类型(sp、sp2、sp3)。
2.能用价层电子对互斥理论或者杂化轨道理论推测简单分子或离子的立体构型。
3.了解配位键的含义。
考点一杂化轨道理论【核心知识梳理】(1)理论要点①原子成键时,原子的价电子轨道相互混杂,形成与原轨道数目相等且能量相同的杂化轨道。
②杂化轨道数不同,轨道间的夹角不同,形成分子的空间结构不同。
(2)杂化轨道的类型(3)杂化轨道的类型与分子立体构型的关系注意杂化轨道只能形成σ键,不能形成π键。
(4)判断分子中心原子的杂化类型方法①根据杂化轨道的空间分布构型判断a.若杂化轨道在空间的分布为正四面体形或三角锥形,则分子的中心原子发生sp3杂化。
b.若杂化轨道在空间的分布呈平面三角形,则分子的中心原子发生sp2杂化。
c.若杂化轨道在空间的分布呈直线形,则分子的中心原子发生sp杂化。
②根据杂化轨道之间的夹角判断若杂化轨道之间的夹角为109°28′,则分子的中心原子发生sp3杂化;若杂化轨道之间的夹角为120°,则分子的中心原子发生sp2杂化;若杂化轨道之间的夹角为180°,则分子的中心原子发生sp杂化。
③根据等电子原理进行判断如CO2是直线形分子,CNS-、N-3与CO2是等电子体,所以分子构型均为直线形,中心原子均采用sp杂化。
④根据中心原子的价层电子对数判断如中心原子的价层电子对数为4,是sp3杂化,为3是sp2杂化,为2是sp杂化。
⑤根据分子或离子中有无π键及π键数目判断如没有π键为sp3杂化,含一个π键为sp2杂化,含两个π键为sp杂化。
【精准训练1】杂化轨道理论1.下列关于杂化轨道的说法错误的是()A.所有原子轨道都参与杂化形成杂化轨道B.同一原子中能量相近的原子轨道参与杂化C.杂化轨道能量集中,有利于牢固成键D.杂化轨道中不一定有一个电子2.下列有关sp2杂化轨道的说法错误的是()A.由同一电子层上的s轨道与p轨道杂化而成B.共有3个能量相同的杂化轨道C.每个sp2杂化轨道中s轨道成分占三分之一D.sp2杂化轨道最多可形成2个σ键3.有关杂化轨道的说法不正确的是()A.杂化前后的轨道数不变,但轨道的形状发生了改变B.sp3、sp2、sp杂化轨道的夹角分别为109°28′、120°、180°C.杂化轨道既可形成σ键,又可形成π键D.已知CO2为直线形分子,其分子结构可以用sp杂化轨道解释4.石墨烯(图甲)是一种由单层碳原子构成的平面结构新型材料,石墨烯中部分碳原子被氧化后,其平面结构会发生改变,转化为氧化石墨烯(图乙)。
杂化轨道理论与VSEPR理论对分子空间构型判断的比较大学的第一篇课程论文,为写好这篇论文,学会了不少东西——用数据库查文献,编辑公式,上标、下标,英文的摘要,论文的基本格式摘要:介绍了用杂化轨道理论与价层电子对互斥理论(VSEPR理论)判断分子空间构型的基本要点以及理论之间的不足。
相对而言杂化轨道理论应用的范围较广,但VSEPR理论在判断和预言分子空间几何构型方面仍有重要意义。
二者的结合运用将有助于提高判断分子空间结构的准确性。
比较二者的不同更有利于我们理解。
关键词:杂化;斥力;孤对电子;电子的空间构型在价键理论解释分子的空间结构遇到困难的时候,L .Pauling和J.C.Stater于1931年提出了杂化(hybridization)的概念,以完善和发展价键理论。
之后,N.V.Sidgwick和H.Powell 于1940年前后提出价层电子对互斥理论(valence shell electron pair repulsion,简称VSEPR 法)。
虽然不少教材都对这两种理论作了介绍,但很少把二者相比较起来。
在解释同一个分子的空间构型时,很少从两种理论的不同角度去分析。
笔者认为用两种不同的理论去对同一个分子的空间结构做出解释时,更能有效地比较二者的优缺点,从而加深对它们的认识。
1 杂化轨道理论1.1 杂化轨道理论的内容要点Pauling从原子的价电子构型出发,依据电子的波动性以及波的可叠加性,认为中心原子在与其他原子形成分子时,由于其他原子的影响,中心原子中能量相近的不同类型轨道(s,p,d,…)会发生杂化,形成同等数目的杂化轨道。
在杂化过程中,中心原子的部分轨道上的电子被激发到空轨道上,成单电子增多,杂化之后易于形成多个化学键。
成键时,杂化轨道与邻近原子的原子轨道发生重叠,成键的能力增强,整个分子体系的总能量降到最低,使分子能稳定存在。
所以,原子轨道的杂化是可能的,也是必须的。
对于分子AX n,将A和X从基态激发到价态所需的能量叫价态激发能(P.E.),如P sp 即表示从s轨道激发一个电子到p轨道所需的能量。
龙源期刊网
浅析杂化轨道理论与价电子对互斥理论的理解与应用
作者:陈永峰
来源:《新课程·教育学术》2010年第11期
杂化轨道理论与价电子对互斥理论是高中选修化学《物质结构与性质》中的重点与难点,并且这部分教材对很多教师来说还是崭新的内容,笔者对于这部分内容有一些体会,想与大家分享。
一、轨道进行杂化的原因
原子为了更好的成键。
这里的“更好”包括“更多”和“更强”。
以CH4为例:按照传统的结构理论,C原子的外围电子轨道表示式为(图一),且2P的两个有单电子的轨道相互垂直,那么C就只能结合两个H原子,并且C-H键角为90°。
而CH4中的C却结合了4个H,C-H键角为109°28′,这样CH4中的C就成了“更多”的键;根据元素周期律:C元素的非金属性较弱,但我们知道CH4的稳定性还是很强的,这样CH4中的C就成了“更强”的键。
由此我们对CH4中C的轨道在成键过程中的变化情况可作出以下假设:(图二)。
这就是C的一种杂化方式即SP3杂化。
杂化轨道理论一般只考虑中心原子的杂化情况和σ/π键成键情况,但未考虑到配体的空间位置对其的影响;但在配体较多、空间结构复杂的情况下,杂化轨道的可选择的轨道较多,需要考虑各种组合方式,解释能力较弱。
价电子对互斥理论,考虑到了了中心原子于周围配位原子/孤对电子之间的形态,但是是基于σ键电子对和孤对电子之间的相互排斥作用,未考虑到π键的形态和配位原子对中心原子的影响,对存在多重键的多中心结构无法很好地解释。
分子轨道理论将轨道组合的范围,从杂化轨道中的中心原子扩展到了整个分子,考虑到了中心原子与配体的能级相互作用;但是其计算量较大,得到的冗余信息较多(比如配体的轨道实际上是不会和中心原子的全满的内层轨道组合的);而且基于原始原子轨道能级的排布,未考虑到中心原子事先通过轨道杂化、再组成分子轨道的可能性(或者说,需要把中心原子的轨道杂化和整个分子的轨道组合共同考虑才行)。
1 杂化轨道:在形成分子的过程中,由于原子间的相互影响,若干类型不同而能量相近的原子轨道相互混杂,重新组合成一组能量相等,成分相同的新轨道,这一过程称为杂化。
经过杂化而形成的新轨道叫做杂化轨道,杂化轨道与其他原子轨道重叠时形成σ共价键。
原子在形成分子的过程中,为了使所成化学键强度更大,更有利于体系能量的降低,总趋向于将原来的原子轨道进一步线性组合,以形成新的原子轨道。
价键理论的论证价键理论对共价键的本质和特点做了有力的论证,但它把讨论的基础放在共用一对电子形成一个共价键上,在解释许多分子、原子的价键数目及分子空间结构时却遇到了困难。
例如C原子的价电子是2s22p2,按电子排布规律,2个s电子是已配对的,只有2个p电子未成对,而许多含碳化合物中C都呈4价而不是2价,可以设想有1个s电子激发到p轨道去了。
那么1个s轨道和3个p 轨道都有不成对电子,可以形成4个共价键,但s和p的成键方向和能量应该是不同的。
而实验证明:CH4分子中,4个C-H共价键是完全等同的,键长为114pm,键角为109°28'。
BCl3,BeCl2,PCl3等许多分子也都有类似的情况。
为了解释这些矛盾,1928年鲍林(Pauling)提出了杂化轨道概念[1],丰富和发展了的价键理论。
他根据量子力学的观点提出:在同一个原子中,能量相近的不同类型的几个原子轨道在成键时,可以互相叠加重组,成为相同数目、能量相等的新轨道,这种新轨道叫杂化轨道。
C原子中1个2s电子激发到2p后,1个2s轨道和3个2p轨道重新组合成4个sp3杂化轨道,它们再和4个H原子形成4个相同的C-H键,C位于正四面体中心,4个H位于四个顶角。
相关种类杂化轨道种类很多,如三氯化硼(BCl3)分子中B有sp2杂化轨道,即由1个s 轨道和2个p轨道组合成3个sp2杂化轨道,在氯化铍(BeCl2)中有sp杂化轨道,在过渡金属化合物中还有d轨道参与的sp3d和sp3d2杂化轨道等。
以上几例都是阐明了共价单键的性质,至于乙烯和乙炔分子中的双键和三键的形成,又提出了σ键和π键的概念。
如把两个成键原子核间联线叫键轴,把原子轨道沿键轴方向“头碰头”的方式重叠成键,称为σ键。
把原子轨道沿键轴方向“肩并肩”的方式重叠,称为π键。
例如在乙烯(CH2= CH2)分子中有碳碳双键(C=C),碳原子的激发态中2px,2py和2s形成sp2杂化轨道,这3个轨道能量相等,位于同一平面并互成120℃夹角,另外一个pz轨道未参与杂化,位于与平面垂直的方向上。
碳碳双键中的sp2杂化如下所示。
这3个sp2杂化轨道中有2个轨道分别与2个H原子形成σ单键,还有1个sp2轨道则与另一个C的sp2轨道形成头对头的σ键,同时位于垂直方向的pz 轨道则以肩并肩的方式形成了π键。
也就是说碳碳双键是由一个σ键和一个π键组成,即双键中两个键是不等同的。
π键原子轨道的重叠程度小于σ键,π键不稳定,容易断裂,所以含有双键的烯烃很容易发生加成反应,如乙烯(H2C=CH2)和氯(Cl2)反应生成氯乙烯(Cl—CH2—CH2—Cl)。
乙炔分子(C2H2)中有碳碳叁键(HC≡CH),激发态的C原子中2s和2px轨道形成sp杂化轨道。
这两个能量相等的sp杂化轨道在同一直线上,其中之一与H 原子形成σ单键,另外一个sp杂化轨道形成C原子之间的σ键,而未参与杂化的py与pz则垂直于x轴并互相垂直,它们以肩并肩的方式与另一个C的py,pz形成π键。
即碳碳三键是由一个σ键和两个π键组成。
这两个π键不同于σ键,轨道重叠也较少并不稳定,因而容易断开,所以含三键的炔烃也容易发生加成反应。
杂化轨道限于最外层电子,而在第一层的两个电子不参与反应,而在其他层上有许多的轨道,电子会从能量低的层“跃迁”到能量高的层,而原来能量低的层是因为电子的运动方向相反,而跃迁以后电子就只向一种方向运动,所以能量会高。
并且反应以后组成的能量介于原来的S轨道和P轨道能量之间。
几种杂化轨道之后的分子空间形态sp杂化:直线型sp2杂化:平面三角形(等性杂化为平面正三角形)sp3杂化:空间四面体(等性杂化为正四面体)2 价电子对互斥理论一个分子的中心原子究竟采取哪种类型的轨道杂化,直接可以预测整个分子的空间构型。
杂化轨道理论成功地解释了部分共价分子杂化与空间构型关系,但是,仅用杂化轨道理论预测有时是难以确定的。
1940年美国的Sidgwick NV等人相继提出了价层电子对互斥理论(valence shell electron pair repulsion theory),简称VSEPR法,该法适用于主族元素间形成的ABn型分子或离子。
该理论认为,一个共价分子或离子中,中心原子A周围所配置的原子B(配位原子)的几何构型,主要决定于中心原子的价电子层中各电子对间的相互排斥作用。
这些电子对在中心原子周围按尽可能互相远离的位置排布,以使彼此间的排斥能最小。
所谓价层电子对,指的是形成σ键的电子对和孤对电子。
孤对电子的存在,增加了电子对间的排斥力,影响了分子中的键角,会改变分子构型的基本类型。
根据此理论,只要知道分子或离子中的中心原子上的价层电子对数,就能比较容易而准确地判断ABn 型共价分子或离子的空间构型。
空间构型步骤价层电子对理论预测分子空间构型步骤为:1.确定中心原子中价层电子对数中心原子的价层电子数和配体所提供的共用电子数的总和除以2,即为中心原子的价层电子对数。
规定:(1)作为配体,卤素原子和H 原子提供1个电子,氧族元素的原子不提供电子;(2)作为中心原子,卤素原子按提供7个电子计算,氧族元素的原子按提供6个电子计算;(3)对于复杂离子,在计算价层电子对数时,还应加上负离子的电荷数或减去正离子的电荷数;(4)计算电子对数时,若剩余1个电子,亦当作1对电子处理。
(5) 双键、叁键等多重键作为1对电子看待。
2.判断分子的空间构型根据中心原子的价层电子对数,从表9-4中找出相应的价层电子对构型后,再根据价层电子对中的孤对电子数,确定电子对的排布方式和分子的空间构型。
实例分析:试判断PCl5 离子的空间构型。
解:P离子的正电荷数为5,中心原子P有5个价电子,Cl原子各提供1个电子,所以P原子的价层电子对数为(5+5)/2 = 5,其排布方式为三角双锥。
因价层电子对中无孤对电子,所以PCl5 为三角双锥构型。
实例分析:试判断H2O分子的空间构型。
解:O是H2O分子的中心原子,它有6个价电子,与O化合的2个H原子各提供1个电子,所以O原子价层电子对数为(6+2)/2 = 4,其排布方式为四面体,因价层电子对中有2对孤对电子,所以H2O分子的空间构型为V形。
表9-5 理想的价层电子对构型和分子构型实例分析判断HCHO分子和HCN分子的空间构型解分子中有1个C=O双键,看作1对成键电子,2个C-H单键为2对成键电子,C原子的价层电子对数为3,且无孤对电子,所以HCHO分子的空间构型为平面三角形。
HCN分子的结构式为H—C≡N∶,含有1个C≡N叁键,看作1对成键电子,1个CH单键为1对成键电子,故C原子的价层电子对数为2,且无孤对电子,所以HCN分子的空间构型为直线。
(一)价电子互斥理论分子的立体结构决定了分子许多重要的性质,例如分子中化学键的类型、分子的极性、分子之间的作用力大小、分子在晶体里的排列方式等等。
分子的立体结构通常是指其σ键的分子骨架在空间的排布。
1、价层电子对互斥模型(VSEPR模型):价层电子对互斥模型(VSEPR模型)是一种可以用来预测分子立体结构的理论模型,总的原则是中心原子价电子层电子对(包括成键电子对和未成键的孤对电子对)的互相排斥作用,使分子的几何构型总是采取电子对相互排斥最小的那种构型,即分子尽可能采取对称的空间构型。
2、VSEPR模型的内容:VSEPR模型把分子分为两类:(1)中心原子上的价电子都用于形成共价键,即中心原子无孤对电子的,根据键的条数或者说ABn 型分子中n的个数,判断分子构型。
如CO2、CH2O、CH4等分子中的C原子。
它们的立体结构可用中心原子周围的原子数来预测,概括如下:ABn 立体结构范例n=2 直线型CO2 n=3 平面三角形CH2O n=4 正四面体型CH4 (2)中心原子上有孤对电子(未用于形成共价键的电子对)的分子,则将孤对电子也算作键数,同上推出包括孤对电子的分子构型,然后去掉孤对电子后看分子新构型。
如H2O和NH3中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥。
因而H2O分子呈V型,NH3分子呈三角锥型。
ABm型分子或离子中的价电子对数(孤对电子+形成共价键的电子对)的计算方法:(1)对于主族元素,中心原子价电子数=最外层电子数,配位原子按提供的价电子数计算,如:PCl5 中(2)O、S作为配位原子时按不提供价电子计算,作中心原子时价电子数为6;(3)离子的价电子对数计算如:NH4+ :;SO42-:3、VSEPR模型的应用:应用VSEPR理论判断下表中分子或离子的构型。
(C原子孤对电子数一般为0)(1)VSEPR模型预测分子立体结构方法:首先确定中心原子的价层电子对数,然后确定中心原子的有无孤对电子数,再结合实际例子分析。
(2)VSEPR模型是模型化方法的具体体现,它把原子数相同、价电子数相同的一类化学粒子的结构加以概括,体现了等电子原理的思想,例如五原子八电子的CH4、SiH4、NH4+,它们都是正四面体构型。
(二)杂化轨道理论价层电子对互斥模型只能解释化合物分子的空间构形,却无法解释许多深层次的问题,如无法解释甲烷中四个C---H的键长、键能相同及H-C -H的键角为109 ° 28′。
因为按照我们已经学过的价键理论,甲烷的4个C -H 单键都应该是σ键,然而,碳原子的4个价层原子轨道是3个相互垂直的2p轨道和1个球形的2s轨道,用它们跟4个氢原子的1s原子轨道重叠,不可能得到四面体构型的甲烷分子。