2021届高考数学圆锥曲线压轴题专题04 圆锥曲线与外心问题(通用版解析版)
- 格式:docx
- 大小:1.23 MB
- 文档页数:21
高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系中,已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为点,分别以PQ ,PF 为直径作圆和圆,且圆和圆交于P ,R 两点,且.(1)求动点的轨迹E 的方程;(2)若直线:交轨迹E 于A ,B 两点,直线:与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线两侧,直线与交于点且,求面积的最大值.【解析】(1)设点,因为, 由正弦定理知,,解得, 所以曲线的方程为.(2)直线与曲线在第一象限交于点, 因为,所以, 由正弦定理得:,xOy ()1,0F l =1x −P P l Q 1C 2C 1C 2C PQR PFR ∠=∠P 1l x my a =+2l 1x =2l 1l 2l N MA BN AN MB ⋅=⋅MAB △(,)P x y PQR PFR ∠=∠||||PQ PF =|1|x =+24y x =E 24y x =1x =E (1,2)M ||||||||MA BN AN MB ⋅=⋅||||||||MA MB AN BN =sin sin sin sin ANM BNMAMN BMN∠∠=∠∠所以. 设, 所以, 得,所以, 所以直线方程为:,联立,得 由韦达定理得,又因为点在直线的上方,所以,所以, 所以又因为点到直线的距离为所以方法一:令,则,所以当时,单调递增,当时,单调递减,所以, 所以当时,面积最大,此时最大值为.方法二:最大值也可以用三元均值不等式,过程如下:, 当且仅当,即时,等号成立.AMN BMN ∠=∠()()1122,,,A x y B x y 12122212121222224411221144AM BM y y y y k k y y x x y y−−−−+=+=+=+=−−++−−124y y +=−2121222121124144AB y y y y k y y x x y y −−====−−+−1l x y a =−+24y xx y a ⎧=⎨=−+⎩2440,16(1)0,1y y a a a +−=∆=+>>−12124,4y y y y a +=−=−M 1l 21a >−+13a −<<12||AB y =−=M 1l d =11||22ABMSAB d ==⨯=2()(1)(3),13f a a a a =+−−<<()(31)(3)f a a a '=−−113a −<<()0,()f a f a '>133a <<()0,()f a f a '<max 1256()327f a f ⎛⎫== ⎪⎝⎭13a =ABM S ∆=ABM S △ABMS==223a a +=−13a =2.(2023·北京·高三专题练习)已知椭圆中心在原点,焦点在坐标轴上,,一个焦点为. (1)求椭圆的标准方程;(2)过点且不与坐标轴垂直的直线与椭圆相交于两点,直线分别与直线相交于两点,若为锐角,求直线斜率的取值范围. 【解析】(1)由题意知:椭圆的离心率因为一个焦点为,所以,则由可得:,所以椭圆的标准方程为. (2)设直线的方程为,, 联立方程组,整理可得:,则有, 由条件可知:直线所在直线方程为:, 因为直线与直线相交于 所以,同理可得:, 则, 若为锐角,则有, 所以 C O ()0,1F C F l ,A B ,OA OB 2y =,M N MON ∠l k C c e a ==()0,1F 1c =a 222a b c =+1b =C 2212y x +=l 1y kx =+1122(,),(,)A x y B x y 22112y kx y x =+⎧⎪⎨+=⎪⎩22(2)210k x kx ++−=12122221,22k x x x x k k −−+==++OA 11y y x x =OA 2y =M 112(,2)x M y 222(,2)xN y 112(,2)x OM y =222(,2)xON y =MON ∠0OM ON >121212212121212444444(1)(1)()1x x x x x x OM ON y y kx kx k x x k x x =+=+=++++++,则,解得:或, 所以或或, 故直线斜率的取值范围为. 3.(2023·青海海东·统考一模)已知函数.(1)求曲线在处的切线方程;(2)若在点处的切线为,函数的图象在点处的切线为,,求直线的方程.【解析】(1),,则,所以曲线在处的切线方程为,即.(2)设,令,则. 当时,; 当时,.所以在上单调递增,在上单调递减,所以在时取得最大值2,即.,当且仅当时,等号成立,取得最小值2. 因为,所以,得.2222142=412122k k k k k k −⨯++−−⨯+⨯+++22=41k +−22421k k −=−224201k k −>−212k <21k>k −<<1k >1k <−l k 22(,1)(,)(1,)22−∞−−+∞()32ln 13x f x x x x =−+−()y f x =1x =()y f x =A 1l ()e e x xg x −=−B 2l 12l l ∥AB ()11101133f =−+−=−()222ln 212ln 3f x x x x x =+−+=−+'()12f '=()y f x =1x =()1213y x +=−723y x =−()()1122,,,A x y B x y ()22ln 3h x x x =−+()()()21122x x h x x x x+−=−='01x <<()0h x '>1x >()0h x '<()h x ()0,1()1,+∞()22ln 3h x x x =−+1x =()2f x '…()e e 2x x g x −=+'…0x =()g x '12l l ∥()()122f x g x ''==121,0x x ==即,所以直线的方程为,即. 4.(2023春·重庆·高三统考阶段练习)已知椭圆的左右焦点分别为,右顶点为A ,上顶点为B ,O 为坐标原点,.(1)若的面积为的标准方程;(2)如图,过点作斜率的直线l 交椭圆于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使,记四边形的面积为,求的最大值.【解析】(1),∴,,解得的标准方程为:. (2),∴,椭圆,令,直线l 的方程为:, 联立方程组: ,消去y 得,由韦达定理得,,()11,,0,03A B ⎛⎫− ⎪⎝⎭AB ()130010y x −−−=−−13y x =−22122:1(0)x y C a b a b+=>>12,F F ||2||OA OB =12BF F △1C (1,0)P (0)k k >1C SN OM ON OQ +=OMQN 1S 21OT OQ S k⋅−||2||OA OB =2a b =12122BF F S b c =⋅=△bc =222a b c =+4,2,a b c ===1C 221164x y +=||2||OA OB =2a b =22122:14x yC b b+=()()()()201012,,,,,,,0T M x y N x y Q x y T x (1)y k x =−222214(1)x y b b y k x ⎧+=⎪⎨⎪=−⎩22222(14)8440k x k x k b +−+−=2122814k x x k +=+221224414k b x x k −=+有 ,因为:,所以, , 将点Q 坐标代入椭圆方程化简得: , 而此时: . 令,所以直线 , 令得 , 由韦达定理化简得,,而, O 点到直线l 的距离, 所以:,,因为点P 在椭圆内部,所以 ,得,即令 ,求导得 ,当,单调递增; 当 ,即,单调递减.所以:,即5.(2023·全国·高三专题练习)已知椭圆C :的右顶点为,过左焦点F 的直线交椭圆于M ,N 两点,交轴于P 点,,,记,,(为C 的右焦点)的面积分别为.121222(2)14kyy k x x k −+=+−=+OM ON OQ +=202814k x k =+02214k y k −=+222414k b k=+()22222284(14)(44)480k k k b k ∆=−+−=>()11,S x y −122221:()y y SN y y x x x x +−=−−0y =()1212211212212112122(1)(1)(2)2T x x x x x y x y k x x k x x x y y k x x x x −+−+−===+++−+−24T x b =12OMN S S =△12MN x =−=d =1122S MN d =⨯⋅=2222243212814(14)k b k OQ OT k k ⋅==++2312280(14)OT OQ S k k k ⋅−=+214b <2112k >k >322()(14)k f k k =+222222423(41)(43)(43)()(14)(14)k k k k k f k k k −+−−−'==++213124k <<k <<()0f k '>()f k 234k >k >()0f k '<()f k max()f k f ==⎝⎭21maxOT OQ S k ⎛⎫⋅−=⎪⎝⎭22221(0)x y a b a b+=>>A 1(0)x ty t =−≠y PM MF λ=PN NF μ=OMN 2OMF △2ONF △2F 123,,S S S(1)证明:为定值;(2)若,,求的取值范围.【解析】(1)由题意得F ,,所以椭圆C 的标准方程为:.设,显然,令,,则,则,,由得,解得,同理. 联立,得. ,从而(定值) (2)结合图象,不妨设,,,, λμ+123S mS S μ=+42λ−≤≤−m a (1,0)1c −⇒=2221b a c =−=2212x y +=1122(,),(,)M x y N x y 0t ≠0x =1y t =10,P t ⎛⎫⎪⎝⎭111,PM x y t ⎛⎫=− ⎪⎝⎭()111,MF x y =−−−PM MF λ=11111(,)(1,)x y x y t λ−=−−−111ty λ+=211ty μ+=22121x y x ty ⎧+=⎪⎨⎪=−⎩22(2)210t y ty +−−=12122221,11t y y y y t t −+==++121212*********y y tty ty t y y t λμ++++=+=⋅=⋅=−−4λμ+=−120y y >>1121211122S y y y y =⋅⋅−=−()21111122S y y =⋅⋅=32211122S y y =⋅⋅=−由得 代入,有,则, 解得 ,,设,则,设,则,令,解得,解得,故在上单调递减,在上单调递增,则且,则,则. 6.(2023·四川成都·统考二模)已知椭圆的左、右焦点分别为,离心率,.(1)求椭圆的标准方程;(2)过点的直线与该椭圆交于两点,且的方程. 【解析】(1)由已知得,解得,,所求椭圆的方程为;(2)由(1)得.①若直线的斜率不存在,则直线的方程为,由得. 111ty λ+=21211111,,13y y y tt y λμμμλμ++++====+−−123S mS S μ=+()1212111222y y my y μ−=−1212y y my y μ−=−2222111811(1)17(3)133y y y m y y y μμμμμμ⎡⎤=−+=−−=−=−++−+⎢⎥+⎣⎦42λ−≤≤−31[1,3]μλ∴+=−−∈3u μ=+[]1,3u ∈()87h u u u ⎛⎫=−+ ⎪⎝⎭()228uh u u −'=()0h u '>1u <<()0h u '<3u <<()h u ()(()max 7h u =−()()412,33h h =−=()2,7h u ⎡∈−−⎣2,7m ⎡−−⎣∈22221(0)x y a b a b+=>>12,F F e =22a c =1F l M N 、2223F M F N +=l 22c a a c⎧=⎪⎪⎨⎪=⎪⎩1a c ==1b ∴∴2212x y +=()()121,01,0F F −、l l =1x −22112x x y =−⎧⎪⎨+=⎪⎩2y =设, ,这与已知相矛盾. ②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,设,联立, 消元得,,,又,, 化简得,解得或(舍去)所求直线的方程为或.7.(2023·全国·高三专题练习)设分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于两点,到直线的距离为3,连接椭圆的四个顶点得到的菱形面积为4. (1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过两点的直线交轴于点,若,1,M N ⎛⎛−− ⎝⎭⎝⎭、()222,4,04F M F N ⎛⎛⎫∴+=−+−=−= ⎪ ⎪⎝⎭⎝⎭l l k l ()1y k x =+()()1122,,M x y N x y 、()22112y k x x y ⎧=+⎪⎨+=⎪⎩()2222124220k x k x k +++−=22121222422,1212k k x x x x k k −−∴+==++()121222212ky y k x x k ∴+=++=+()()2112221,,1,F M x y F N x y =−=−()2212122,F M F N xx y y ∴+=+−+(22F M F N x ∴+=424023170k k −−=21k =21740k =−1k ∴=±∴l 1y x =+=1y x −−12,F F 2222:1(0)x y D a b a b+=>>2F π3D ,A B 1F AB D D ()1,0M −E D ,E M l y C CE EM λ=求的取值范围;(3)作直线与椭圆交于不同的两点,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.【解析】(1)设的坐标分别为,其中; 由题意得的方程为. 因为到直线的距离为3,解得①因为连接椭圆的四个顶点得到的菱形面积为4,所以,即 ②联立①②解得: ,所求椭圆D 的方程为.(2)由(1)知椭圆的方程为,设,因为,所以所以,代入椭圆的方程, 所以,解得或.(3)由,设根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为,把它代入椭圆的方程,消去整理得: 由韦达定理得则,; 所以线段的中点坐标为. (i )当时,则,线段垂直平分线为轴,λ1l D ,P Q P ()2,0−()0,N t PQ 4NP NQ ⋅=t 12,F F ()(),0,,0c c −0c >AB )y x c −1F AB 3,=c =2223a b c −==D 12242a b ⨯⨯=2ab =2,1a b ==2214x y +=2214x y +=11(,),(0,)E x y C m CE EM λ=1111(,)(1,),x y m x y λ−=−−−11,11m x y λλλ=−=++22()1()141m λλλ−++=+2(32)(2)04m λλ++=≥23λ≥−2λ≤−()2,0P −11(,)Q x y 1l k 1l ()2y k x =+D y 2222(14)16(164)0k x k x k +++−=212162,14k x k −+=−+2122814k x k −=+112()4214k y k x k =+=+PQ 22282(,)1414k kk k −++0k =()2,0Q PQ y于是,由解得(ii )当时,则线段垂直平分线的方程为. 由点是线段垂直平分线的一点,令,得;于是由, 解得综上可得实数的值为8.(2023·全国·高三专题练习)如图所示,为椭圆的左、右顶点,焦距长为在椭圆上,直线的斜率之积为.(1)求椭圆的方程;(2)已知为坐标原点,点,直线交椭圆于点不重合),直线交于点.求证:直线的斜率之积为定值,并求出该定值. 【解析】(1)由题意,,设,,由题意可得,即,可得 (2,),(2,)NP t NQ t =−−=−244,NP NQ t ⋅=−+=t =±0k ≠PQ 222218()1414k ky x k k k −=−+++()0,N t PQ 0x =2614kt k =−+11(2,),(,)NP t NQ x y t =−−=−24211222224166104(16151)2()4141414(14)k k k k k NP NQ x t y t k k k k −++−⎛⎫⋅=−−−=+== ⎪++++⎝⎭k =2614k t k =−=+t ±,A B 2222:1(0)x yE a b a b+=>>P E ,PA PB 14−E O ()2,2C −PC E (,M M P ,BM OC G ,AP AG ()(),0,,0A a B a −()00,P x y 0000,PA PB y y k k x a x a==+−000014y y x a x a ⋅=−+−222014y x a =−−2202222222201111444x b a b a c x a a a ⎛⎫− ⎪−⎝⎭=−⇒=⇒=−又所以,椭圆的方程为;(2)由题意知,直线的斜率存在,设直线,且联立,得 由,得,所以, 设,由三点共线可得所以,直线的斜率之积为定值.9.(2023·全国·高三专题练习)已知,分别是椭圆的上、下焦点,直线过点且垂直于椭圆长轴,动直线垂直于点,线段的垂直平分线交于点,点的轨迹为.2c =c =2a =E 2214x y +=MP :MP y kx m =+()()112222,,,,k m P x y M x y =−+2214y kx m x y =+⎧⎪⎨+=⎪⎩()222148440k x kmx m +++−=Δ0>22410k m +−>2121222844,1414km m x x x x k k −−+==++(),G t t −,,G M B 222222222y y tt t x x y −=⇒=−−−+−11,22AG AP y tk k t x ==−++()()()()112121221212222221222AG AP y y y y y tk k t x x y x k x m x ⋅=⋅=−=−−+++−+⎡⎤++−+⎣⎦()()()()()())()()22212122212112121221222124y k x x km x x m y m x x m x m x m x x x x +++=−=−=−−++⎡⎤⎡⎤−+−+−+++⎣⎦⎣⎦()()()2222222222222222244844841414448144164161241414m kmk km m k m k m m k m k k m km m m km k m k k −−+⋅+−−++++=−=−⎡⎤⎡⎤−−−−−++⎣⎦−+⋅+⎢⎥++⎣⎦()()()()()()()2222222422141(2)818144144m k m k m k m k m m m m k m m m m km k −+−++−=−=−=−=−=−−−−−−−+,AP AG 14−F F '221:171617C x y +=1l F '2l 1l G GF 2l H H 2C(1)求轨迹的方程;(2)若动点在直线上运动,且过点作轨迹的两条切线、,切点为A 、B ,试猜想与的大小关系,并证明你的结论的正确性.【解析】(1),,椭圆半焦距长为,,,,动点到定直线与定点的距离相等,动点的轨迹是以定直线为准线,定点为焦点的抛物线,轨迹的方程是;(2)猜想证明如下:由(1)可设,,,则,切线的方程为:同理,切线的方程为: 联立方程组可解得的坐标为, 在抛物线外,,,2C P :20l x y −−=P 2C PA PB PFA ∠PFB ∠22171617x y +=∴2211716y x +=∴1410,4F ⎛⎫'− ⎪⎝⎭10,4F ⎛⎫ ⎪⎝⎭HG HF =∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴2C 2x y =PFA PFB ∠=∠()211,A x x ()()22212,B x x x x ≠2y x =2y x '∴=112AP x x k y x =='=∴AP ()1221111220y x x x x y x x x −⇒−=−−=BP 22220x x y x −−=P 122P x x x +=12P y x x =P ∴||0FP ≠2111,4FA x x ⎛⎫=− ⎪⎝⎭12121,24x x FP x x +⎛⎫=− ⎪⎝⎭2221,4FB x x ⎛⎫=− ⎪⎝⎭22121121112122221112211111244444cos ||||||11||||4x x x x x x x x x x x FP FA AFP FP FA FP FP x x FP x +⋅−−+++⋅∴⎛⎫⎛⎫⎛⎫⎛⎫+⋅∠====+− ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎝⎭⎝⋅+同理10.(2023春·江西·高三校联考阶段练习)已知椭圆+=1(a >b >0),右焦点F (1,0),,过F作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.【解析】(1)由题意知,,又,所以,所以,所以椭圆的标准方程为;(2)①当直线与中有一条直线的斜率为0时,另一条直线的斜率不存在,不妨设直线的斜率为0,的斜率不存在,则直线方程为,直线的方程为,联立可得所以联立可得所以所以四边形ADBC 的面积. ②当两条直线的斜率均存在且不为0时,设直线的方程为,1214cos ||||||x x FP FB BFP FP FB FP +⋅∠==cos cos AFP BFP ∴∠=∠PFA PFB ∴∠=∠22x a 22y b2c e a ==a 1c =a =222abc =+21b =2212x y +=AB CD AB CD AB 0y =CD 1x =22120x y y ⎧+=⎪⎨⎪=⎩0x y ⎧=⎪⎨=⎪⎩AB =22121x y x ⎧+=⎪⎨⎪=⎩1x y =⎧⎪⎨=⎪⎩CD =11||||222S AB CD =⋅=⨯AB (1)y k x =−则直线的方程为. 将直线的方程代入椭圆方程,整理得,方程的判别式,设, 所以, ∴, 同理可得, ∴四边形ADBC 的面积 , ∵,当且仅当时取等号,∴四边形ADBC 的面积,综上①②可知,四边形ADBC 的面积的取值范围为.11.(2023·全国·高三专题练习)如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P ,Q (均异于点,证明:直线AP 与AQ 的斜率之和为2.CD 1(1)y x k=−−AB ()2222124220k xk x k +−+−=()2222124220k x k x k +−+−=()()42221642122880k k k k ∆=−+−=+>()()1122,,,A x y B x y 22121222422,1212k k x x x x k k −+=⋅=++12||AB x −)22112kAB k +==+)2222111||1212k k CD k k⎫+⎪+⎝⎭==++⨯))22221111||||22122k k S AB CD k k ++=⋅=⨯⨯++()2222242144122252112121k k k k k k k k k ⎛⎫+ ⎪+⎝⎭===−++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭22121219k k ⎛⎛⎫++≥+= ⎪⎝⎭⎝1k =±16,29S ⎡⎫∈⎪⎢⎣⎭S 16,29⎡⎤⎢⎥⎣⎦22:12+=x E y (1,1)M k E (0,1)A −【解析】设,直线的方程为,两交点异于点,则 ,联立直线与椭圆方程,消去变量 并整理得,由已知,由韦达定理得,则所以可知直线与的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,,若,求的值.【解析】由题可知,设,,,由,得, 满足,可得,()()1122,,,P x y Q x y PQ (1)1y k x =−+A 2k ≠y ()222221124(1)2402(1)1x y k x k k x k k y k x ⎧+=⎪⇒++−+−=⎨⎪=−+⎩0∆>21212224(1)24,1212k k k kx x x x k k −−+==++()()12121212121211AP AQ k x k x y y k k x x x x −+−++++=+=+()()12121212122(2)(2)2kx x k x x k x x k x x x x +−+−+==+222244122(2)1224k k k k k k k k−+=+−⋅⋅+−()2212k k =−−=AP AQ 22162x y +=1F 2F A B P 11PF F A λ=22PF F B μ=2λ=μ2226,2,4a b c ===()00,P x y 11(,)A x y 22(,)B x y 11PF F A λ=22PF F B μ=()1,0F c −0101101x x c y y λλλλ+⎧−=⎪⎪+⎨+⎪=⎪+⎩()010110x x c y y λλλ⎧+=−+⎨+=⎩满足,可得,由,可得, 所以,∴,, 又,∴, 同理可得, ∴, 所以,又,所以.13.(2023·全国·高三专题练习)已知椭圆的离心率为,且直线被椭圆. (1)求椭圆的方程;(2)以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点为,若直线与椭圆交于不同的两点,,求的取值范围.【解析】(1)直线,经过点,,被椭圆,可得.又,,解得:,,, ()2,0F c 0202101x x c y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩()020210x x c y y μμμ⎧+=−+⎨+=⎩22002222112211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩2200222222211221x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩()()()()010*******21x x x x y y y y abλλλλλ−+−++=−()()()()0101211x x x x a λλλλ−+=−+()()2011a x x cλλ−=−−()()011x x c λλ+=−+222202a c a c x c cλ−+=−222202a c a c x c c μ−+=−+()22222a c a c c cλμ−++=⋅2222210a c a cλμ++=⋅=−2λ=8μ=22122:1(0)x y C a b a b+=>>121:1x yl a b+=1C 1C 1C 2C 2:4l y =M 2C ,A B AB 1C C D ||||CD AB ⋅1:1x yl a b+=(,0)a (0,)b 1C 227a b +=12c a =222a b c =+24a =23b =1c =椭圆的方程为.(2)由(1)可得:圆的方程为:.设,则以为直径的圆的方程为:,与相减可得:直线的方程为:,设,,,,联立,化为:,,则,,故又圆心到直线的距离,令,则,可得,可得:14.(2023·全国·高三专题练习)已知椭圆的两个焦点,,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为∴1C22143x y+=2C224x y+=(2,4)M t OM222()(2)4x t y t−+−=+224x y+=AB2440tx y+−=1(C x1)y2(D x2)y222440143tx yx y+−=⎧⎪⎨+=⎪⎩22(3)480t x tx+−−=248(2)0t∆=+>12243tx xt+=+12283x xt=⋅−+||CDO AB d=||AB∴=||||AB CD∴⋅==23(3)t m m+=≥||||AB CD⋅==3m≥3233m≤−<||||AB CD⋅<22122:1(0)x yC a ba b+=>>1F2F P 1290F PF∠=︒P P1F2(1)求椭圆的方程;(2)如图,以椭圆的长轴为直径作圆,过直线作圆的两条切线,设切点分别为,,若直线与椭圆交于不同的两点,,求弦长的取值范围. 【解析】(1)设半焦距为,由使得的点恰有两个可得, 动点到焦点的距离的最大值为,可得所以椭圆的方程是. (2)圆的方程为,设直线的坐标为.设,连接OA ,因为直线为切线,故,否则直线垂直于轴,则与直线若,则,故, 故直线的方程为:, 整理得到:;当时,若,直线的方程为:;若,则直线的方程为:, 满足.故直线的方程为,同理直线的方程为, 又在直线和上,即,故直线的方程为.1C 1C 2C x =−T 2C A B AB 1C C D ||CD c 1290F PF ∠=︒P ,b c a =P 1F 22a c +=2,a c =1C 22142x y +=2C 224x y +=x =−T ()t −1122(,),(,)A x y B x y AT 10y ≠AT x AT x =−10x ≠11OA y k x =11AT x k y =−AT ()1111x y y x x y −=−−2211114x x y y x y +=+=10x =(0,2)A AT 2y =(0,2)A −AT =2y −114x x y y +=AT 114x x y y +=BT 224x x y y +=()t −AT BT 112244ty ty ⎧−+=⎪⎨−+=⎪⎩AB 4ty −+=联立,消去得,设,. 则, 从而, 又,从而,所以. 15.(2023·全国·高三专题练习)已知、分别为椭圆的左、右焦点,且右焦点的坐标为,点在椭圆上,为坐标原点.(1)求椭圆的标准方程(2)若过点的直线与椭圆交于两点,且的方程; (3)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为,(,224142ty x y ⎧−+=⎪⎨+=⎪⎩x 22(16)8160t y ty +−−=33(,)C x y 44(,)D x y 343422816,1616t y y y y t t −+==++||CD 224(8)16t t +=+232416t −=++21616t +≥2322016t −−≤<+||[2,4)CD ∈1F 2F 2222:1(0)x yC a b a b+=>>2F (1,0)(P C O C 2F l C ,A B ||AB =l C Q 22:1O x y +=M N M不在坐标轴上),若直线在轴、轴上的截距分别为、,那么是否为定值?若是,求出此定值;若不是,请说明理由. 【解析】(1)椭圆的右焦点的坐标为,椭圆的左焦点的坐标为,由椭圆的定义得, 所以,由题意可得,即,即椭圆的方程为;(2)直线与椭圆的两个交点坐标为,, ①当直线垂直轴时,方程为:,代入椭圆可得,舍去;②当直线不垂直轴时,设直线联立,消得,,则,,恒成立., 又, N MN x y m n 2212m n+C 2F (1,0)∴C 1F (1,0)−12||||2PF PF a +=2a =a ∴=22a =1c =2221b ac =−=C 2212x y +=l C ()11,A x y ()22,B x y l x l 1x =y =||AB =l x :(1)l y k x =−2212(1)x y y k x ⎧+=⎪⎨⎪=−⎩y ()2222124220k x k x k +−+−=2122421k x x k +=+21222221k x x k −=+()()()()22222442122810k k k k ∆=−+−=+>22AB =()()22121214k x x x x ⎡⎤=++−⎣⎦()()22228121k k +=+||AB =()()222228132921k k +==+⎝⎭化简得,,即,解得或(舍去),所以,直线方程的方程为或. (3)是定值,定值为2.设点,,,连接,,,,则有,. ,不在坐标轴上,则,, 则,, 直线的方程为,即,① 同理直线的方程为,②,将点代入①②,得,显然,满足方程,直线的方程为,分别令,,得到,,,,又满足,,即.16.(2023·全国·高三专题练习)某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性427250k k −−=()()227510k k +−=21k =257k =−1k =±∴l 10x y −−=10x y +−=()00,Q x y ()33,M x y ()44,N x y OM ON 0M MQ ⊥ON NQ ⊥22331x y +=22441x y +=M N 33MO y k x =44NO y k x =331MQ MOx k k y =−=−441NQ NO x k k y =−=−∴MQ ()3333x y y x x y −=−−2233331xx yy x y +=+=⋯NQ 441xx yy +=⋯Q 0303040411x x y y x x y y +=⎧⎨+=⎩()33,M x y ()44,N x y 001xx yy +=∴MN 001xx yy +=0x =0y =01n x =01=m y 01y m ∴=01x n =()00,Q x y 2212x y +=∴221112m n +=22122m n +=质:椭圆在任意一点,处的切线方程为.现给定椭圆,过的右焦点的直线交椭圆于,两点,过,分别作的两条切线,两切线相交于点. (1)求点的轨迹方程;(2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于,两点,证明:为定值. 【解析】(1)由题意F 为,设直线为,,,,, 易得在点处切线为,在点处切线为, 由得,又,,可得,故点的轨迹方程.(2)证明:联立的方程与的方程消去,得.由韦达定理,得,,所以,因为,直线MN 可设为,同理得, 所以.2222:1(0)x y C a b a b+=>>0(M x 0)y 00221xx yy a b +=22:143x y C +=C F l C P Q P Q C G G F l C M N 11||||PQ MN +()1,0PQ 1x ty =+1(P x 1)y 2(Q x 2)y P 11143x x y y +=Q 22143x x y y+=11221,431,43x xy yx x y y⎧+=⎪⎪⎨⎪+=⎪⎩1122124()y y x x y x y −=−111x ty =+221x ty =+4x =G 4x =l C 221143x ty x y =+⎧⎪⎨+=⎪⎩x 22(34)690t y ty ++−=122634t y y t +=−+122934y y t =−+2212(1)||34t PQ t +=+PQ MN ⊥11x y t =−+2222112(1)12(1)||13434t t MN t t++==+⋅+22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++。
2018-2021年高考真题圆锥曲线解答题全集 (学生版+解析版)1.(2021•新高考Ⅱ)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (√2,0),且离心率为√63. (Ⅰ)求椭圆C 的方程;(Ⅱ)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=√3. 2.(2021•上海)已知Г:x 22+y 2=1,F 1,F 2是其左、右交焦点,直线l 过点P (m ,0)(m ≤−√2),交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上. (1)若B 是上顶点,|BF 1→|=|PF 1→|,求m 的值; (2)若F 1A →•F 2A →=13,且原点O 到直线l 的距离为4√1515,求直线l 的方程; (3)证明:对于任意m <−√2,使得F 1A →∥F 2B →的直线有且仅有一条. 3.(2021•北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,﹣2),以四个顶点围成的四边形面积为4√5. (1)求椭圆E 的标准方程;(2)过点P (0,﹣3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB 、AC 交y =﹣3于点M 、N ,若|PM |+|PN |≤15,求k 的取值范围.4.(2021•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为B ,离心率为2√55,且|BF |=√5.(1)求椭圆的标准方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,求直线l 的方程.5.(2021•浙江)如图,已知F 是抛物线y 2=2px (p >0)的焦点,M 是抛物线的准线与x 轴的交点,且|MF |=2. (Ⅰ)求抛物线的方程:(Ⅱ)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足|RN |2=|PN |•|QN |,求直线l 在x 轴上截距的取值范围.6.(2021•甲卷)抛物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :x =1交C 于P ,Q 两点,且OP ⊥OQ .已知点M (2,0),且⊙M 与l 相切. (1)求C ,⊙M 的方程;(2)设A 1,A 2,A 3是C 上的三个点,直线A 1A 2,A 1A 3均与⊙M 相切.判断直线A 2A 3与⊙M 的位置关系,并说明理由.7.(2021•新高考Ⅰ)在平面直角坐标系xOy 中,已知点F 1(−√17,0),F 2(√17,0),点M 满足|MF 1|﹣|MF 2|=2.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |•|TB |=|TP |•|TQ |,求直线AB 的斜率与直线PQ 的斜率之和.8.(2021•乙卷)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ →=9QF →,求直线OQ 斜率的最大值. 9.(2021•甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2√2cos θ. (1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P 满足AP →=√2AM →,写出P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.10.(2021•乙卷)已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,P A ,PB 为C 的两条切线,A ,B 是切点,求△P AB 面积的最大值. 11.(2021•上海)(1)团队在O 点西侧、东侧20千米处设有A 、B 两站点,测量距离发现一点P 满足|P A |﹣|PB |=20千米,可知P 在A 、B 为焦点的双曲线上,以O 点为原点,东侧为x 轴正半轴,北侧为y 轴正半轴,建立平面直角坐标系,P 在北偏东60°处,求双曲线标准方程和P 点坐标.(2)团队又在南侧、北侧15千米处设有C 、D 两站点,测量距离发现|QA |﹣|QB |=30千米,|QC |﹣|QD |=10千米,求|OQ |(精确到1米)和Q 点位置(精确到1米,1°) 12.(2020•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,﹣3),右焦点为F ,且|OA |=|OF |,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程. 13.(2020•北京)已知椭圆C :x 2a 2+y 2b 2=1过点A (﹣2,﹣1),且a =2b .(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (﹣4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =﹣4于点P ,Q .求|PB||BQ|的值.14.(2020•上海)已知双曲线Γ1:x 24−y 2b 2=1与圆Γ2:x 2+y 2=4+b 2(b >0)交于点A (x A ,y A )(第一象限),曲线Γ为Γ1、Γ2上取满足x >|x A |的部分. (1)若x A =√6,求b 的值;(2)当b =√5,Γ2与x 轴交点记作点F 1、F 2,P 是曲线Γ上一点,且在第一象限,且|PF 1|=8,求∠F 1PF 2; (3)过点D (0,b 22+2)斜率为−b2的直线l 与曲线Γ只有两个交点,记为M 、N ,用b表示OM →•ON →,并求OM →•ON →的取值范围.15.(2020•江苏)在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1、F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →•QP →的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.16.(2020•浙江)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点,过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ).(Ⅰ)若p =116,求抛物线C 2的焦点坐标;(Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.17.(2020•海南)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12.(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.18.(2020•山东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,且过点A (2,1). (1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.19.(2020•新课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程. 20.(2020•新课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合,过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点.若|MF |=5,求C 1与C 2的标准方程. 21.(2020•新课标Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →•GB →=8.P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点. 22.(2020•新课标Ⅲ)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为√154,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积. 23.(2020•新课标Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →•GB →=8.P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E的方程;(2)证明:直线CD过定点.24.(2020•上海)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为√2,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A•y B为常数;(3)是否存在t,使得y A•y B=1且y P•y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.25.(2019•全国)已知点A1(﹣2,0),A2(2,0),动点P满足P A1与P A2的斜率之积等于−14,记P的轨迹为C.(1)求C的方程;(2)设过坐标原点的直线l与C交于M,N两点,且四边形MA1NA2的面积为2√2,求l的方程.26.(2019•江苏)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD =12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.27.(2019•上海)已知椭圆x28+y24=1,F1,F2为左、右焦点,直线l过F2交椭圆于A,B两点.(1)若直线l垂直于x轴,求|AB|;(2)当∠F1AB=90°时,A在x轴上方时,求A、B的坐标;(3)若直线AF 1交y 轴于M ,直线BF 1交y 轴于N ,是否存在直线l ,使得S△F 1AB=S△F 1MN ,若存在,求出直线l 的方程;若不存在,请说明理由.28.(2019•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,左顶点为A ,上顶点为B .已知√3|OA |=2|OB |(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC ∥AP .求椭圆的方程. 29.(2019•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为√55. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率. 30.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点.(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.31.(2019•新课标Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为C上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.32.(2019•浙江)如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2. (Ⅰ)求p 的值及抛物线的准线方程; (Ⅱ)求S 1S 2的最小值及此时点G 的坐标.33.(2019•新课标Ⅱ)已知点A (﹣2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:△PQG 是直角三角形; (ii )求△PQG 面积的最大值.34.(2019•北京)已知抛物线C :x 2=﹣2py 经过点(2,﹣1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =﹣1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.35.(2019•北京)已知椭圆C :x 2a 2+y 2b 2=1的右焦点为(1,0),且经过点A (0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P 、Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |•|ON |=2,求证:直线l 经过定点. 36.(2019•江苏)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1(﹣1,0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:(x ﹣1)2+y 2=4a 2交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.37.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.38.(2019•新课标Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,|MA |﹣|MP |为定值?并说明理由.39.(2019•新课标Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |.40.(2019•上海)已知抛物线方程y 2=4x ,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:d(P)=|PF||FQ|. (1)当P(−1,−83)时,求d (P );(2)证明:存在常数a ,使得2d (P )=|PF |+a ;(3)P 1,P 2,P 3为抛物线准线上三点,且|P 1P 2|=|P 2P 3|,判断d (P 1)+d (P 3)与2d (P 2)的关系.41.(2018•全国)双曲线x 212−y 24=1,F 1、F 2为其左右焦点,C 是以F 2为圆心且过原点的圆.(1)求C 的轨迹方程;(2)动点P 在C 上运动,M 满足F 1M →=2MP →,求M 的轨迹方程.42.(2018•浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上. (Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围.43.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.44.(2018•江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点(√3,12),焦点F 1(−√3,0),F 2(√3,0),圆O 的直径为F 1F 2. (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为2√67,求直线l 的方程.45.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→,证明:2|FP →|=|FA →|+|FB →|. 46.(2018•上海)设常数t >2.在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =t ,曲线Γ:y 2=8x (0≤x ≤t ,y ≥0).l 与x 轴交于点A 、与Γ交于点B .P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设t =3,|FQ |=2,线段OQ 的中点在直线FP 上,求△AQP 的面积;(3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由. 47.(2018•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为√53,|AB |=√13. (Ⅰ)求椭圆的方程;(Ⅱ)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,直线l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值. 48.(2018•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为√53,点A 的坐标为(b ,0),且|FB |•|AB |=6√2. (Ⅰ)求椭圆的方程;(Ⅱ)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若|AQ||PQ|=5√24sin ∠AOQ (O 为原点),求k 的值. 49.(2018•北京)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为√63,焦距为2√2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程; (Ⅱ)若k =1,求|AB |的最大值;(Ⅲ)设P (﹣2,0),直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点Q (−74,14)共线,求k .50.(2018•新课标Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .51.(2018•北京)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.52.(2018•新课标Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.53.(2018•新课标Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (﹣2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .54.(2018•上海)已知a ∈R ,双曲线Γ:x 2a2−y 2=1(1)若点(2,1)在Γ上,求Γ的焦点坐标(2)若a =1,直线y =kx +1与Γ相交于A 、B 两点,且线段AB 中点的横坐标为1,求实数k 的值55.(2018•上海)利用“平行于圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射灯的光锥为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影射出的抛物线的平面图,图3是一个射灯投影的直观图,在图2与图3中,点O、A、B在抛物线上,OC是抛物线的对称轴,OC⊥AB于C,AB=3米,OC=4.5米(1)求抛物线的焦点到准线的距离(2)在图3中,已知OC平行于圆锥的母线SD,AB、DE是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°)2018-2021年高考真题圆锥曲线解答题全集 (学生版+解析版)参考答案与试题解析1.(2021•新高考Ⅱ)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (√2,0),且离心率为√63. (Ⅰ)求椭圆C 的方程;(Ⅱ)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=√3.【解答】(Ⅰ)解:由题意可得,椭圆的离心率ca =√63,又c =√2, 所以a =√3,则b 2=a 2﹣c 2=1, 故椭圆的标准方程为x 23+y 2=1;(Ⅱ)证明:先证明必要性,若M ,N ,F 三点共线时,设直线MN 的方程为x =my +√2, 则圆心O (0,0)到直线MN 的距离为d =√2√m +1=1,解得m 2=1,联立方程组{x =my +√2x 23+y 2=1,可得(m 2+3)y 2+2√2my −1=0,即4y 2+2√2my −1=0, 所以|MN|=√1+m 2⋅√8m 2+164=√2×√244=√3;所以必要性成立; 下面证明充分性,当|MN |=√3时,设直线MN 的方程为x =ty +m , 此时圆心O (0,0)到直线MN 的距离d =√t +1=1,则m 2﹣t 2=1,联立方程组{x =ty +mx 23+y 2=1,可得(t 2+3)y 2+2tmy +m 2﹣3=0, 则△=4t 2m 2﹣4(t 2+3)(m 2﹣3)=12(t 2﹣m 2+3)=24, 因为|MN|=√1+t 2⋅√24t 2+3=√3,所以t 2=1,m 2=2,因为直线MN 与曲线x 2+y 2=b 2(x >0)相切, 所以m >0,则m =√2,则直线MN 的方程为x =ty +√2恒过焦点F (√2,0), 故M ,N ,F 三点共线, 所以充分性得证.综上所述,M ,N ,F 三点共线的充要条件是|MN |=√3.2.(2021•上海)已知Г:x 22+y 2=1,F 1,F 2是其左、右交焦点,直线l 过点P (m ,0)(m ≤−√2),交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上. (1)若B 是上顶点,|BF 1→|=|PF 1→|,求m 的值; (2)若F 1A →•F 2A →=13,且原点O 到直线l 的距离为4√1515,求直线l 的方程; (3)证明:对于任意m <−√2,使得F 1A →∥F 2B →的直线有且仅有一条. 【解答】解:(1)因为Г的方程:x 22+y 2=1,所以a 2=2,b 2=1, 所以c 2=a 2﹣b 2=1,所以F 1(﹣1,0),F 2(1,0), 若B 为Г的上顶点,则B (0,1), 所以|BF 1|=√1+1=√2,|PF 1|=﹣1﹣m , 又|BF 1|=|PF 1|, 所以m =−1−√2;(2)设点A (√2cos θ,sin θ),则F 1A →⋅F 2A →=(√2cosθ+1)(√2cosθ−1)+sin 2θ=2cos 2θ−1+sin 2θ=13, 因为A 在线段BP 上,横坐标小于0,解得cosθ=−√33,故A(−√63,√63),设直线l 的方程为y =kx +√63k +√63(k >0), 由原点O 到直线l 的距离为4√1515, 则d =|√63k+√63|√1+k =4√1515,化简可得3k 2﹣10k +3=0,解得k =3或k =13, 故直线l 的方程为y =13x +4√69或y =3x +4√63(舍去,无法满足m <−√2), 所以直线l 的方程为y =13x +4√69;(3)联立方程组{y =kx −kmx 22+y 2=1,可得(1+2k 2)x 2﹣4k 2mx +2k 2m 2﹣2=0,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k 2m 1+2k2,x 1x 2=2k 2m 2−21+2k2,因为F 1A →∥F 2B →,所以(x 2﹣1)y 1=(x 1+1)y 2,又y =kx ﹣km , 故化简为x 1−x 2=−21+2k2,又|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√16k 2−8k 2m 2+81+2k2=|−21+2k2|,两边同时平方可得,4k 2﹣2k 2m 2+1=0, 整理可得k 2=−14−2m 2,当m <−√2时,k 2=−14−2m 2>0,因为点A ,B 在x 轴上方, 所以k 有且仅有一个解,故对于任意m <−√2,使得F 1A →∥F 2B →的直线有且仅有一条. 3.(2021•北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,﹣2),以四个顶点围成的四边形面积为4√5.(1)求椭圆E 的标准方程;(2)过点P (0,﹣3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB 、AC 交y =﹣3于点M 、N ,若|PM |+|PN |≤15,求k 的取值范围. 【解答】解:(1)因为椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,﹣2),则b =2,又因为以四个顶点围成的四边形面积为4√5, 所以12×2a ×2b =4√5,解得a =√5,故椭圆E 的标准方程为x 25+y 24=1;(2)由题意,设直线l 的方程为y ﹣(﹣3)=k (x ﹣0),即y =kx ﹣3, 当k =0时,直线l 与椭圆E 没有交点,而直线l 交椭圆E 于不同的两点B ,C , 所以k ≠0,设B (x 1,y 1),C (x 2,y 2),联立方程组{y =kx −3x 25+y 24=1,可得(4+5k 2)x 2﹣30kx +25=0, 则△=(﹣30k )2﹣4×25(4+5k 2)>0,解得|k |>1, 所以x 1+x 2=30k 4+5k2,x 1x 2=254+5k2,则y 1y 2=(kx 1﹣3)(kx 2﹣3)=k 2x 1x 2﹣3k (x 1+x 2)+9=−20k 2+364+5k2,y 1+y 2=(kx 1﹣3)+(kx 2﹣3)=k (x 1+x 2)﹣6=−244+5k2,直线AB 的方程为y ﹣(﹣2)=y 1−(−2)x 1−0(x −0),即y =y 1+2x 1x −2,直线AC 的方程为y ﹣(﹣2)=y 2−(−2)x 2−0(x −0),即y =y 2+2x 2x −2,因为直线AB 交y =﹣3于点M , 所以令y =﹣3,则x M =−x 1y 1+2, 故M(−x 1y 1+2,−3), 同理可得N(−x2y 2+2,−3),注意到x 1x 2=254+5k2>0,所以x 1,x 2同号,因为y 1+2>0,y 2+2>0,所以x M ,x N 同号, 故|PM |+|PN |=|x M |+|x N |=|x M +x N |,则|PM |+|PN |=|x 1y 1+2+x2y 2+2|=|x 1(y 2+2)+x 2(y 1+2)(y 1+2)(y 2+2)| =|x 1(kx 2−3)+x 2(kx 1−3)+2(x 1+x 2)y 1y 2+2(y 1+y 2)+4|=|2kx 1x 2−(x 1+x 2)y 1y 2+2(y 1+y 2)+4|=|2k⋅254+5k 2−30k 4+5k2−20k 2+364+5k 2−484+5k2+4|=5|k |,故|PM |+|PN |=5|k |,又|PM |+|PN |≤15,即5|k |≤15,即|k |≤3,又|k |>1, 所以1<|k |≤3,故k 的取值范围为[﹣3,﹣1)∪(1,3]. 4.(2021•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为B ,离心率为2√55,且|BF |=√5.(1)求椭圆的标准方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,求直线l 的方程. 【解答】解:(1)因为离心率e =2√55,|BF |=√5所以{c a =2√55a =√5a 2=b 2+c 2,解得a =√5,c =2,b =1,所以椭圆的方程为x 25+y 2=1.(2)设M (x 0,y 0), 则切线MN 的方程为x 0x 5+y 0y =1,令x =0,得y N =1y 0,因为PN ⊥BF , 所以k PN •k BF =﹣1,所以k PN •(−12)=﹣1,解得k NP =2,设P (x 1,0),则k NP =1y 00−x 1=2,即x 1=−12y 0,因为MP ∥BF , 所以k MP =k BF , 所以y 0x 0+12y 0=−12,即﹣2y 0=x 0+12y 0, 所以x 0=﹣2y 0−12y 0, 又因为x 025+y 02=1,所以4y 025+25+120y 02+y 02=1,解得y 0=±√66,因为y N >0, 所以y 0>0,所以y 0=√66,x 0=−√63−3√6=−5√66,所以−5√66x 5+√66y =1,即x ﹣y +√6=0.5.(2021•浙江)如图,已知F 是抛物线y 2=2px (p >0)的焦点,M 是抛物线的准线与x 轴的交点,且|MF |=2. (Ⅰ)求抛物线的方程:(Ⅱ)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足|RN |2=|PN |•|QN |,求直线l 在x 轴上截距的取值范围.【解答】解:(Ⅰ)依题意,p =2,故抛物线的方程为y 2=4x ;(Ⅱ)由题意得,直线AB 的斜率存在且不为零,设直线AB :y =k (x ﹣1), 将直线AB 方程代入抛物线方程可得,k 2x 2﹣(2k 2+4)x +k 2=0, 则由韦达定理有,x A +x B =2+4k2,x A x B=1,则y A y B =﹣4,设直线AM :y =k 1(x +1),其中k 1=yA x A+1,设直线BM :y =k 2(x +1),其中k 2=yB x B +1,则k 1+k 2=y A x A+1+yBx B +1=y A x B +y A +y B x A +y B(x A +1)(x B +1)=k(x A −1)x B +k(x A −1)+k(x B −1)x A +k(x B −1)(x A +1)(x B +1)=0(x A +1)(x B +1)=0, k 1k 2=y A y B (x A +1)(x B +1)=−41+2+4k 2+1=−k21+k 2,设直线l :y =2(x ﹣t ),联立{y =2(x −t)y =k(x −1),可得x R =k−2t k−2,则|x R −t|=|k−2t k−2−t|=|k−kt k−2|,联立{y =2(x −t)y =k 1(x +1),可得x P =k 1+2t 2−k 1,则|x P −t|=|k 1+2t 2−k 1−t|=|k 1+k 1t 2−k 1|,同理可得,x Q =k 2+2t 2−k 2,|x Q −t|=|k 2+k 2t2−k 2|,又|RN |2=|PN |•|QN |,∴|k−kt k−2|2=|k 1+k 1t 2−k 1⋅k 2+k 2t 2−k 2|,即(k−kt k−2)2=k 2(1+t)23k 2+4,∴(1+t)2(t−1)2=3k2+4(k−2)2=3(k−2)2+12(k−2)+16(k−2)2=16(k−2)2+12k−2+3=(4k−2+32)2+3 4≥34(t≠1),∴4(t2+2t+1)≥3(t2﹣2t+1),即t2+14t+1≥0,解得t≥4√3−7或t≤−7−4√3(t≠1);当直线AB的斜率不存在时,则直线AB:x=1,A(1,2),B(1,﹣2),M(﹣1,0),∴直线MA的方程为y=x+1,直线MB的方程为y=﹣x﹣1,设直线l:y=2(x﹣t),则P(1+2t,2+2t),Q(2t−13,−2t+23),R(1,2﹣2t),N(t,0),又|RN|2=|PN|•|QN|,故(1−t)2+(2−2t)2=√(1+t)2+(2+2t)2⋅√(2t−13−t)2+(−2t+23)2,解得t满足(−∞,−7−4√3]∪[4√3−7,1)∪(1,+∞).∴直线l在x轴上截距的取值范围为(−∞,−7−4√3]∪[4√3−7,1)∪(1,+∞).6.(2021•甲卷)抛物线C的顶点为坐标原点O,焦点在x轴上,直线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⊙M与l相切.(1)求C,⊙M的方程;(2)设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与⊙M相切.判断直线A2A3与⊙M的位置关系,并说明理由.【解答】解:(1)因为x=1与抛物线有两个不同的交点,故可设抛物线C的方程为:y2=2px(p>0),令x=1,则y=±√2p,根据抛物线的对称性,不妨设P在x轴上方,Q在X轴下方,故P(1,√2p),Q(1,−√2p),因为OP⊥OQ,故1+√2p×(−√2p)=0⇒p=1 2,抛物线C的方程为:y2=x,因为⊙M与l相切,故其半径为1,故⊙M:(x﹣2)2+y2=1.(2)设A1(x1,y1),A2(x2,y2),A3(x3,y3).当A1,A2,A3其中某一个为坐标原点时(假设A1为坐标原点时),设直线A1A2方程为kx﹣y=0,根据点M(2,0)到直线距离为1可得√1+k2=1,解得k=±√33,联立直线A 1A 2与抛物线方程可得x =3, 此时直线A 2A 3与⊙M 的位置关系为相切,当A 1,A 2,A 3都不是坐标原点时,即x 1≠x 2≠x 3,直线A 1A 2的方程为x −(y 1+y 2)y +y 1y 2=0, 此时有,12√1+(y 1+y 2)2=1,即(y 12−1)y 22+2y 1y 2+3−y 12=0,同理,由对称性可得,(y 12−1)y 32+2y 1y 3+3−y 12=0, 所以y 2,y 3是方程(y 12−1)t 2+2y 1t +3−y 12=0 的两根,依题意有,直线A 2A 3的方程为x −(y 2+y 3)y +y 2y 3=0,令M 到直线A 2A 3的距离为d ,则有d 2=(2+y 2y 3)21+(y 2+y 3)2=(2+3−y 12y 12−1)21+(−2y 1y 12−1)2=1,此时直线A 2A 3与⊙M 的位置关系也为相切, 综上,直线A 2A 3与⊙M 相切.7.(2021•新高考Ⅰ)在平面直角坐标系xOy 中,已知点F 1(−√17,0),F 2(√17,0),点M 满足|MF 1|﹣|MF 2|=2.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |•|TB |=|TP |•|TQ |,求直线AB 的斜率与直线PQ 的斜率之和.【解答】解:(1)由双曲线的定义可知,M 的轨迹C 是双曲线的右支,设C 的方程为x 2a 2−y 2b 2=1(a >0,b >0),x ≥1,根据题意{c =√172a =2c 2=a 2+b 2,解得{a =1b =4c =√17,∴C 的方程为x 2−y 216=1(x ≥1); (2)(法一)设T(12,m),直线AB 的参数方程为{x =12+tcosθy =m +tsinθ,将其代入C 的方程并整理可得,(16cos 2θ﹣sin 2θ)t 2+(16cos θ﹣2m sin θ)t ﹣(m 2+12)=0,由参数的几何意义可知,|TA |=t 1,|TB |=t 2,则t 1t 2=m 2+12sin 2θ−16cos 2θ=m 2+121−17cos 2θ,设直线PQ 的参数方程为{x =12+λcosβy =m +λsinβ,|TP |=λ1,|TQ |=λ2,同理可得,λ1λ2=m 2+121−17cos 2β,依题意,m 2+121−17cos 2θ=m 2+121−17cos 2β,则cos 2θ=cos 2β,又θ≠β,故cos θ=﹣cos β,则cos θ+cos β=0,即直线AB 的斜率与直线PQ 的斜率之和为0.(法二)设T(12,t),直线AB 的方程为y =k 1(x −12)+t ,A (x 1,y 1),B (x 2,y 2),设12<x 1<x 2,将直线AB 方程代入C 的方程化简并整理可得,(16−k 12)x 2+(k 12−2tk 1)x −14k 12+k 1t −t 2−16=0,由韦达定理有,x 1+x 2=k 12−2k 1t k 12−16,x 1x 2=−14k 12+k 1t−t 2−1616−k 12, 又由A(x 1,k 1x 1−12k 1+t),T(12,t)可得|AT|=√1+k 12(x 1−12), 同理可得|BT|=√1+k 12(x 2−12),∴|AT||BT|=(1+k 12)(x 1−12)(x 2−12)=(1+k 12)(t 2+12)k 12−16, 设直线PQ 的方程为y =k 2(x −12)+t ,P(x 3,y 3),Q(x 4,y 4),设12<x 3<x 4,同理可得|PT||QT|=(1+k 22)(t 2+12)k 22−16,又|AT ||BT |=|PT ||QT |,则1+k 12k 12−16=1+k 22k 22−16,化简可得k 12=k 22,又k 1≠k 2,则k 1=﹣k 2,即k 1+k 2=0,即直线AB 的斜率与直线PQ 的斜率之和为0. 8.(2021•乙卷)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ →=9QF →,求直线OQ 斜率的最大值. 【解答】(1)解:由题意知,p =2, ∴y 2=4x .(2)由(1)知,抛物线C :y 2=4x ,F (1,0), 设点Q 的坐标为(m ,n ),则QF →=(1﹣m ,﹣n ), PQ →=9QF →=(9−9m ,−9n) ∴P 点坐标为(10m ﹣9,10n ), 将点P 代入C 得100n 2=40m ﹣36, 整理得m =100n 2+3640=25n 2+910, ∴K =nm =10n25n 2+9=1025n+9n≤13,当n =35时取最大值. 故答案为:13.9.(2021•甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2√2cos θ. (1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P 满足AP →=√2AM →,写出P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.【解答】解:(1)由极坐标方程为ρ=2√2cos θ,得ρ2=2√2ρcos θ, 化为直角坐标方程是x 2+y 2=2√2x ,即(x −√2)2+y 2=2,表示圆心为C (√2,0),半径为√2的圆. (2)设点P 的直角坐标为(x ,y ),M (x 1,y 1),因为A (1,0), 所以AP →=(x ﹣1,y ),AM →=(x 1﹣1,y 1), 由AP →=√2AM →, 即{x −1=√2(x 1−1)y =√2y 1,解得{x 1=√22(x −1)+1y 1=√22x ,所以M (√22(x ﹣1)+1,√22y ),代入C 的方程得[√22(x −1)+1−√2]2+(√22y)2=2,化简得点P 的轨迹方程是(x −3+√2)2+y 2=4,表示圆心为C 1(3−√2,0),半径为2 的圆;化为参数方程是{x =3−√2+2cosθy =2sinθ,θ为参数;计算|CC 1|=|(3−√2)−√2|=3﹣2√2<2−√2,所以圆C与圆C1内含,没有公共点.10.(2021•乙卷)已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,P A,PB为C的两条切线,A,B是切点,求△P AB面积的最大值.【解答】解:(1)点F(0,p2)到圆M上的点的距离的最小值为|FM|−1=p2+4−1=4,解得p=2;(2)由(1)知,抛物线的方程为x2=4y,即y=14x2,则y′=12x,设切点A(x1,y1),B(x2,y2),则易得l PA:y=x12x−x124,l PB:y=x22x−x224,从而得到P(x1+x22,x1x24),设l AB:y=kx+b,联立抛物线方程,消去y并整理可得x2﹣4kx﹣4b=0,∴△=16k2+16b>0,即k2+b>0,且x1+x2=4k,x1x2=﹣4b,∴P(2k,﹣b),∵|AB|=√1+k2⋅√(x1+x2)2−4x1x2=√1+k2⋅√16k2+16b,d p→AB=|2k2+2b|√k+1,∴S△PAB=12|AB|d=4(k2+b)32①,又点P(2k,﹣b)在圆M:x2+(y+4)2=1上,故k2=1−(b−4)24,代入①得,S△PAB=4(−b 2+12b−154)32,而y p=﹣b∈[﹣5,﹣3],∴当b=5时,(S△PAB)max=20√5.11.(2021•上海)(1)团队在O点西侧、东侧20千米处设有A、B两站点,测量距离发现一点P满足|P A|﹣|PB|=20千米,可知P在A、B为焦点的双曲线上,以O点为原点,东侧为x轴正半轴,北侧为y轴正半轴,建立平面直角坐标系,P在北偏东60°处,求双曲线标准方程和P点坐标.(2)团队又在南侧、北侧15千米处设有C、D两站点,测量距离发现|QA|﹣|QB|=30千米,|QC|﹣|QD|=10千米,求|OQ|(精确到1米)和Q点位置(精确到1米,1°)【解答】解:(1)由题意可得a=10,c=20,所以b2=300,所以双曲线的标准方程为x 2100−y 2300=1,直线OP :y =√33x ,联立双曲线方程,可得x =15√22,y =5√62, 即点P 的坐标为(15√22,5√62).(2)①|QA |﹣|QB |=30,则a =15,c =20,所以b 2=175, 双曲线方程为x 2225−y 2175=1;②|QC |﹣|QD |=10,则a =5,c =15,所以b 2=200, 所以双曲线方程为y 225−x 2200=1,两双曲线方程联立,得Q (√1440047,√297547),所以|OQ |≈19米,Q 点位置北偏东66°. 12.(2020•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,﹣3),右焦点为F ,且|OA |=|OF |,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【解答】解:(Ⅰ)由已知可得b =3,记半焦距为c ,由|OF |=|OA |可得c =b =3, 由a 2=b 2+c 2,可得a 2=18, ∴椭圆的方程为x 218+y 29=1,(Ⅱ):∵直线AB 与C 为圆心的圆相切于点P , ∴AB ⊥CP ,根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx ﹣3, 由方程组{y =kx −3x 218+y 29=1,消去y 可得(2k 2+1)x 2﹣12kx =0,解得x =0,或x =12k2k 2+1,依题意可得点B 的坐标为(12k 2k 2+1,6k 2−32k 2+1),∵P 为线段AB 的中点,点A 的坐标为(0,﹣3), ∴点P 的坐标为(6k2k 2+1,−32k 2+1),由3OC →=OF →,可得点C 的坐标为(1,0),故直线CP 的斜率为−32k 2+16k2k 2+1−1=32k 2−6k+1,∵AB ⊥CP , ∴k •32k 2−6k+1=−1,整理可得2k 2﹣3k +1=0, 解得k =12或k =1,∴直线AB 的方程为y =12x ﹣3或y =x ﹣3. 13.(2020•北京)已知椭圆C :x 2a 2+y 2b 2=1过点A (﹣2,﹣1),且a =2b .(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (﹣4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =﹣4于点P ,Q .求|PB||BQ|的值.【解答】解:(Ⅰ)椭圆C :x 2a 2+y 2b 2=1过点A (﹣2,﹣1),且a =2b ,则{4a 2+1b 2=1a =2b,解得b 2=2,a 2=8,∴椭圆方程为x 28+y 22=1,(Ⅱ)由题意可得直线l 的斜率存在,设直线方程为y =k (x +4), 由{y =k(x +4)x 28+y 22=1,消y 整理可得(1+4k 2)x 2+32k 2x +64k 2﹣8=0, ∴△=﹣32(4k 2﹣1)>0, 解得−12<k <12,设M (x 1,y 1),N (x 2,y 2), ∴x 1+x 2=−32k21+4k2,x 1x 2=64k 2−81+4k2,则直线AM 的方程为y +1=y 1+1x 1+2(x +2),直线AN 的方程为y +1=y 2+1x 2+2(x +2),分别令x =﹣4, 可得y P =−2(y 1+1)x 1+2−1=−(2k+1)x 1+(8k+4)x 1+2,y Q =−(2k+1)x 2+(8k+4)x 2+2∴|PB |=|y P |=|(2k+1)x 1+(8k+4)x 1+2|,QB |=|y Q |=|(2k+1)x 2+(8k+4)x 2+2|,∴|PB||BQ|=|[(2k+1)x 1+(8k+4)](x 2+2)[(2k+1)x 2+(8k+4)](x 1+2)|=|(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 2(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 1|∵(2k +1)x 1x 2+(4k +2)(x 1+x 2)+8(2k +1)=32k 2(2k+1)1+4k2,∴|(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 2(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 1|=|(2k+1)(32k 24k 2+1+2x 2)(2k+1)(32k 24k 2+1+2x 1)|=|−(x 1+x 2)+2x 2−(x 1+x 2)+2x 1|=1,故|PB||BQ|=1.14.(2020•上海)已知双曲线Γ1:x 24−y 2b 2=1与圆Γ2:x 2+y 2=4+b 2(b >0)交于点A (x A ,y A )(第一象限),曲线Γ为Γ1、Γ2上取满足x >|x A |的部分. (1)若x A =√6,求b 的值;(2)当b =√5,Γ2与x 轴交点记作点F 1、F 2,P 是曲线Γ上一点,且在第一象限,且|PF 1|=8,求∠F 1PF 2; (3)过点D (0,b 22+2)斜率为−b2的直线l 与曲线Γ只有两个交点,记为M 、N ,用b表示OM →•ON →,并求OM →•ON →的取值范围.【解答】解:(1)由x A =√6,点A 为曲线Γ1与曲线Γ2的交点,联立{x A 24−y A 2b2=1x A 2+y A 2=4+b 2,解得y A =√2,b =2;(2)由题意可得F 1,F 2为曲线Γ1的两个焦点,由双曲线的定义可得|PF 1|﹣|PF 2|=2a ,又|PF 1|=8,2a =4,所以|PF 2|=8﹣4=4,因为b =√5,则c =√4+5=3, 所以|F 1F 2|=6,在△PF 1F 2中,由余弦定理可得cos ∠F 1PF 2=|PF 1|2+|PF 2|2−|F 1F 2|22|PF 1|⋅|PF 2|=64+16−362×8×4=1116,由0<∠F 1PF 2<π,可得∠F 1PF 2=arccos1116;(3)设直线l :y =−b2x +4+b22,可得原点O 到直线l 的距离d =|4+b 22|√1+b4=√4+b 2,所以直线l 是圆的切线,设切点为M ,所以k OM =2b ,并设OM :y =2bx 与圆x 2+y 2=4+b 2联立,可得x 2+4b2x 2=4+b 2, 可得x =b ,y =2,即M (b ,2),注意直线l 与双曲线的斜率为负的渐近线平行, 所以只有当y A >2时,直线l 才能与曲线Γ有两个交点,由{x A 24−y A 2b2=1x A 2+y A 2=4+b2,可得y A 2=b4a+b2,所以有4<b44+b2,解得b 2>2+2√5或b 2<2﹣2√5(舍去),因为OM →为ON →在OM →上的投影可得,OM →•ON →=4+b 2, 所以OM →•ON →=4+b 2>6+2√5, 则OM →•ON →∈(6+2√5,+∞).15.(2020•江苏)在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1、F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →•QP →的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.【解答】解:(1)由椭圆的标准方程可知,a 2=4,b 2=3,c 2=a 2﹣b 2=1, 所以△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A (1,32),设P (t ,0),则直线AP 方程为y =321−t (x −t),椭圆的右准线为:x =a 2c =4,所以直线AP 与右准线的交点为Q (4,32•4−t 1−t),OP →•QP →=(t ,0)•(t ﹣4,0−32•4−t1−t)=t 2﹣4t =(t ﹣2)2﹣4≥﹣4, 当t =2时,(OP →⋅QP →)min =﹣4.(3)若S 2=3S 1,设O 到直线AB 距离d 1,M 到直线AB 距离d 2,则12×|AB |×d 2=12×|AB |×d 1,即d 2=3d 1,A (1,32),F 1(﹣1,0),可得直线AB 方程为y =34(x +1),即3x ﹣4y +3=0,所以d 1=35,d 2=95,由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为3x ﹣4y +m =0,与直线AB 的距离为95,所以√9+16=95,即m =﹣6或12,当m =﹣6时,直线l 为3x ﹣4y ﹣6=0,即y =34(x ﹣2),联立{y =34(x −2)x 24+y 23=1,可得(x ﹣2)(7x +2)=0,即{x M =2y N =0或{x M =−27y M =−127,所以M (2,0)或(−27,−127).当m =12时,直线l 为3x ﹣4y +12=0,即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,△=9×(36﹣56)<0,所以无解,综上所述,M 点坐标为(2,0)或(−27,−127). 16.(2020•浙江)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点,过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ). (Ⅰ)若p =116,求抛物线C 2的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【解答】解:(Ⅰ)p =116,则p 2=132,则抛物线C 2的焦点坐标(132,0), (Ⅱ)直线l 与x 轴垂直时,此时点M 与点A 或点B 重合,不满足题意, 设直线l 的方程为y =kx +t ,A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由{x 22+y 2=1y =kx +t,消y 可得(2k 2+1)x 2+4ktx +2t 2﹣2=0, ∴△=16k 2t 2﹣4(2k 2+1)(2t 2﹣2)>0,即t 2<1+2k 2, ∴x 1+x 2=−4kt 1+2k2,∴x 0=12(x 1+x 2)=−2kt 1+2k 2,∴y 0=kx 0+t =t 1+2k2,∴M (−2kt 1+2k2,t1+2k 2),∵点M 在抛物线C 2上,∴y 2=2px ,∴p =y 22x =t 2(1+2k 2)22⋅−2kt 1+2k2=t −4k(1+2k 2), 联立{y 2=2px y =kx +t ,解得x 1=t(1+2k 2)−2k 3,y 1=t −2k2, 代入椭圆方程可得t 2(1+2k 2)28k 6+t 24k 4=1,解得t 2=8k6(1+2k 2)2+2k2。
2021年新高考数学专题复习-圆锥曲线专项练习1.已知椭圆22221(0)x y a b a bΓ+=>>:过点(02),,其长轴长、焦距和短轴长三者的平方依次成等差数列,直线l 与x 轴的正半轴和y 轴分别交于点Q P 、,与椭圆Γ相交于两点M N 、,各点互不重合,且满足12PM MQ PN NQ λλ==,. (1)求椭圆Γ的标准方程; (2)若直线l 的方程为1y x =-+,求1211λλ+的值;(3)若123,试证明直线l 恒过定点,并求此定点的坐标.2.已知动点M 到直线20x +=的距离比到点(1,0)F 的距离大1. (1)求动点M 所在的曲线C 的方程;(2)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率互为相反数,证明直线AB 的斜率为定值,并求出这个定值;(3)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.3.已知椭圆2222:1(0)x y C a b a b +=>>经过点1,2P ⎛⎫ ⎪ ⎪⎝⎭,且离心率2e =. (1)求椭圆C 的标准方程;(2)若斜率为k 且不过点P 的直线l 交C 于,A B 两点,记直线PA ,PB 的斜率分别为1k ,2k ,且120k k +=,求直线l 的斜率k .4.如图,已知圆A :22(1)16x y ++=,点()10B ,是圆A 内一个定点,点P 是圆上任意一点,线段BP 的垂直平分线1l 和半径AP 相交于点Q .当点P 在圆上运动时,点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)设过点()4,0D 的直线2l 与曲线C 相交于,M N 两点(点M 在,D N 两点之间).是否存在直线2l 使得2DN DM =?若存在,求直线2l 的方程;若不存在,请说明理由.5.已知双曲线C 的方程为:22186x y -=,其左右顶点分别为:1A ,2A ,一条垂直于x轴的直线交双曲线C 于1P ,2P 两点,直线11A P 与直线22A P 相交于点P .(1)求点P 的轨迹E 的方程;(2)过点)Q的直线,与轨迹E 交于A ,B 两点,线段AB 的垂直平分线交x 轴于M 点,试探讨ABMQ是否为定值.若为定值,求出定值,否则说明理由. 6.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交椭圆C 于M ,N 两点(l 与x 轴不重合),1F MN △,12F F M △的周长分别为12和8. (1)求椭圆C 的方程;(2)在x 轴上是否存在一点T ,使得直线TM 与TN 的斜率之积为定值?若存在,请求出所有满足条件的点T 的坐标;若不存在,请说明理由.7.已知椭圆C :22221x y a b +=(0a b >>)的离心率e =10x +-=被以椭圆C . (1)求椭圆C 的方程;(2)过点(4,0)M 的直线l 交椭圆于A ,B 两个不同的点,且||||||||MA MB MA MB λ+=⋅,求λ的取值范围.8.已知抛物线C :24y x =的焦点为F ,直线l :2y x a =+与抛物线C 交于A ,B 两点.(1)若1a =-,求FAB 的面积;(2)若抛物线C 上存在两个不同的点M ,N 关于直线l 对称,求a 的取值范围. 9.如图,直线l 与圆22:(1)1E x y ++=相切于点P ,与抛物线2:4C x y =相交于不同的两点,A B ,与y 轴相交于点(0,)(0)T t t >.(1)若T 是抛物线C 的焦点,求直线l 的方程;(2)若2||||||TE PA PB =⋅,求t 的值.10.在平面直角坐标系中,己知圆心为点Q 的动圆恒过点(1,0)F ,且与直线1x =-相切,设动圆的圆心Q 的轨迹为曲线Γ. (Ⅰ)求曲线Γ的方程;(Ⅱ)过点F 的两条直线1l 、2l 与曲线Γ相交于A 、B 、C 、D 四点,且M 、N 分别为AB 、CD 的中点.设1l 与2l 的斜率依次为1k 、2k ,若121k k +=-,求证:直线MN 恒过定点.11.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,且直线1x y a b +=与圆222x y +=相切.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,BOP △的面积分别为1S ,2S ,求12S S 的取值范围. 12.已知抛物线2:2(0)E x py p =>的焦点为,F 点Р在抛物线E 上,点Р的横坐标为2,且2PF =.(1)求抛物线E 的标准方程;(2)若,A B 为抛物线E 上的两个动点(异于点P ),且AP AB ⊥,求点B 的横坐标的取值范围.13.如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:GF 为∠AGB 的平分线.14.已知椭圆C :22221(0)x y a b a b +=>>的短轴长为2.(∠)求椭圆C 的方程;(∠)设过定点()02T ,的直线l 与椭圆C 交于不同的两点A 、B ,且∠AOB 为锐角,求直线l 的斜率k 的取值范围.参考答案1.(1)221124x y +=;(2)83-;(3)证明见解析,(2,0). 【分析】(1)由题意,得到2b =和222(2)(2)2(2)a b c +=,结合222a b c =+,求得2a 的值,即可求得椭圆Γ的标准方程;(2)由直线l 的方程为1y x =-+,根据12PM MQ PN NQ λλ==,,求得12121211x x x x λλ==--,,得到121212112x xx x λλ++=-,联立方程组,结合根与系数的关系,即可求解;(3)设直线l 的方程为()()0y k x m m =->,由1PM MQ ,得到111x m x λ=-和222xm xλ=-,联立方程组,结合根与系数的关系和123,求得2m =,得到直线l 的方程,即可求解. 【详解】(1)由题意,因为椭圆22221(0)x y a b a bΓ+=>>:过点(02),,可得2b =, 设焦距为2c ,又由长轴长、焦距和短轴长三者的平方依次成等差数列, 可得222(2)(2)2(2)a b c +=,即2222a b c +=又因为222a b c =+,解得212a =,所以椭圆Γ的标准方程为221124x y +=.(2)由直线l 的方程为1y x =-+,可得而(01)(10)P Q ,,,,设1122()()M x y N x y ,,,,因为12PM MQ PN NQ λλ==,,可得1111122222(1)(1)(1)(1)x y x y x y x y λλ-=---=--,,,,,, 从而111222(1)(1)x x x x λλ=-=-,,于是12121211x x x x λλ==--,,所以12121212111122x x x x x x λλ++=+-=-,由2211241x y y x ⎧+=⎪⎨⎪=-+⎩,整理得24690x x --=,可得12123924x x x x +==-,,所以1212121211118223x x x x x x λλ++=+-=-=-. (3)显然直线l 的斜率k 存在且不为零,设直线l 的方程为()()0y k x m m =->,1122()()M x y N x y ,,,,可得(0,)(,0)P km Q m -,,由1PMMQ ,可得11111()()x y km m x y λ+=--,,, 所以()111x x m λ=-,从而111x m x λ=-,同理222x m x λ=-, 又123,∠212122()30x x m x x m -++=①,联立221124()x y y k x m ⎧+=⎪⎨⎪=-⎩,得22222(13)63120k x k mx k m +-+-=, 则()42222222364(13)(312)121240k m k k m k k m -∆=+-=+->②,且2221212226312,1313k m k m x x x x k k -+==++③∠代入∠得2222222231263122300131313k m k m m m m k k k ---⋅+=⇒=+++,∠2m =,(满足∠)故直线l 的方程为()2y k x =-,所以直线l 恒过定点(20),. 2.(1)24y x =;(2)证明见解析,定值1-;(3)证明见解析.【分析】(1)根据题意转化为动点M 到直线1x =-的距离和到点(1,0)F 的距离相等,结合抛物线的定义,即可求得曲线C 的方程;(2)由:2(1)PA l y k x -=-和2(1)PB l y k x -=--:,分别联立方程组,求得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭和()22242,k k B k k ⎛⎫+-- ⎪ ⎪⎝⎭,结合斜率公式,即可求解; (3)由::2(1)PA l y k x -=-,2(1)PB l y k x -=--:,分别联立方程组()22242,k k A k k ⎛⎫--⎪ ⎪⎝⎭和()222,22k k B k k ⎛⎫ ⎪ ⎪--⎝⎭,求得2(2)22AB k k k k k -=-+,求得直线AB l 的方程,即可求解. 【详解】(1)已知动点M 到直线20x +=的距离比到点(1,0)F 的距离大1,等价于动点M 到直线1x =-的距离和到点(1,0)F 的距离相等,由抛物线的定义可得曲线C 的轨迹时以(1,0)F 为焦点,以直线1x =-为准线的方程,且2p =,所以曲线C 的方程为24y x =.(2)设直线PA 的斜率为k ,因为直线PA 的斜率与直线PB 的斜率互为相反数,所以直线PB 的斜率为k -,则:2(1)PA l y k x -=-,2(1)PB l y k x -=--:联立方程组22(1)4y k x y x-=-⎧⎨=⎩,整理得24480ky y k --+=, 即()()2420ky k y +--=⎡⎤⎣⎦,可得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭联立方程组22(1)4y k x y x-=--⎧⎨=⎩,整理得24480ky y k +--=,即()()2+420ky k y +-=⎡⎤⎣⎦,可得()22242,k k B k k ⎛⎫+-- ⎪ ⎪⎝⎭所以()()22224242122ABk kk k k k k k k ----==-+--,即直线AB 的斜率为定值1-. (3)设直线PA 的斜率为k ,所以直线PB 的斜率为2k -, 则2(1)PA l y k x -=-:,2(1)PB l y k x -=--:两类方程组22(1)4y k x y x-=-⎧⎨=⎩,整理得24480ky y k --+=, 即()()2420ky k y +--=⎡⎤⎣⎦,可得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭, 联立方程组()222(1)4y k x y x⎧-=--⎨=⎩,可得()22440k y y k --+=,即()()2220k y k y ---=⎡⎤⎣⎦,可得()222,22k k B k k ⎛⎫⎪ ⎪--⎝⎭所以()()22222242(2)22222ABk kk k k k k k k k k k k ----==-+---, 所以()2222(2)2222AB k k k k l y x k k k k ⎛⎫--=- ⎪ ⎪--+-⎝⎭:,整理得()2(2)122k k y x k k -=+-+ 所以直线AB 恒过()1,0-.3.(1)2212x y +=;(2. 【分析】(1)由题意可得222221112a b c e a a b c ⎧+=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解方程组即可求得,,a b c 的值,进而可得椭圆C 的标准方程;(2))设直线PA的方程为()112y k x -=-,()11,A x y ,()22,B x y ,与椭圆方程联立消元可得关于x 的一元二次方程,由韦达定理可得1x ,因为120k k +=,所以21k k =-,同理可得2x ,再利用1212y y k x x -=-即可求得直线l 的斜率k .【详解】(1)因为1,2P ⎛ ⎝⎭在椭圆C 上,所以221112a b +=,又2c e a ==,222a b c =+,由上述方程联立可得22a =,21b =,所以椭圆的标准方程为2212x y +=.(2)设直线PA的方程为()112y k x -=-, 设()11,A x y ,()22,B x y ,由122(1)12y k x x y ⎧=-⎪⎪⎨⎪+=⎪⎩消y 得: ())222111111222210k xk k x k +++--=,所以21112121112k x k --⨯=+,因为120k k +=,所以21k k =-,同理可得21122121112k x k +-⋅=+,因为2112214212k x x k -+=+,1122112x x k --=+,所以()111121112112121212222k x k k x k k x x k y y k x x x x x x ⎛-+--++ +--⎝⎭===---2242212k k k k --+=== 4.(1)22143x y+=(2)存在,(4)6y x =-或4)6y x =--.【分析】(1)结合垂直平分线的性质和椭圆的定义,求出椭圆C 的方程.(2)设出直线2l 的方程,联立直线2l 的方程和椭圆方程,写出韦达定理,利用2DN DM =,结合向量相等的坐标表示,求得直线2l 的斜率,进而求得直线2l 的方程.方法一和方法二的主要曲边是直线2l 的方程的设法的不同. 【详解】(1)因为圆A 的方程为22(1)16x y ++=,所以(1,0)A -,半径4r =.因为1l 是线段AP 的垂直平分线,所以||||QP QB =. 所以||||||||||4AP AQ QP AQ QB =+=+=.因为4||AB >,所以点Q 的轨迹是以(1,0)A -,(1,0)B 为焦点,长轴长24a =的椭圆.因为2a =,1c =,2223b a c =-=,所以曲线C 的方程为22143x y +=.(2)存在直线2l 使得2DN DM =.方法一:因为点D 在曲线C 外,直线2l 与曲线C 相交,所以直线2l 的斜率存在,设直线2l 的方程为(4)y k x =-.设112212(,),(,)()M x y N x y x x >,由22143(4)x y y k x ⎧+=⎪⎨⎪=-⎩ 得2222(34)32(6412)0k x k x k +-+-=. 则21223234k x x k +=+, ① 2122641234k x x k-=+, ② 由题意知2222(32)4(34)(6412)0k k k ∆=--+->,解得1122k -<<. 因为2DN DM =,所以2142(4)x x -=-,即2124x x =-. ③把③代入①得21241634k x k +=+,22241634k x k-+=+ ④ 把④代入②得2365k =,得6k =±,满足1122k -<<.所以直线2l的方程为:(4)6y x =-或4)6y x =--. 方法二:因为当直线2l 的斜率为0时,(2,0)M ,(2,0)N -,(6,0)DN =-,(2,0)DM =-此时2DN DM ≠.因此设直线2l 的方程为:4x ty =+.设112212(,),(,)()M x y N x y x x >,由221434x y x ty ⎧+=⎪⎨⎪=+⎩得22(34)24360t y ty +++=. 由题意知22(24)436(34)0t t ∆=-⨯+>,解得2t <-或2t >,则1222434ty y t +=-+, ① 1223634y y t =+, ②因为2DN DM =,所以212y y =. ③把③代入①得12834t y t =-+,221634ty t =-+ ④ 把④代入②得2536t =,t =±2t <-或2t >. 所以直线2l的方程为4)y x =-或4)y x =-. 5.(1)22186x y +;(2)为定值,4.【分析】(1)设直线为:0x x =,()100,P x y ,()200,P x y -,以及(),P x y,利用三点共线得到==,两式相乘化简得22022088y y x x =---,再利用点1P 在双曲线上代入整理即可得到答案;(2)显然直线l 不垂直x 轴,①当0k =时,易证4ABMQ=,②当0k ≠时,利用点斜式设出直线l 方程,联立直线l 与椭圆的方程消y ,得到关于x 的一元二次方程,利用韦达定理以及弦长公式求出AB ,求出AB 的中点坐标,利用点斜式求出线段AB 的垂直平分线的方程,求出点M 的坐标,利用两点间的距离公式求解MQ ,即可得出答案. 【详解】(1)由题意知:()1A -,()2A ,设直线为:0x x =,()100,P x y ,()200,P x y -,以及(),P x y , 由11,,A P P 三点以及22,,A P P 三点共线,则==,两式相乘化简得:22022088y y x x =---, 又2200186x y -=, 代入上式得轨迹E 的方程:22186x y +.(2)显然直线l 不垂直x 轴,①当0k =时,直线l 的方程为:0y =,线段AB 为椭圆的长轴,线段AB 的垂直平分线交x 轴于M 点,则AB =,()0,0M,MQ =所以4ABMQ=; ②当0k ≠时,设方程为:(y k x =,联立方程得(22186y k x x y ⎧=⎪⎨⎪+=⎩,化简整理得:()2222348240kxx k +-+-=,设()11,A x y ,()22,B x y ,212221223482434x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,)2122143k AB x k +=-==+,线段AB的中点的坐标为222,3434P k k ⎛⎫- ⎪ ⎪++⎝⎭,线段AB的垂直平分线的方程为:22213434y x k k k ⎛⎫+=-- ⎪ ⎪++⎝⎭, 令0y =,则M ⎫⎪⎪⎝⎭,)22134k MQ k +==+,∴4ABMQ=. 综上:4ABMQ=. 6.(1)22198x y ;(2)存在,坐标为(3,0)-和(3,0).【分析】(1)由1F MN △,12F F M △的周长分别为12和8,可求椭圆基本量,进一步确定方程. (2)设直线代入消元,韦达定理整体代入定点满足的关系,探求恒成立的条件. 【详解】(1)设椭圆C 的焦距为2(0)c c >,由题意可得412228a a c =⎧⎨+=⎩,解得31a c =⎧⎨=⎩,所以b =因此椭圆C 的方程为22198x y .(2)因为直线l 过点2(1,0)F 且不与x 轴重合,所以设l 的方程为1x my =+,联立方程221198x my x y =+⎧⎪⎨+=⎪⎩,消去x 并整理得()228916640m y my ++-=,设()11,M x y ,()22,N x y ,则12212216896489m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,所以()1212218289x x m y y m +=++=+, ()()()2212121212272911189m x x my my m y y m y y m -+=++=+++=+. 设(,0)T t ,则直线TM 与TN 的斜率分别为11TM y k x t =-,22TN y k x t=-, 则()()1212TM TN y y k k x t x t ⋅=--()2122221212226489729188989y y m m x x t x x t t t m m -+==-+-++-⋅+++ ()222648729189t m t t -=-+-+.所以当28720t -=,即当3t =-时,m ∀∈R ,49TM TN k k ⋅=-; 当3t =时,m ∀∈R ,169TM TN k k ⋅=-. 因此,所有满足条件的T 的坐标为(3,0)-和(3,0).7.(1)2214x y +=;(2)2]3.【分析】(1)由直线与圆的位置关系可得1b =.由椭圆的离心率可得2a =,则椭圆C 的方程为2214x y +=. (2)当直线l 的斜率为0时,求出MA ,MB ,当直线l 的斜率不为0时,设直线l 方程为4x my =+,()11A x y ,,()22B x y ,,联立方程可得()2248120m y my +++=,满足题意时212m >,结合韦达定理以及弦长公式,化简整理,结合不等式的性质,据此即可所求范围. 【详解】(1)因为原点到直线10x +-=的距离为12,所以22212b ⎛⎫+= ⎪⎝⎭⎝⎭(0b >),解得1b =. 又22222314c b e a a ==-=,得2a =所以椭圆C 的方程为2214x y +=.(2)当直线l 的斜率为0时,12MA MB ⋅=,268MA MB +=+=,所以||||82||||123MA MB MA MB λ+===⋅,当直线l 的斜率不为0时,设直线l :4x my =+,()11A x y ,,()22B x y ,,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩,得()2248120m y my +++=, 由()22=644840m m ∆-+>,得212m >,所以122124y y m =+,12284my y m +=-+,()21221214m MA MB y y m +⋅==+,1212MA MB y y y +=+=+284mm =+,||||||||121MA MB MA MB m λ+====⋅+由212m >,得211113121m ∴<-<+,所以2233λ<<.23λ<≤,即2]3.8.(12)12a <- 【分析】(1)联立直线与抛物线,根据弦长公式求出||AB ,根据点到直线的距离公式求出点F 到直线的距离,根据三角形面积公式可求得结果;(2)设直线MN 的方程为12y x m =-+代入抛物线,利用判别式大于0可得2m >-, 根据韦达定理求出MN 的中点坐标,将其代入直线l 得到m 与a 的关系式,根据m 的范围可得a 的范围. 【详解】抛物线C :24y x =的焦点为F (1,0),(1)当1a =-时,直线:21l y x =-,联立2214y x y x=-⎧⎨=⎩,消去y 得21204x x -+=, 设11(,)A x y ,22(,)B x y ,则122x x +=,1214x x =,所以||AB ===点F 到直线:21l y x =-的距离d ==,所以FAB的面积为11||22AB d ==. (2)因为点M ,N 关于直线l 对称,所以直线MN 的斜率为12-, 所以可设直线MN 的方程为12y x m =-+, 联立2124y x m y x⎧=-+⎪⎨⎪=⎩,消去y 并整理得22(416)40x m x m -++=, 由22(416)160m m ∆=+->,得2m >-,设33(,)M x y ,44(,)N x y ,所以34416x x m +=+,所以343411()2(416)2822y y x x m m m +=-++=-⨯++=-, 所以MN 的中点为(28,4)m +-,因为点M ,N 关于直线l 对称,所以MN 的中点(28,4)m +-在直线:2l y x a =+上,所以42(28)m a -=++,得420a m =--,因为2m >-,所以12a <-.9.(1)1y =+;(2)12. 【分析】(1)由(0,)(0)T t t >为抛物线焦点,即可设直线l 的方程为1y kx =+,根据直线l 与圆相切可求k 值,写出直线方程.(2)设直线l 的方程为y kx t =+,()00,P x y ,()11,A x y ,()22,B x y ,由直线上两点距离公式可知()()0022||||14PA PB kxy ⋅==+-,根据直线l 与圆相切、2||||||TE PA PB =⋅求0y ,切线性质:直线l 与PE 互相垂直及00t y kx =-即可求t 的值.【详解】(1)因为(0,)(0)T t t >是抛物线2:4C x y =的焦点,所以1t =,即(0,1)T ,设直线l 的方程为1y kx =+,由直线l 与圆E1=,即k =,所以,直线l的方程为1y =+.(2)设直线l 的方程为y kx t =+,()00,P x y ,()11,A x y ,()22,B x y ,由24y kx tx y=+⎧⎨=⎩,得2440x kx t --=,124x x k +=,124x x t ⋅=-,∴1020||||PA PB x x ⋅=-⋅-()()221201201kx xx x x x ⎡⎤=+-++⎣⎦()()220014k x kx t ⎡⎤=+-+⎣⎦()()220014k x y =+-. 由直线l 与圆E1=,即221(1)k t +=+.由||1TE t =+,2||||||TE PA PB =⋅,得()()2220014(1)kxy t +-=+.所以20041x y -=,又()220011x y ++=,解得03y =-+.由直线l 与PE 互相垂直,得0011PE xk k y =-=-+, 200001i x t y kx y y =-=++220000001112x y y y y y ++-===++. 10.(Ⅰ)24y x =;(Ⅱ)证明见解析.【分析】(Ⅰ)设(,)Q x y,根据题意得到|1|x +=Γ的方程;(Ⅱ)设1l ,2l 的方程为12(1),(1)y k x y k x =-=-,联立方程组分别求得2121122,k M k k ⎛⎫+ ⎪⎝⎭,和2222222,k N k k ⎛⎫+ ⎪⎝⎭,进而得出MN k ,进而得出()111MN k k k =+,得出直线MN 的方程,即可判定直线MN 恒过定点. 【详解】(Ⅰ)由题意,设(,)Q x y ,因为圆心为点Q 的动圆恒过点(1,0)F ,且与直线1x =-相切,可得|1|x +=24y x =.(Ⅱ)设1l ,2l 的方程分别为1(1)y k x =-,2(1)y k x =-,联立方程组12(1)4y k x y x=-⎧⎨=⎩,整理得()2222111240k x k x k -++=, 所以21122124k x x k ++=,则2121122,k M k k ⎛⎫+ ⎪⎝⎭,同理2222222,k N k k ⎛⎫+ ⎪⎝⎭ 所以121222121222122222MNk k k k k k k k k k k -==+++-, 由121k k +=-,可得()111MN k k k =+,所以直线MN 的方程为()2111211221k y k k x k k ⎛⎫+-=+- ⎪⎝⎭ 整理得()1121(1)y k k x +=+-,所以直线MN 恒过定点(1,2)-.11.(1)22163x y +=;(2),33⎣⎦. 【分析】(1)依题意得到c a ==,再根据222c b a +=解方程即可;(2)由M 为线段AB 的中点,可得12OM S S OP=,对直线l 的斜率的斜率存在与否分两种情况讨论,当直线l 的斜率存在时,设直线():0l y kx m m =+≠,()11,A x y ,()22,B x y .联立直线与椭圆方程,消元列出韦达定理,根据0OA OB ⋅=,即可得到12120x x y y +=,从而得到m 与k 的关系,即可求出面积比的取值范围; 【详解】解:(1)∵椭圆的离心率为2,∴2c a =(c 为半焦距). ∵直线1x y a b+=与圆222x y +==.又∵222c b a +=,∴26a =,23b =.∴椭圆C 的方程为22163x y +=.(2)∵M 为线段AB 的中点,∴12AOM BOP OMS S S S OP==△△. (ⅰ)当直线l 的斜率不存在时,由OA OB ⊥及椭圆的对称性,不妨设OA 所在直线的方程为y x =,得22A x =.则22M x =,26P x =,∴123OM S S OP ==. (ⅱ)当直线l 的斜率存在时,设直线():0l y kx m m =+≠,()11,A x y ,()22,B x y .由22163y kx mx y =+⎧⎪⎨+=⎪⎩,消去y ,得()222214260k x kmx m ++-=+. ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630k m -+>.∴122421km x x k +=-+,21222621m x x k -=+. ∵点O 在以AB 为直径的圆上,∴0OA OB ⋅=,即12120x x y y +=. ∴()()221212121210x x y y kx xkm x x m +=++++=. ∴()22222264102121m km k km m k k -⎛⎫++-+= ⎪++⎝⎭. 化简,得2222m k =+.经检验满足0∆>成立.∴线段AB 的中点222,2121kmm M k k ⎛⎫-⎪++⎝⎭. 当0k =时,22m =.此时123S S ==. 当0k ≠时,射线OM 所在的直线方程为12y x k=-.由2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y ,得2221221P k x k =+,22321P y k =+. ∴M P OM y OP y == ∴12S S ==12,33S S ⎛∈ ⎝⎭. 综上,12S S的取值范围为33⎣⎦.12.(1)24x y =;(2)[)(,)610--⋃∞+∞,. 【分析】()1由抛物线的定义可得022p y =-,再代入可求得p ,可得抛物线E 的标准方程为24x y =.()2由直线垂直的条件建立关于点A 、B 的坐标的方程,由根的判别式可求得范围.【详解】解:()1依题意得0,,2p F ⎛⎫ ⎪⎝⎭设()002,,22p P y y =-, 又点Р是E 上一点,所以4222p p ⎛⎫=-⎪⎝⎭,得2440p p -+=,即2p =, 所以抛物线E 的标准方程为24x y =.()2由题意知()2,1P , 设221212,,,,44x x A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则()2111114224APx k x x -==+-,因为12x ≠-,所以142AB k x =-+,AB 所在直线方程为()2111442x y x x x --=-+,联立24x y =. 因为1x x ≠,得11(216(0))x x x +++=,即()21122160x x x x ++++=,因为()224216)0(x x ∆=+-+≥,即24600x x --≥,故10x ≥或6x ≤-经检验,当6x =-时,不满足题意.所以点B 的横坐标的取值范围是[)(,)610--⋃∞+∞,. 13.(1)y 2=4x ;(2)证明见解析. 【分析】(1)利用抛物线定义,由|AF |=2+2p=3求解. (2)根据点A (2,m )在抛物线E 上,解得m ,不妨设A (2,),直线AF 的方程为y(x -1),联立)214y x y x⎧=-⎪⎨=⎪⎩,然后论证k G A +k G B =0即可 【详解】(1)由抛物线定义可得|AF |=2+2p=3,解得p =2. ∠抛物线E 的方程为y 2=4x .(2)∠点A (2,m )在抛物线E 上, ∠m 2=4×2,解得m,由抛物线的对称性,不妨设A (2,),由A (2,,F (1,0),∠直线AF 的方程为y (x -1),由)214y x y x⎧=-⎪⎨=⎪⎩ 得2x 2-5x +2=0,解得x =2或12,∠B 1,2⎛ ⎝.又G (-1,0),∠k G A =3,k G B =3-∠k G A +k G B =0, ∠∠AGF =∠BGF . ∠GF 为∠AGB 的平分线. 【点睛】关键点点睛:由GF 为∠AGB 的平分线,即∠AGF =∠BGF ,转化为 k G A +k G B =0结合韦达定理证明.14.(∠)23x +y 2=1;(∠)11k ⎛⎫⎛∈-⋃ ⎪ ⎪ ⎝⎭⎝⎭. 【分析】(∠)根据椭圆短轴长公式、离心率公式,结合椭圆中,,a b c 的关系进行求解即可;(∠)根据平面向量数量积公式,结合一元二次方程根与系数关系、根的判别式进行求解即可. 【详解】(∠)由已知得 2b =2,所以1b =,又因为c a =所以有:2223c a =,而222c a b =-, 解得23a =,即椭圆C 的方程为23x +y 2=1.(∠)直线l 方程为y =kx +2,将其代入23x +y 2=1,得(3k 2+1)x 2+12kx +9=0,设A (x 1,y 1),B (x 2,y 2),∴△=(12k )2﹣36(1+3k 2)>0,解得k 2>1,由根与系数的关系,得x 1+x 2=21213kk -+,x 1x 2=2913k + ∵∠AOB 为锐角, ∴OA ⋅OB >0, ∴x 1x 2+y 1y 2>0,∴x 1x 2+(kx 1+2)(kx 2+2)>0, ∴(1+k 2)x 1x 2+2k (x 1+x 2)+4>0,化简得2213313k k -+>0,解得2133k <,由21k >且2133k <,解得1133k ⎛⎫⎛∈--⋃ ⎪ ⎪ ⎝⎭⎝⎭,.。
第4讲利用三角形的中位线、中线、角平分线、中垂线解决圆锥曲线问题参考答案与试题解析一.选择题(共10小题)1.已知椭圆22195x y+=的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,||OF为半径的圆上,则直线PF的斜率是()A B C.D.2【解答】解:如图所示,设线段PF的中点为M,连接OM.设椭圆的右焦点为F',连接PF'.则//OM PF'.又||||2OM OF c===,11||||(22)122FM PF a c a c==-=-=.设MFOα∠=,在OMF∆中,2222121 cos2214α+-==⨯⨯,sinα∴tanα∴=.故选:A.2.如图,从双曲线22221(0,0)x ya ba b-=>>的左焦点F引圆222x y a+=的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则||||MO MT-与b a-的大小关系为()A .||||MO MT b a ->-B .||||MO MT b a -<-C .||||MO MT b a -=-D .以上三种可能都有【解答】解:将点P 置于第一象限. 设1F 是双曲线的右焦点,连接1PFM 、O 分别为FP 、1FF 的中点,11||||2MO PF ∴=. 又由双曲线定义得, 1||||2PF PF a -=,||FT b ==.故||||MO MT - 11||||||2PF MF FT =-+ 11(||||)||2PF PF FT =-+ b a =-.故选:C .3.从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则||||MO MT -等于( )A .c a -B .b a -C .a b -D .c b -【解答】解:如图所示,设F '是双曲线的右焦点,连接PF '. 点M ,O 分别为线段PF ,FF '的中点, 由三角形中位线定理得到:111||||(||2)||222OM PF PF a PF a ='=-=- ||MF a =-,||||||||||OM MT MF MT a FT a ∴-=--=-,连接OT ,因为PT 是圆的切线,则OT FT ⊥,在Rt FOT ∆中,||OF c =,||OT a =,||FT b ∴==.||||OM MT b a ∴-=-.故选:B .4.设1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的两个焦点,点P 在双曲线上,已知1||PF 是2||PF 和12||F F 的等差中项,且12120F PF ∠=︒,则该双曲线的离心率为( )A .1B .32C .52D .72【解答】解:设1||PF m =,2||PF n =,由1||PF 是2||PF 和12||F F 的等差中项,12120F PF ∠=︒, 则点P 在C 的右支上,2m n a ∴-=,12122||||||PF PF F F =+,即22m n c =+, 22m c a ∴=-,24n c a =-,由余弦定理可知:22212111212||||||2||||cos F F PF PF PF PF F PF =+-∠,222(2)(22)(24)2(22)(24)cos120c c a c a c a c a ∴=-+----︒, 整理得222920c ac c -+=,由c e a=, 22970e e ∴-+=,由1e >,解得:72e =, 曲线的离心率为72, 故选:D .5.已知点P 是椭圆22221(0,0)x y a b xy a b+=>>≠上的动点,1(,0)F c -、2(,0)F c 为椭圆的左、右焦点,O 为坐标原点,若M 是12F PF ∠的角平分线上的一点,且1F M MP ⊥,则||OM 的取值范围是( ) A .(0,)cB .(0,)aC .(,)b aD .(,)c a【解答】解:如图,延长2PF ,1F M ,交于N 点,PM 是12F PF ∠平分线,且1F M MP ⊥,1||||PN PF ∴=,M 为1F N 中点,连接OM ,O 为12F F 中点,M 为1F N 中点 2212111||||||||||||||||222OM F N PN PF PF PF ∴==-=- 在椭圆22221(0,0)x y a b xy a b+=>>≠中,设P 点坐标为0(x ,0)y则10||PF a ex =+,20||PF a ex =-,120000|||||||||2|2||PF PF a ex a ex ex e x ∴-=+-+==P 点在椭圆22221(0,0)x y a b xy a b+=>>≠上,0||(0x ∴∈,]a ,又当0||x a =时,1F M MP ⊥不成立,0||(0,)x a ∴∈ ||(0,)OM c ∴∈.故选:A .6.设1(,0)F c -,2(,0)F c 是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值b C .定值cD .不确定,随P 点位置变化而变化【解答】解:过点1F 作PQ 的垂线,垂足为Q ,交2PF 的延长线于M , 由三角形1PF M 为等腰三角形,可得Q 为1F M 的中点, 由双曲线的定义可得122||||||2PF PF F M a -==, 由三角形的中位线定理可得21||||2OQ F M a ==, 故选:A .7.圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线:280l x y +-=与椭圆22:11612x y C +=相切于点P ,椭圆C 的焦点为1F ,2F ,由光学性质知直线1PF ,2PF 与l 的夹角相等,则12F PF ∠的角平分线所在的直线的方程为( ) A .210x y --=B .10x y -+=C .210x y -+=D .10x y --=【解答】解:由光学性质知直线1PF ,2PF 与l 的夹角相等,则12F PF ∠的角平分线所在的直线为法线,即与直线l 垂直的直线,而直线:280l x y +-=,所以设所求的直线的方程为20x y m -+=, 联立222803448x y x y +-=⎧⎨+=⎩,整理可得:2690y y -+=,解得3y =, 代入直线l 的方程可得2380x +⨯-=,可得2x =, 即(2,3)P ,将(2,3)P 代入所求的直线方程可得:2230m ⨯-+=,可得1m =-, 所以12F PF ∠的角平分线所在的直线的方程为210x y --=, 故选:A .8.根据圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下面问题:已知1F ,2F 分别是双曲线22:12y C x -=的左、右焦点,若从点2F 发出的光线经双曲线右支上的点0(A x ,2)反射后,反射光线为射线AM ,则2F AM ∠的角平分线所在的直线的斜率为( )A .B .CD 【解答】解:由已知可得0(A x ,2)在第一象限,将点A 的坐标代入双曲线方程可得:20412x -=,解得0x =A 2), 又由双曲线的方程可得1a =,b,所以c =,则2F , 所以2||2AF =,且点A ,2F都在直线x =12||||OF OF =所以12122||tan ||F F F AF AF ∠==,所以1260F AF ∠=︒, 设2F AM ∠的角平分线为AN ,则21(18060)602F AN ∠=︒-︒⨯=︒, 所以直线AN 的倾斜角为150︒,所以直线的斜率为tan150︒= 故选:B .9.设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是( )AB .32C .52D1【解答】解:由双曲线的方程可知,渐近线为by x a=±,分别与30(0)x y m m -+=≠联立,解得(3am A a b --,)3bm a b --,(3am B a b -+,)3bma b+, AB ∴中点坐标为222(9ma b a -,2223)9mb b a -, 点(,0)P m 满足||||PA PB =, ∴22222230939mb b a ma mb a --=---, 2a b ∴=,c ∴,c e a ∴==. 故选:A .10.椭圆22221(0)x y a b a b +=>>的右焦点为(,0)F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是( )ABCD .35【解答】解:设(,)Q m n ,由题意可得2222221n c m c bn b m cc m n ab ⎧=-⎪-⎪+⎪=⋅⎨⎪⎪+=⎪⎩①②③,由①②可得:322c cb m a -=,222bc n a=,代入③可得:3222222222()()1c cb bc a a a b -+=, 解得2422(441)41e e e e -++=, 可得,62410e e +-=.即64422422210e e e e e -+-+-=, 可得242(21)(21)0e e e -++=解得e . 故选:B .二.多选题(共1小题)11.已知1F ,2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,C 的一条渐近线l 的方程为y =,且1F 到l的距离为点P 为C 在第一象限上的点,点Q 的坐标为(2,0),PQ 为12F PF ∠( )A .双曲线的方程为221927x y -=B .12||2||PF PF = C .12||36PF PF += D .点P 到x【解答】解:渐近线l 的方程为y =,∴ba, 1(,0)F c -到l 的距离为|()|bc b ⋅-∴==, 3a ∴=,∴双曲线的标准方程为221927x y -=,即选项A 正确;26c a =+, 1(6,0)F ∴-,2(6,0)F ,由角分线定理知,1122||||82||||4PF FQ PF QF ===,即选项B 正确;由双曲线的定义知,12||||26PF PF a -==, 112||12||PF F F ∴==,2||6PF =,在等腰△12PF F 中,221121||312cos ||124PF PFF F F ∠===, 21sin PF F ∴∠= 222119||||cos 6642P x OF PF PF F ∴=-⋅∠=-⨯=, 221||sin 6P y PF PF F =⋅∠==D正确;||OP ∴=,12|||2|2||PF PF OP OP ∴+===C 错误.故选:ABD .三.填空题(共7小题)12.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则||PF = 2 ;P 点的坐标为 .【解答】解:椭圆22195x y +=的3a =,b 2c =,23e =设椭圆的右焦点为F ',连接PF ',线段PF 的中点A 在以原点O 为圆心,2为半径的圆,连接AO ,可得||2||4PF AO '==,设P 的坐标为(,)m n ,可得2343m -=,可得32m =-,n =,由||2||4PF AO '==,||642PF =-=,故答案为:2;3(2-.13.已知F 是抛物线2y x =的焦点,A 、B 是该抛物线上的两点,||||3AF BF +=,则线段AB 的中点到y 轴的距离为54. 【解答】解:由于F 是抛物线2y x =的焦点, 得1(4F ,0),准线方程14x =-,设1(A x ,1)y ,2(B x ,2)y , 1211||||344AF BF x x ∴+=+++=, 解得1252x x +=, ∴线段AB 的中点横坐标为54. ∴线段AB 的中点到y 轴的距离为54. 故答案为:54.14.抛物线22(0)y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为. 【解答】解:设||AF a =,||BF b =,连接AF 、BF ,由抛物线定义,得||||AF AQ =,||||BF BP =,在梯形ABPQ 中,2||||||MN AQ BP a b =+=+. 由余弦定理得,22222||2cos120AB a b ab a b ab =+-︒=++, 配方得,22||()AB a b ab =+-, 又2()2a b ab +, 222213()()()()44a b ab a b a b a b ∴+-+-+=+得到3||()2AB a b +.∴1()||2||3(a b MN AB a b +=+, 即||||MN AB. .15.设抛物线22(0)y px p =>的焦点为F ,已知A ,B 为抛物线上的两个动点,且满足60AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为 1 .【解答】解:设||AF a =,||BF b =, 由抛物线定义,得||||AF AQ =,||||BF BP = 在梯形ABPQ 中,2||||||MN AQ BP a b ∴=+=+. 由余弦定理得,22222||2cos60AB a b ab a b ab =+-︒=+- 配方得,22||()3AB a b ab =+-, 又()2a b ab + 2, 222231()3()()()44a b ab a b a b a b ∴+-+-+=+得到1||()2AB a b +. ∴||1||MN AB ,即||||MN AB 的最大值为1. 故答案为:116.抛物线22(0)y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足90AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为. 【解答】解:设||AF a =,||BF b =, 由抛物线定义,得||||AF AQ =,||||BF BP = 在梯形ABPQ 中,2||||||MN AQ BP a b ∴=+=+. 由余弦定理得,22222||2cos90AB a b ab a b =+-︒=+,配方得,22||()2AB a b ab =+-, 又()2a b ab +2, 222211()2()()()22a b ab a b a b a b ∴+-+-+=+得到2||()2AB a b +.∴||22||MN AB ,即||||MN AB 的最大值为.17.已知1F 、2F 分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线,则2||AF = 6 .【解答】解:不妨设A 在双曲线的右支上AM 为12F AF ∠的平分线∴1122||||82||||4AF F M AF MF === 又12||||26AF AF a -== 解得2||6AF = 故答案为618.如图,从椭圆的一个焦点1F 发出的光线射到椭圆上的点P ,反射后光线经过椭圆的另一个焦点2F ,事实上,点0(P x ,0)y 处的切线00221xx yy a b+=垂直于12F PF ∠的角平分线.已知椭圆22:143x y C +=的两个焦点是1F ,2F ,点P 是椭圆上除长轴端点外的任意一点,12F PF ∠的角平分线PT 交椭圆C 的长轴于点(,0)T t ,则t 的取值范围是 11(,)22- .【解答】解:由题意知,椭圆C 在点0(P x ,0)y 处的切线方程为00143xx yy +=,且0(2,2)x ∈-, ∴切线的斜率为034x y -,而12F PF ∠的角平分线的斜率为0y x t-, 又切线垂直于12F PF ∠的角平分线, 0000314x y y x t ∴-⋅=--,即011(42t x =∈-,1)2. 故答案为:1(2-,1)2.四.解答题(共8小题)19.已知椭圆2222:1(0)x y E a b a b+=>>的左右焦点分别为:1(2,0)F -,2(2,0)F ,P 为椭圆E上除长轴端点外任意一点,△12PF F 周长为12. (1)求椭圆E 的方程;(2)作12F PF ∠的角平分线,与x 轴交于点(,0)Q m ,求实数m 的取值范围.【解答】解:(1)椭圆2222:1(0)x y E a b a b+=>>的左右焦点分别为:1(2,0)F -,2(2,0)F ,2c ∴=,△12PF F 周长为12, 21248a ∴=-=,4a ∴=,则b =∴椭圆E 的方程为2211612x y +=.(2)在△12PF F 中,1||(,)PF a c a c ∈-+,即1||(2,6)PF ∈, PQ 为12F PF ∠的角平分线,∴1212||||||||QF QF PF PF =, 由合比性质得12121212||||||||21||||||||22QF QF QF QF c PF PF PF PF a +====+, 即111||||(1,3)2QF PF =∈, 1||(2)2QF m m =--=+,2(1,3)m ∴+∈, (1,1)m ∴∈-.20.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于该椭圆的另一个焦点2F 上.椭圆有光学性质:从一个焦点出发的光线,经过椭圆面反射后经过另一个焦点,即椭圆上任意一点P 处的切线与直线1PF 、2PF 的夹角相等.已知12BC F F ⊥,垂足为1F ,1||3F B m =,12||4F F cm =,以12F F 所在直线为x 轴,线段12F F 的垂直平分线为y 轴,建立如图的平面直角坐标系. (1)求截口BAC 所在椭圆C 的方程;(2)点P 为椭圆C 上除长轴端点和短轴端点外的任意一点.①是否存在m ,使得P 到2F 和P 到直线x m =的距离之比为定值,如果存在,求出的m 值,如果不存在,请说明理由;②若12F PF ∠的角平分线PQ 交y 轴于点Q ,设直线PQ 的斜率为k ,直线1PF 、2PF 的斜率分别为1k ,2k ,请问21k kk k +是否为定值,若是,求出这个定值,若不是,请说明理由.【解答】解:(1)设所求椭圆方程为22221x y a b+=,则2||5F B =, 由椭圆的性质:12||||2BF BF a +=,所以12||||1(35)422BF BF a +==+=,b ===所以椭圆的方程为2211612x y +=.(2)由椭圆的方程为2211612x y +=,则1(2,0)F -,2(2,0)F .①存在直线8x =,使得P 到2F 和P 到直线x m =的距离之比为定值. 设椭圆上的点0(P x ,0)y ,则2||PF P 到直线x m =的距离0||d m x =-,所以20||PF d = 所以,当8m =时,2||12PF d =(定值). 即存在8m =,使得P 到2F 和P 到直线8x =的距离之比为定值12. ②设椭圆上的点0(P x ,0)y ,则001200,22y y k k x x ==+-, 又椭圆2211612x y +=在点0(P x ,0)y 处的切线方程为0011612x x y y+=,证明如下:对于椭圆2211612x y +=,当0y >,y =y '=所以椭圆2211612x y +=在0(P x ,0)y处的切线方程为00)y y x x -=-,又由220011612x y +=,可以整理切线方程为:000003)()4x y y x x x x y -=-=--, 即切线方程为00004()3()y y y x x x -=--,即220000344348x x y y y x +=+=,也即0011612x x y y+=.所以椭圆2211612x y +=在点0(P x ,0)y 处的切线方程为0011612x x y y+=,同理可证:当0y <,椭圆2211612x y +=在点0(P x ,0)y 处的切线方程为0011612x x y y+=,综述:椭圆2211612x y +=在点0(P x ,0)y 处的切线方程为0011612x x y y+=,所以在点0(P x ,0)y 处的切线l 的斜率为034x y -, 又由光学性质可知:直线PQ l ⊥,所以00314x k y -⋅=-,则0043yk x =. 所以0001000424(2)33y x x k k x y x ++=⋅=, 0002000424(2)33y x x k k x y x --=⋅=, 那么0012004(2)4(2)8333x x k k k k x x +-+=+=. 21.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>与直线:()l x m m R =∈,四点(3,1)-,(-,0),(3,1)-,(中有三个点在椭圆C 上,剩余一个点在直线l 上. ()I 求椭圆C 的方程;(Ⅱ)若动点P 在直线l 上,过P 作直线交椭圆C 于M ,N 两点,使得||||PM PN =,再过P 作直线l MN '⊥.证明直线l '恒过定点,并求出该定点的坐标.【解答】()I 解:由题意有3个点在椭圆C 上,根据椭圆的对称性,则点(3,1)-,(3,1)-一定在椭圆C 上, 即22911a b+=①,⋯(2分)若点(-0)在椭圆C上,则点(-,0)必为C 的左顶点,而3>,则点(-0)一定不在椭圆C 上,故点(C上,点(-,0)在直线l 上,⋯(4分)所以22331a b+=②, 联立①②可解得212a =,24b =,所以椭圆C 的方程为221124x y +=; ⋯(6分)(Ⅱ)证明:由()I 可得直线l的方程为x =-设(P -0)y,0(y ∈, 当00y ≠时,设1(M x ,1)y 、N 2(x ,2)y ,显然12x x ≠, 又PM PN =,即P 为线段MN 的中点,M ,N 代入椭圆方程相减可得直线MN⋯(10分) 又l MN '⊥,所以直线l '的方程为0y y x -=+,⋯(13分)即y x =, 显然l '恒过定点(,0),⋯(15分) 当00y =时,直线MN即x =-l '为x轴亦过点(,0); 综上所述,l '恒过定点(3-,0). ⋯(16分) 22.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为1F ,2F ,上顶点为B .Q 为抛物线224y x =的焦点,且10F B QB ⋅=,12120F F QF += (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过定点(0,4)P 的直线l 与椭圆C 交于M ,N 两点(M 在P ,N 之间),设直线l 的斜率为(0)k k >,在x 轴上是否存在点(,0)A m ,使得以AM ,AN 为邻边的平行四边形为菱形?若存在,求出实数m 的取值范围;若不存在,请说明理由.【解答】解:(Ⅰ)由已知(6,0)Q ,1F B QB ⊥, 1||46QF c c ==+,所以2c =.⋯(1分)在Rt △1F BQ 中,2F 为线段1F Q 的中点, 故2||24BF c ==,所以4a =.⋯(2分)于是椭圆C 的标准方程为2211612x y +=.(Ⅱ)设:4(0)l y kx k =+>,1(M x ,1)y ,2(N x ,2)y ,取MN 的中点为0(E x ,0)y . 假设存在点(,0)A m ,使得以AM ,AN 为邻边的平行四边形为菱形,则AE MN ⊥. 联立22224(43)3216011612y kx k x kx x y =+⎧⎪⇒+++=⎨+=⎪⎩△102k >⇒>. 1202232164343k k x x x k k --+=∴=++,00212443y kx k =+=+. 因为AE MN ⊥,所以1kAE k=-. 2221211644()34343434k k m m k k k k k k=-⨯--⇒=-=-++++.12k >,∴31443,34k k k k+∈+所以[m ∈. 23.在①离心率12e =,②椭圆C过点3(1,)2,③△12PF F中任选一个,补充在下面(横线处)问题中,解决下面两个问题.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、F ,过1F 且斜率为k 的直线l 交椭圆于P 、Q 两点,已知椭圆C的短轴长为_____. (1)求椭圆C 的方程;(2)若线段PQ 的中垂线与x 轴交于点N ,求证:1||||PQ NF 为定值. 【解答】解:(1)选择①离心率12e =,可得12c e a ==,2b =,即b , 解得2a =,1c =,即有椭圆的方程为22143x y +=;选②椭圆C 过点3(1,)2,即有221914a b +=,又2b =,即b =2a =,即有椭圆的方程为22143x y +=;选③△12PF F可得P 位于短轴的端点时,取得最大值,且为1232c b =,即为bc=2b =,即b =,1c =,2a ==,即有椭圆的方程为22143x y +=;(2)证明:设直线l 的方程为(1)y k x =+,联立椭圆方程可得2222(34)84120k x k x k +++-=,设1(P x ,1)y ,2(Q x ,2)y ,可得2122834k x x k +=-+,212241234k x x k -=+,可得4222221212222264164812(1)||()41(34)3434k k k PQ x x x x kk k k -+=+-=+-=+++,设PQ 的中点为(,)H t s ,可得21224234x x k t k +==-+,2334ks k =+, 由题意可得2223134434HNN kk k k k x k +==---+,解得2234N k x k =-+, 可得221223(1)|||1|3434k k NF k k+=-+=++, 可得1||4||PQ NF =,即为定值.24.已知A ,B ,C 是椭圆22:14x W y +=上的三个点,O 是坐标原点.(Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 【解答】解:()I 四边形OABC 为菱形,B 是椭圆的右顶点(2,0)∴直线AC 是BO 的垂直平分线,可得AC 方程为1x =设(1,)A t ,得22114t +=,解之得t =(舍负)A ∴的坐标为,同理可得C 的坐标为(1,因此,||AC =,可得菱形OABC 的面积为1||||32S AC BO == ()II 四边形OABC 为菱形,||||OA OC ∴=,设||||(1)OA OC r r ==>,得A 、C 两点是圆222x y r +=与椭圆22:14x W y +=的公共点,解之得22314x r =-设A 、C 两点横坐标分别为1x 、2x ,可得A 、C 两点的横坐标满足 21231x x r ==-,或2131x r -且2231x r =-,①当2121x x r ==-时,可得若四边形OABC 为菱形,则B 点必定是右顶点(2,0);②若2131x r -且2231x r =-,则120x x +=,可得AC 的中点必定是原点O ,因此A 、O 、C 共线,可得不存在满足条件的菱形OABC 综上所述,可得当点B 不是W 的顶点时,四边形OABC 不可能为菱形.25.已知过抛物线2:2(0)C y px p =>的焦点,斜率为1(A x ,1)y 和2(B x ,212)()y x x <两点,且9||2AB =.(1)求抛物线C 的方程; (2)若抛物线C 的准线为l ,焦点为F ,点P 为直线:20m x y +-=上的动点,且点P 的横坐标为a ,试讨论当a 取不同的值时,圆心在抛物线C 上,与直线l 相切,且过点P 的圆的个数.【解答】解:(1)抛物线22y px =的焦点(2p F ,0),准线方程为2px =-∴直线AB 的方程为)2py x =-, 代入22y px =可得2281020x px p -+= 1254x x p ∴+=, 由抛物线的定义可知,1299||||||42AB AF BF x x p p =+=++==, 2p ∴=,∴抛物线C 的方程为24y x =;(2)设(,2)P a a -,则过P 与直线:20m x y +-=垂直的直线方程为22y x a =+-, 与24y x =联立,可得2244840x ax a a -+-+=,∴△22164(484)3216a a a a =--+=-, ∴△0>,12a >,满足条件的圆的个数是2个;△0=,12a =,满足条件的圆的个数是1个;△0<,12a <,满足条件的圆的个数是0个. 26.设抛物线2:4C y x =的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【解答】解:(1)方法一:抛物线2:4C y x =的焦点为(1,0)F , 设直线AB 的方程为:(1)y k x =-,设1(A x ,1)y ,2(B x ,2)y ,则2(1)4y k x y x =-⎧⎨=⎩,整理得:22222(2)0k x k x k -++=,则21222(2)k x x k ++=,121x x =, 由21222(2)||28k AB x x p k+=++=+=,解得:21k =,则1k =, ∴直线l 的方程1y x =-;方法二:抛物线2:4C y x =的焦点为(1,0)F ,设直线AB 的倾斜角为θ,由抛物线的弦长公式2224||8p AB sin sin θθ===,解得:21sin 2θ=,4πθ∴=,则直线的斜率1k =,∴直线l 的方程1y x =-;(2)由(1)可得AB 的中点坐标为(3,2)D ,则直线AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+,设所求圆的圆心坐标为0(x ,0)y ,则00220005(1)(1)162y x y x x =-+⎧⎪⎨-++=+⎪⎩, 解得:0032x y =⎧⎨=⎩或00116x y =⎧⎨=-⎩,因此,所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.。
题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
2021年高考数学理试题分类汇编:圆锥曲线(含答案)2021年高考数学理试题分类汇编——圆锥曲线一、选择题1.【2021年四川高考】设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,那么直线OM的斜率的最大值为?答案】C2.【2021年天津高考】双曲线x^2/a^2-y^2/b^2=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,那么双曲线的方程为?答案】D3.【2021年全国I高考】方程x^2/4-y^2/n^2=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是?答案】A4.【2021年全国I高考】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点,|AB|=42,|DE|=25,那么C的焦点到准线的距离为?答案】B5.【2021年全国II高考】圆x+y-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,那么a=?答案】A6.【2021年全国II高考】圆F_1,F_2是双曲线E: x^2/4-y^2/9=1的左、右焦点,点M在E上,MF_1与x轴垂直,F_1F_2=b/a*sin∠MF_1F_2,那么E的离心率为?答案】A7.【2021年全国III高考】O为坐标原点,F是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左焦点,A、B分别为C的左、右顶点。
P为C上一点,且PF⊥x轴。
过点A的直线l与线段PF交于点M,与y轴交于点E。
假设直线BM经过OE的中点,那么C的离心率为?答案】A8.【2021年浙江高考】椭圆C_1: x^2/4+y^2/m^2=1(m>1)与双曲线C_2: x^2/4-y^2/n^2=1(n>0)的焦点重合,e_1,e_2分别为C_1,C_2的离心率,且e_1>e_2,那么m、n的大小关系是?答案】m>n2y-1由AN·BM = (x-a)(y-b)(x+c)(y+c) = (x+c)(y+c)得证。
直线与圆锥曲线的位置关系第一部分真题分类1.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB =.则双曲线的离心率为()AB C .2D .3【答案】A【解析】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22b AB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.2.(2021·全国高考真题(文))已知12,F F 为椭圆C :221164x y +=的两个焦点,P ,Q 为C上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.3.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>.(1)证明:a =;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥.①求直线l 的方程;②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【解析】(1)3c e a =====,3b a ∴=,因此,a =;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝⎭在椭圆C的内部时,2229331010b ⎛⎫⎛⎫+⋅-< ⎪ ⎪ ⎪⎝⎭⎝⎭,可得10b >.设点()11,P x y 、()22,Q x y,则12129210210x x y y +⎧=⎪⎪⎨+⎪=-⎪⎩,所以,1212y y x x +=+由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=,所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝,所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝⎭,即y =所以,直线l0y -=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->,由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥ ,而()11,OP x y = ,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.4.(2021·天津高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.【答案】(1)2215x y +=;(2)0x y -=.【解析】(1)易知点(),0F c 、()0,B b,故BF a ===因为椭圆的离心率为c e a ==2c =,1b ==,因此,椭圆的方程为2215x y +=;(2)设点()00,M x y 为椭圆2215xy +=上一点,先证明直线MN 的方程为0015x xy y +=,联立00221515x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 并整理得220020x x x x -+=,2200440x x ∆=-=,因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.在直线MN 的方程中,令0x =,可得01y y =,由题意可知00y >,即点010,N y ⎛⎫⎪⎝⎭,直线BF 的斜率为12BF b k c =-=-,所以,直线PN 的方程为012y x y =+,在直线PN 的方程中,令0y =,可得012x y =-,即点01,02P y ⎛⎫-⎪⎝⎭,因为//MP BF ,则MPBF k k =,即20000002112122y y x y x y ==-++,整理可得()20050x y +=,所以,005x y =-,因为222000615x y y +==,00y ∴>,故06y =,06x =-,所以,直线l的方程为166x y +=,即0x y -=.5.(2021·全国高考真题)已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F ,且离心率为3.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN .【答案】(1)2213x y +=;(2)证明见解析.【解析】(1)由题意,椭圆半焦距c =3c e a ==,所以a 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意;当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F三点共线,可设直线(:MN y k x =-即0kx y -=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212,324x x x x +=⋅=,所以MN =所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=,由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=,所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==213k=+=化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩,所以直线:MN y x =y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立;所以M ,N,F 三点共线的充要条件是||MN =6.(2021·全国高考真题)在平面直角坐标系xOy 中,已知点()10F、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0.【解析】因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t ⎛⎫⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,即1112y k x t k =+-,联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+= ⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >.由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-,所以,()()()()22122121121122112111111222416t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭,设直线PQ 的斜率为2k ,同理可得()()2222212116tk TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=.因此,直线AB 与直线PQ 的斜率之和为0.7.(2021·全国高考真题(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.【答案】(1)2p =;(2)【解析】(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=,由韦达定理可得1202x x x +=,1204x x y =,所以,AB ==,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅==-△,()()2222000000041441215621x y y y y y y -=-+-=---=-++ ,由已知可得053y -≤≤-,所以,当05y =-时,PAB△的面积取最大值321202⨯=8.(2020·海南高考真题)已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18.【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y .当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=,解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y+=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=,直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:5514d ==+,由两点之间距离公式可得22||(24)335AM ++=.所以△AMN 的面积的最大值:1125351825⨯.9.(2020·江苏高考真题)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭.【解析】(1)∵椭圆E 的方程为22143x y +=∴()11,0F -,()21,0F 由椭圆定义可得:124AF AF +=.∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥∴31,2A ⎛⎫⎪⎝⎭∵准线方程为4x =∴()4,QQ y ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫⎪⎝⎭,()11,0F -∴直线1AF 的方程为()314y x =+∵点O 到直线AB 的距离为35,213S S =∴2113133252S S AB AB d==⨯⨯⨯=⋅∴95d =∴113439x y -+=①∵2211143x y +=②∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩.∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭.第二部分模拟训练一、单选题1.已知抛物线26y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点,且12FA FB ⋅=,则AB =()A .6B .7C .8D .9【答案】C【解析】由26y x =得3p =,所以3(,0)2F ,准线为32x =-,设直线3:2AB x ty =+,联立2326x ty y x⎧=+⎪⎨⎪=⎩,消去x 并整理得2690y ty --=,设1122(,),(,)A x y B x y ,则126y y t +=,129y y =-,所以21212()363x x t y y t +=++=+,222121212()966364y y y y x x =⨯==,因为13||2AF x =+,23||2BF x =+,12FA FB ⋅=,所以1233()()1222x x ++=,所以()1212391224x x x x +++=,所以()1293912424x x +++=,所以125x x +=,所以121233||||||3822AB AF BF x x x x =+=+++=++=.故选:C2.已知过抛物线2y =焦点F 的直线与抛物线交于A ,B 两点,且2AF FB =,则AOB (O 为坐标原点)的面积为()A .32B.2C .3D.【答案】D【解析】由题意,抛物线2y =的焦点坐标为F ,设直线AB为x my =,()11,A x y ,()22,B x y ,因为2AF FB =,可得122y y =-,由2y x my ⎧=⎪⎨=+⎪⎩280y --=,所以128y y =-,又由121282y y y y =-⎧⎨=-⎩,可得224y =,解得22y =-或22y =,当22y =-时,14y =,可得1211||622AOB S OF y y ∆=⨯⨯-==;当22y =时,14y =-,可得1211||622AOB S OF y y ∆=⨯⨯-==.故选:D.3.已知抛物线()2:20C y px p =>的焦点为F ,直线(2)y k x =+与抛物线C 交于点()1,2A ,B ,则FB =()A .3B .4C .5D .6【答案】C【解析】由点()1,2A 在抛物线C 上得2p =,设2,4t B t ⎛⎫ ⎪⎝⎭,由直线过定点()2,0-得()()221224tk t==----,解得4t =(舍去2),()4,4B ,所以||452pFB =+=.故选:C .4.已知点()15,0F -,()25,0F .设点P 满足126PF PF -=,且12MF =,21NF =,则PM PN -的最大值为()A .7B .8C .9D .10【答案】C【解析】解:因为12610PF PF -=<,所以点P 在以1F ,2F 为焦点,实轴长为6,焦距为10的双曲线的右支上,则双曲线的方程为221916x y -=.由题意知M 在圆()221:54F x y ++=上,N 在圆()222:51F x y -+=上,如图所示,12PM PF ≤+,21PN PF ≥-,则()()12122139PM PN PF PF PF PF -≤+--=-+=.当M 是1PF 延长线与圆1F 的交点,N 是2PF 与圆2F 的交点时取等号.故选:C .5.已知双曲线C 的方程为2214y x -=,点P ,Q 分别在双曲线的左支和右支上,则直线PQ 的斜率的取值范围是()A .()2,2-B .11,22⎛⎫-⎪⎝⎭C .()(),22,-∞-+∞ D .11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A【解析】由双曲线的方程2214y x -=可得其渐近线方程为2y x =±,故当点P ,Q 分别在双曲线的左支和右支上时,直线PQ 的斜率的取值范围是()2,2-.故选:A.6.已知F 是抛物线()2:20C y px p =>的焦点,M 是抛物线C 上一点,MF 的延长线交y 轴于点N .若:2:1MF NF =,2NF =,则抛物线C 的方程为()A .2y x =B .24y x =C .28y x =D .216y x=【答案】B【解析】由题意,抛物线()2:20C y px p =>,可得焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,作MA 垂直于y 轴交y 轴于点A ,因为:2:1MF NF =,2NF =,所以F 为线段MN 的三等分点,且24MF NF ==,由NFO NMA △△∽,得13OF MA =,即332p MA OF ==,所以32422p pMF p =+==,所以抛物线C 的方程为24y x =.故选:B.二、填空题7.过抛物线22y px =(0p >)的焦点作与抛物线对称轴垂直的直线交抛物线于A 、B 两点,且||4AB =,则p =___________.【答案】2【解析】设抛物线的焦点坐标为,02p F ⎛⎫⎪⎝⎭,由条件可知2A B F p x x x ===,所以222A B p pAB AF BF x x p =+=+++=,又AB 4=,所以2p =,故答案为:2.8.已知抛物线C :y 2=x ,过C 的焦点的直线与C 交于A ,B 两点.弦AB 长为2,则线段AB 的中垂线与x 轴交点的横坐标为__________.【答案】54【解析】抛物线的焦点为1,04⎛⎫⎪⎝⎭,则可设直线AB 为:()104x ky k =+≠,联立2y x =,消x 得,2104y ky --=,设()()1122,,,A x y B x y ,12y y k +=,212121111122442AB x x ky ky k ⎛⎫⎛⎫=++=++++=+= ⎪ ⎪⎝⎭⎝⎭得1k =±,当1k =时,得12122y y +=,所以AB 中点坐标为31,42⎛⎫ ⎪⎝⎭,则AB 的中垂线方程为1324y x ⎛⎫-=-- ⎪⎝⎭,则与x 轴的交点的横坐标为54;同理,当1k =-时,线段AB 的中垂线与x 轴交点的横坐标为54.故答案为:549.已知双曲线()222210,0x y a b a b-=>>的右顶点为A ,若以点A 为圆心、双曲线的实半轴长为半径的圆与双曲线的一条渐近线交于点B ,与x 轴正半轴交于点D ,且线段BD 交双曲线于点C ,3DC CB =,则双曲线的离心率是______.【解析】由题意知(),0A a 、()2,0D a ,以点A 为圆心、双曲线的实半轴长为半径的圆的方程为()222x a y a -+=.不妨设点B 在第一象限,联立()2220x a y a b y x a x ⎧-+=⎪⎪=⎨⎪>⎪⎩,解得322222a x ca by c ⎧=⎪⎪⎨⎪=⎪⎩,即点322222,a a b B cc ⎛⎫⎪⎝⎭,设点(),C m n ,()2,DC m a n =- ,322222,a a bCB m n c c ⎛⎫=-- ⎪⎝⎭ ,可得322222323a m a m c a b n n c ⎧⎛⎫-=-⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩,解得2231232a m e bn e ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎪=⎪⎩,根据点C 在双曲线()222210,0x y a b a b -=>>上,得22223314e e ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,得22e =,所以,e =..10.已知椭圆()222210x y a b a b+=>>右顶点为()2,0A ,上顶点为B ,该椭圆上一点P 与A 的连线的斜率114k =-,中点为E ,记OE 的斜率为OE k ,且满足140OE k k +=.若C 、D 分别是x 轴、y 轴负半轴上的动点,且四边形ABCD 的面积为2,则三角形COD 面积的最大值是______.【答案】3-【解析】解:设()11,P x y ,()22,A x y ,PA 中点()00,E x y ,则有2211221x y a b +=,2222221x y a b+=,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=,即2121221212y y y y b x x x x a+-⋅=-+-,则212OEb k k a⋅=-,由()2,0A 为椭圆右顶点,所以2a =,又114k =-,140OE k k +=,得到1OE k =,1b =.设(),0C m -,()0,D n -,0m >,0n >,则由四边形ABCD 的面积为2,又B 为上顶点,则()()12122m n ++=,即22mn m n ++=,由基本不等式得2mn ≥+2≤,所以三角形COD 的面积(2112322S mn =≤=-,当且仅当2m n =,即2m =-,1n =时取等号.故答案为:3-。
专题4、圆锥曲线与外心问题:从近几年圆锥曲线的命题风格看,既注重知识又注重能力,既突出圆锥曲线的本质特征。
而现在圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题。
“四心”问题进入圆锥曲线,让我们更是耳目一新。
因此在高考数学复习中,通过让学生研究三角形的“四心”与圆锥曲线的结合问题,快速提高学生的数学解题能力,增强学生的信心,备战高考.三角形的外心:三角形三条垂直平分线的交点 知识储备:(1)、O 是ABC ∆的外心||||||==⇔(或222OC OB OA ==);(2)、若点O 是ABC △的外心,则()()()OA OB AB OB OC BC OA OC AC +⋅=+⋅=+⋅=0. (3)、若O 是ABC ∆的外心,则sin 2sin 2B sin 02A OA OB C OC ⋅+⋅+⋅=; (4)、多心组合:ABC ∆的外心O 、重心G 、垂心H 共线,即∥OH 经典例题例1.已知坐标平面xOy 中,点1F ,2F 分别为双曲线222:1x C y a-=(0a >)的左、右焦点,点M 在双曲线C 的左支上,2MF 与双曲线C 的一条渐近线交于点D ,且D 为2MF 的中点,点I 为2OMF △的外心,若O 、I、D 三点共线,则双曲线C 的离心率为( ) AB .3C D .5【答案】C【分析】由题意得:直线OD 垂直平分2MF ,设点(),M m n ,()2,0F c ,则,22m c n D +⎛⎫⎪⎝⎭,可得方程组:122na m c n m c a ⎧=-⎪⎪-⎨+⎪=⋅⎪⎩,求得212,a a M c c ⎛⎫- ⎪⎝⎭,将2222,a c a M c c ⎛⎫- ⎪⎝⎭代入双曲线方程得()2222222241a c a a c c--=,化简可得:e =【详解】不妨设点M 在第二象限,设(,)M m n ,2(,0)F c ,由D 为2MF 的中点,O 、I 、D 三点共线知直线OD 垂直平分2MF ,则:1OD y x a=, 故有n a m c =--,且1122m c n a +⋅=⋅,解得21a m c-=,2n a c =, 将212,a a M c c ⎛⎫- ⎪⎝⎭,即2222,a c a c c ⎛⎫- ⎪⎝⎭,代入双曲线的方程可得()2222222241a c a a c c --=,化简可得225c a =,即e =M 在第三象限时,同理可得e =故选:C.【点睛】本题主要考查双曲线的标准方程,双曲线的简单性质的应用,运用平面几何的知识分析出 直线OD 垂直平分2MF ,并用a c ,表示出点M 的坐标是解决此题的难点,属于中档题.例2.设(),0F c 为双曲线2222:1(0,0)x y E a b a b-=>>的右焦点,以F 为圆心,b 为半径的圆与双曲线在第一象限的交点为P ,线段FP 的中点为D ,∆POF 的外心为I ,且满足()0OD OI λλ=≠,则双曲线E 的离心率为( )A B C .2D 【答案】D【分析】先由()0OD OI λλ=≠可确定O 、D 、I 三点共线,则根据外心的性质可得OD PF ⊥,再由点O 为焦点的中点,根据中位线性质可得//PF OD ',则PF PF '⊥,进而在Rt PFF '中利用勾股定理求解. 【详解】由题,因为()0OD OI λλ=≠,所以O 、D 、I 三点共线,因为点D 为线段FP 的中点,∆POF 的外心为I ,所以DI PF ⊥,即OD PF ⊥, 设双曲线的左焦点为(),0F c '-,则点O 为线段F F '的中点,则在PFF '中,//PF OD ',即PF PF '⊥,所以PFF '是直角三角形,所以222F F F P PF ''=+,因为PF b =,由双曲线定义可得2PF PF a '-=,所以2PF a b '=+,则()()22222c a b b =++,因为222c a b =+,整理可得2b a =,所以c =,则ce a==,故选:D 【点睛】本题考查求双曲线的离心率,考查双曲线的定义的应用.例3.(2020·四川高三月考)已知点1(,0)F c -,2(,0)(0)F c c >是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 是这个椭圆上位于x 轴上方的点,点G 是12PF F ∆的外心,若存在实数λ,使得120GF GF GP λ++=,则当12PF F ∆的面积为8时,a 的最小值为( )A .4B .C.D .2【答案】A【解析】由于外心在12F F 的垂直平分线上,故外心在y 轴上,而12GF GF +方向朝着y 轴的负半轴,故P 点位于椭圆的上顶点,此时三角形面积为128,82c b bc ⋅⋅==.所以4a =≥=,故选A . 【点睛】本小题主要考查椭圆的基本性质,考查与焦点三角形有关的概念,考查三角形外心的几何性质,考查向量运算的几何意义.本题的突破口在如何确定G 点的位置.首先根据G 点是12PF F ∆的外心,外心是三角形各边垂直平分线的交点,再结合向量运算的几何意义可以判断出G 点恰好就是椭圆上顶点.例4.已知椭圆22116x y m +=和双曲线221412x y m-=-,其中012m <<,若两者图像在第二象限的交点为A ,椭圆的左右焦点分别为B 、C ,T 为△ABC 的外心,则•AT BC 的值为_____. 【答案】16.【分析】由已知可得两曲线焦点相同,设(,0),16B c c m -=-,利用椭圆和双曲线的定义求出||AB ,用利用两点间的距离公式求出A 点的横坐标,因为O 为BC 中点,△ABC 的外心T 在y 轴上,将AT OT OA =-,代入所求式,即可求解.【详解】已知椭圆22116x y m +=和双曲线221412x y m-=-,焦距相等所以焦点相同,设(,0),(,0),B c C c c -=A 为两曲线在第二象限的交点,||||AB AC <,84AB AC AB AC ⎧+=⎪⎨-=-⎪⎩,||2AB =, 设000(,),42A x y x -<<-,220016m y m x =-,||AB ==0424c x ===+=,08x c∴=-,因为O 为BC 中点,△ABC 的外心T 在y 轴上,0OT BC ⋅=,08()(,)(2,0•)16AT B OT OA BC OA BC y c cC =-⋅=-⋅=--⋅=【点睛】本题考查求椭圆与双曲线交点的坐标,考查向量数量积运算,考查计算求解能力,属于中档题.例5.已知点12F F ,分别为双曲线()222210,0x y C a b a b-=>>:的左、右焦点,点A ,B 在C 的右支上,且点2F 恰好为1F AB 的外心,若11()0BF BA AF +⋅=,则C 的离心率为__________.【分析】取1AF 的中点为C ,连接BC 、2AF 、2BF ,由垂直向量的数量积关系推出1BC AF ⊥,再利用双曲线的定义求出1122AF BF a c ==+即可推出1ABF 为等边三角形,求出BC ,在1CBF 中利用勾股定理列出关于a 、c 的齐次式即可求解离心率.【详解】取1AF 的中点为C ,连接BC 、2AF 、2BF ,如图所示:因为1111()02BF BA AF BC AF +⋅=⋅=,所以1BC AF ⊥, 又C 为1AF 的中点,所以1ABF 为等腰三角形且1BF BA =,因为点2F 恰好为1F AB 的外心,所以点2F 在直线BC 上,且22122AF BF F F c ===, 由双曲线的定义知12122AF AF BF BF a -=-=,则1122AF BF a c ==+, 所以1ABF 为等边三角形,则2332BC BF c ==,在1CBF 中,22211CB CF BF +=即()()222922c a c a c ++=+,化简得223660a ac c +-=, 同时除以2a 可得22210e e --=,解得e =(舍去).【点睛】本题考查双曲线的定义及简单几何性质、等边三角形的性质、双曲线离心率的求法,涉及垂直向量的数量积关系、平行四边形法则,属于中档题例6.(2020.广东省高三期末)已知椭圆221164x y +=的下顶点为A ,若直线4x ty =+与椭圆交于不同的两点M 、N ,则当t =_____时,AMN ∆外心的横坐标最大.【答案】2-【分析】由已知可得A 、M 的坐标,求得AM 的垂直平分线方程,联立已知直线方程与椭圆方程,求得MN 的垂直平分线方程,两垂直平分线方程联立求得AMN ∆外心的横坐标,再由导数求最值.【详解】如图,由已知条件可知()0,2A -,不妨设()4,0M ,则AMN ∆外心在AM 的垂直平分线上, 即在直线()122y x +=--,也就是在直线23y x =-+上,联立2241164x ty x y =+⎧⎪⎨+=⎪⎩,得0y =或()2804t y t t =-<+,MN ∴的中点坐标为22164,44t t t ⎛⎫- ⎪++⎝⎭, 则MN 的垂直平分线方程为2241644t y t x t t ⎛⎫+=-- ⎪++⎝⎭,把23y x =-+代入上式,得2364t x t -+=+, 令()2364t g t t -+=+,则()()222344(4)t t g t t -'-=+,由()0g t '=,得2t =+2=-t当2t <-时,()0g t '>,当20t -<<时,()0g t '<.当2=-t ()y g t =取极大值,亦为最大值.故答案为:2- 【点睛】本题考查直线与椭圆位置关系的应用,训练了利用导数求最值,是中等题.例7.(2019年成都七中半期16题)1F ,2F 分别为双曲线22221(,0)x y a b a b-=>的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12-,则该双曲线的离心率为_______ .1+ 【解析】∵120PF PF ⋅=,∴12PF PF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,122PF PF a -=,则()()2222212121224PF PF PF PF PF PF c a ⋅=+--=-,()()2222121212484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =,=,整理得24c a ⎛⎫=+ ⎪⎝⎭1e =. 【点睛】本小题主要考查双曲线的定义,考查向量数量积为零的意义,考查双曲线离心率的求法,考查方程的思想,考查运算求解能力,属于中档题.例8.(2018全国高中数学联赛(湖北预赛))已知点P 的双曲线()222210,0x y a b a b -=>>上,12F F 、为双曲线的两个焦点,且210PF PF ⋅=,则12PF F ∆的内切圆半径r 与外接圆半径R 之比为____.【答案】12- 【解析】由120PF PF ⋅=,知1290PPF ∠=︒.设12,PF m PF n ==, 又122F F c =,则可得()1,22R c r m n c ==+-, 2224m n c +=, ① 2m n a -=. ②设rk R=,则()122r kR kc m n c ===+-,即有()22m n k c +=+. ③由①②③可得()22222248k c a c ++=,所以()22222213122c a k c e -+==-=,解得1k =-.故12PF F ∆的内切圆半径r 与外接圆半径R1- 例9.(2020年河南省质量检测(二)改编)已知椭圆22143x y +=的左、右焦点分别为12,F F ,过2F 的直线l 交椭圆C 于,A B 两点,过A 作x 轴的垂线交椭圆C 与另一点Q (Q 不与,A B 重合).设ABQ ∆的外心为G ,则2ABGF 的值为 .【答案】4【解析】由题意知,直线AB 的斜率存在,且不为0,设直线AB 为1x my =+, 代入椭圆方程得()2234690m y my ++-=. 设()()1122,,,A x y B x y ,则12122269,3434m y y y y m m --+==++, 所以AB 的中点坐标为2243,3434m m m -⎛⎫⎪++⎝⎭,所以()212221213434m AB y y m m +=-=-++. 因为G 是ABQ ∆的外心,所以G 是线段AB 的垂直平分线与线段AQ 的垂直平分线的交点,AB 的垂直平分线方程为22343434m y m x m m ⎛⎫+=-- ⎪++⎝⎭, 令0y =,得2134x m =+,即21,034G m ⎛⎫⎪+⎝⎭,所以222213313434m GF m m +=-=++, 所以()22222121||1234433334m AB m m GF m ++===++,所以2||AB GF 值为4. 【点睛】本题主要考查了椭圆的标准方程,直线与椭圆的位置关系,属于难题.例10(2020年湖北省宜昌市高三调研12题)设(),0F c 为双曲线2222:1(0,0)x y E a b a b-=>>的右焦点,以F 为圆心,b 为半径的圆与双曲线在第一象限的交点为P ,线段FP 的中点为D ,∆POF 的外心为I ,且满足()0OD OI λλ=≠,则双曲线E 的离心率为( )A B C .2D 【答案】D【解析】由题,因为()0OD OI λλ=≠,所以O 、D 、I 三点共线,因为点D 为线段FP 的中点,∆POF 的外心为I ,所以DI PF ⊥,即OD PF ⊥, 设双曲线的左焦点为(),0F c '-,则点O 为线段F F '的中点,则在PFF '中,//PF OD ',即PF PF '⊥,所以PFF '是直角三角形,所以222F F F P PF ''=+,因为PF b =,由双曲线定义可得2PF PF a '-=,所以2PF a b '=+,则()()22222c a b b =++,因为222c a b =+,整理可得2b a =,所以c =,则ce a==,故选:D 【点睛】本题考查求双曲线的离心率,考查双曲线的定义的应用.例11.(2019年衡水中学联考12题)已知坐标平面xOy 中,点1F ,2F 分别为双曲线222:1x C y a-=(0a >)的左、右焦点,点M 在双曲线C 的左支上,2MF 与双曲线C 的一条渐近线交于点D ,且D 为2MF 的中点,点I 为2OMF △的外心,若O 、I 、D 三点共线,则双曲线C 的离心率为( )A B .3C D .5【答案】C【解析】不妨设点M 在第二象限,设(,)M m n ,2(,0)F c ,由D 为2MF 的中点,O 、I 、D 三点共线知直线OD 垂直平分2MF ,则:1OD y x a=, 故有n a m c =--,且1122m c n a +⋅=⋅,解得21a m c-=,2n a c =, 将212,a a M c c ⎛⎫- ⎪⎝⎭,即2222,a c a c c ⎛⎫- ⎪⎝⎭,代入双曲线的方程可得()2222222241a c a a c c--=,化简可得225c a =,即e =当点M 在第三象限时,同理可得e =故选:C.【点睛】本题主要考查双曲线的标准方程,双曲线的简单性质的应用,运用平面几何的知识分析出直线OD 垂直平分2MF ,并用a c ,表示出点M 的坐标是解决此题的难点,属于中档题.例12.(2019云南省曲靖市二模16题)已知斜率为1的直线与抛物线24y x =交于,A B 两点,若OAB ∆的外心为(M O 为坐标原点),则当AB MO最大时,AB =____.【答案】.【解析】由题意知,MO 为OAB 外接圆的半径, 在OAB 中,由正弦定理可知,2sin ABR AOB=∠(R 为OAB 外接圆的半径),当sin 1AOB ∠=,即90AOB ∠=︒时,AB MO取得最大值2.设()11,A x y ,()22,B x y ,易知10y ≠,20y ≠,则12120x x y y +=,得221212016y y y y ⋅+=,即12160y y +=.设直线AB 的方程为y x t =+,即x y t =-,代入24y x =得,2440y y t -+=,则124y y +=,124y y t =,所以4160t +=,解得4t =-.故12AB y =-==.故答案为:【点睛】本题主要考查了正弦定理,直线与抛物线的关系,弦长公式,属于中档题.课后训练:1.(2020·四川棠湖中学高三(理))已知点1(,0)F c -,2(,0)(0)F c c >是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 是这个椭圆上位于x 轴上方的点,点G 是12PF F ∆的外心,若存在实数λ,使得120GF GF GP λ++=,则当12PF F ∆的面积为8时,a 的最小值为__________.【答案】4【分析】根据向量的共线定理,即可求得则P ,G ,O 三点共线,则P 位于上顶点,则bc =8,根据基本不等式的性质,即可求得a 的最小值.【详解】由G 是△PF 1F 2的外心,则G 在y 轴的正半轴上,120GF GF GP λ++=, 则1212()GP GF GF GO λλ=-+=-,则P ,G ,O 三点共线,即P 位于上顶点,则△PF 1F 2的面积S=12×b×2c=bc=8,由a 2=b 2+c 2≥2bc=16,则a ≥4,当且仅当时取等号, ∴a 的最小值为4,故答案为4.【点睛】(1)本题主要考查平面向量的共线定理和基本不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是分析出1212()GP GF GF GO λλ=-+=-,得到P ,G ,O 三点共线,即P 位于上顶点.2.已知点(2,0)A ,B 、C 在y 轴上,且4BC =,则ABC ∆外心的轨迹S 的方程 ; 【答案】24y x =【解析】设ABC ∆外心为G ,且()G x y ,,B (0,)a ,C (0,4)a + 由G 点在BC 的垂直平分线上知2y a =+由|GA|2=|GB|2,得2222(2)()x y x y a -+=+-故2222(2)2x y x -+=+即点G 的轨迹S 为:24y x =3.在平面直角坐标系xOy 中,已知椭圆C 的方程为2212x y +=,设经过点()2,0P 的直线l 交椭圆C 于A ,B 两点,点(),0Q m .设点F 为椭圆C 的左焦点,若点Q 为FAB ∆的外心,则实数m 的值 .【答案】15.【分析】由()()22221221,41,2m x m y x x m x y ⎧+=-+⎪+=⎨+=⎪⎩得,124x x m =-.所以22228821212k k k k -=++,解得218k =,即可求出m 值.【详解】设直线的方程为()2y k x =-,代入椭圆C 的方程,消去y ,得()2222128820kxk x k +-+-=. 因为直线l 交椭圆C 于两点,所以()()()22228412820k k k ∆=--+->,解得22k -<<. 设()11,A x y ,()22,B x y ,则有2122812k x x k +=+,21228212k x x k -=+.设AB 中点为()00,M x y ,则有212024212x x k x k+==+,()0022212k y k x k =-=-+. 当0k ≠时,因为QA QB =,所以OM l ⊥,即22220121412OMkk k k k k mk --+⋅=⋅=--+. 解得22212k m k =+.当0k =时,可得0m =,符合22212k m k =+.因此22212k m k=+. 由()210212m k m ≤=<-,解得102m ≤<.②因为点Q 为FAB ∆的外心,且()1,0F -,所以QA QB QF ==.由()()222221,1,2m x m y x y ⎧+=-+⎪⎨+=⎪⎩消去y ,得2440x mx m --=,所以1x 2x ,也是此方程的两个根. 所以124x x m +=,124x x m =-.又因为2122812k x x k +=+,21228212k x x k -=+,所以22228821212k k k k-=++,解得218k =. 所以2221125k m k ==+. 【点睛】本题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查直线和直线的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.4.设点M 、N 分别是不等边△ABC 的重心与外心,已知(0,1)A 、(0,1)B -,且MN AB λ=. 则动点C 的轨迹E ;【答案】221(0)3x y xy +=≠【分析】设点(,)C x y ,由重心坐标和外心坐标,结合圆的几何性质以及MN AB λ=列方程,化简后求得轨迹E 的方程.【详解】设点(,)C x y ,则△ABC 的重心(,)33x yM ,∵△ABC 是不等边三角形,∴·0.x y ≠ 再设△ABC 的外心(,0)N n . ∵已知MN AB λ=,∴MN ∥AB ,∴3xn =.∵点N 是△ABC 的外心,∴NA NC =3=⎝⎭化简整理得轨迹E 的方程是221(0).3x y xy +=≠∴动点C 的轨迹E 是指焦点在轴上的标准位置的一个椭圆(去掉其顶点).【点睛】本小题主要考查轨迹方程的求法,考查直线和曲线的位置关系,考查向量的坐标运算,考查化归与转化的数学思想方法,属于难题.5.(2019·广西高三期末(理))在直角坐标系xOy 中直线y x 4=+与抛物线C :24x y =交于A ,B 两点.若D 为直线y x 4=+外一点,且ABD 的外心M 在C 上,则M 的坐标为 .【答案】()4,4或()8,16-.【分析】三角形的外心为中垂线的交点,利用中点坐标公式得线段AB 中点N 的坐标,得到线段AB 的中垂线方程,将中垂线方程与抛物线方程联立即可得到外心M.【详解】(1)联立244x yy x ⎧=⎨=+⎩得24160x x --=, 设A(()1122,),,,x y B x y 则124x x +=,1216x x =-.设线段AB 的中点为()00,N x y ,12022x x x +==,0046y x =+=. 则线段AB 的中垂线方程为()62y x -=--,即8y x =-+.联立248x y y x ⎧=⎨=-+⎩得24320x x +-=,解得8x =-或4.从而ABD ∆的外心M 的坐标为()4,4或()8,16-.【点睛】本题考查直线与抛物线的位置关系,将直线方程与抛物线方程联立,其中韦达定理是解题的关键,同时考查向量知识和三角形外心的应用.6.如图,椭圆221:14x C y +=,抛物线22:2(0)C x py p =>,设12,C C 相交于A 、B 两点,O 为坐标原点.若△ABO 的外心在椭圆上,则实数p 的值 ;【答案】76; 【详解】由抛物线、椭圆和圆的对称性可知,△AB 的外心为椭圆的上顶点M (0,1).则有MA =MB =MO =1.设()()000,0B x y x >,则有()2002200220021411x py x y x y ⎧=⎪⎪+=⎨⎪⎪+-=⎩,解得20013x y p ⎧=⎪⎪⎪-+⎪=⎨⎪⎪=⎪⎪⎩.7.(2020·福建高三月考(理))设椭圆22:143x y C +=的右焦点为F ,过F 的直线l 与C 相交于,A B 两点.设过点A 作x 轴的垂线交C 于另一点P ,若M 是PAB △的外心,则ABMF的值为 . 【答案】4【分析】求得AB 的中点坐标为2243,3434t t t -⎛⎫ ⎪++⎝⎭,利用弦长公式求出AB ,根据题意可得AB 的垂直平分线方程22343434t y t x t t ⎛⎫+=-- ⎪++⎝⎭,求出点M 的坐标,进而求出MF ,进而可求解. 【详解】由题意知,直线AB 的斜率存在,且不为0,设直线AB 的方程为1x ty =+,代入22143x y +=得()2234690t y ty ++-=,设()()1112,,,A x y B y y ,则122634t y y t -+=+,122934y y t -=+ 则AB 的中点坐标为2243,3434t t t -⎛⎫ ⎪++⎝⎭所以()212212134t AB y y t +=-==+ 因为M 是PAB △的外心,所以M 是线段AB 的垂直平分线与AP 的垂直平分线的交点,AB 的垂直平分线为22343434t y t x t t ⎛⎫+=-- ⎪++⎝⎭;令0y =,得2134x t =+,即21,034M t ⎛⎫⎪+⎝⎭, 所以,22213413434t MF t t +=-=++()22221211234433334t AB t t MF t ++===++. 【点睛】本题考查了直线与椭圆的位置关系以及椭圆中的定值问题,考查了学生的计算能力,属于中档题. 8.在平面直角坐标系xOy 中,已知圆O :()2220x y rr +=>,点13,22M ⎛⎫-- ⎪⎝⎭,()1,3N --,点A 在圆O :225x y +=上,直线2x =与圆O 交于E ,F 两点(E 点在x 轴上方),点()1,02P m n m ⎛⎫<<⎪⎝⎭是抛物线22y x =上的动点,点Q 为PEF 的外心,则线段OQ 长度的最大值为 ,当线段OQ 长度最大时,则PEF 外接圆的标准方程为 .【答案】OQ 的最大值为3;()2235x y ++=-【分析】由2x =得到E 、F 的坐标,表示出线段PE 的中垂线l ,令0y =,得到PEF 的外心Q 的坐标,由()P m n ,在抛物线22y x =上得22n m =,从而得到()22522m m x m +-=-,再由基本不等式,得到其最大值,确定出Q 点坐标,再求出PEF 外接圆的半径,得到所求圆的方程. 【详解】把2x =代入圆O 的方程得1y =±,所以()2,1E ,()2,1F -, 作出线段PE 的中垂线l ,则PEF 的外心Q 为直线l 与x 轴的交点.直线l 的方程为:122212n m m y x n +-+⎛⎫-=-- ⎪-⎝⎭. 当0y =时,()22522m n x m +-=-. 因为点()P m n ,在抛物线22y x =上,所以22n m = 所以()22522m m x m +-=-. 由102m <<得()225022Q m m x m +-=>-, 所以()22510222m m OQ m m +-⎛⎫=<< ⎪-⎝⎭,()225131233322222m m OQ m m m +-⎛⎫==--++≤-⨯= ⎪--⎝⎭当且仅当322m m-=-时,即2m =-OQ 取到最大值3此时Q 点坐标为()3-,所以PEF 外接圆的半径r QE ==所以PEF 外接圆的标准方程为()2235x y ++=-【点睛】本题考查求动点的轨迹方程,求三角形外接圆的方程,利用基本不等式求最值,属于中档题.9.P 为双曲线()2222:1,0x y C a b a b-=>上一点,12,F F 分别为C 的左、右焦点,212PF F F ⊥,若12PF F ∆外接圆半径与其内切圆半径之比为52,则C 的离心率为( )A B .2C D .2或3【答案】D【解析】不妨设P 为右支上的点,则122PF PF a -=,设双曲线的半焦距为c ,则22b PF a=,212b PF a a =+,又12Rt PF F 外接圆半径为21122b PF a a=+. 12Rt PF F 内切圆的半径为222222-22b b c ac a a a r c a+---===, 因为12PF F ∆外接圆半径与其内切圆半径之比为52,故252=2b aac a +-, 故22560c ac a -+=,所以2c a =或3c a =,即2e =或3e =.故选:D.【点睛】圆锥曲线中的离心率的计算,关键是利用题设条件构建关于,,a b c 的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于,,a b c 的不等式或不等式组.10.(2018上海市高三模拟)已知椭圆22116x y m +=和双曲线221412x y m-=-,其中012m <<,若两者图像在第二象限的交点为A ,椭圆的左右焦点分别为B 、C ,T 为△ABC 的外心,则•AT BC 的值为_____. 【答案】16.【解析】已知椭圆22116x y m +=和双曲线221412x y m-=-,焦距相等所以焦点相同,设(,0),(,0),B c C c c -=A 为两曲线在第二象限的交点,||||AB AC <,84AB AC AB AC ⎧+=⎪⎨-=-⎪⎩,||2AB =,设000(,),42A x y x -<<-,220016m y m x =-,||AB ==0424c x ===+=,08x c∴=-,因为O 为BC 中点,△ABC 的外心T 在y 轴上,0OT BC ⋅=,08()(,)(2,0•)16AT B OT OA BC OA BC y c cC =-⋅=-⋅=--⋅=【点睛】本题考查求椭圆与双曲线交点的坐标,考查向量数量积运算,考查计算求解能力,属于中档题.11. P 为双曲线()2222:10,0x y C a b a b-=>>右支上的一点,12,F F 分别为左、右焦点,212PF F F ⊥,若12PF F ∆的外接圆半径是其内切圆半径的3倍,则双曲线C 的离心率为( )A.3 B.4 C.3或3 D.4或4【答案】C【解析】212PF F F ⊥,∴点P 的坐标为2,b c a ⎛⎫ ⎪⎝⎭22b PF a =,则212b PF a a =+12PF F ∆的外接圆半径21122PF b r a a==+ 其内切圆半径222222b bc a a a r c a +--==- 12PF F ∆的外接圆半径是其内切圆半径的3倍,123r r ∴=,即()232b a c a a+=-化简可得22670c ac a --=即2670e e --=解得3e =±C【点睛】本题主要考查了计算双曲线的离心率,结合题意先计算出外接圆和内切圆的半径,然后结合数量关系求出结果,属于中档题.12.(2018年四川省棠湖中学三诊16题)已知点1(,0)F c -,2(,0)(0)F c c >是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 是这个椭圆上位于x 轴上方的点,点G 是12PF F ∆的外心,若存在实数λ,使得120GF GF GP λ++=,则当12PF F ∆的面积为8时,a 的最小值为__________.【答案】4【解析】由G 是△PF 1F 2的外心,则G 在y 轴的正半轴上,120GF GF GP λ++=,则1212()GP GF GF GO λλ=-+=-,则P ,G ,O 三点共线,即P 位于上顶点,则△PF 1F 2的面积S=12×b×2c=bc=8,由a 2=b2+c 2≥2bc=16,则a ≥4,当且仅当时取等号, ∴a 的最小值为4,故答案为4.【点睛】(1)本题主要考查平面向量的共线定理和基本不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是分析出1212()GP GF GF GO λλ=-+=-,得到P ,G ,O 三点共线,即P位于上顶点.13.F 1,F 2分别为双曲线22221x y a b-=(a ,b >0)的左、右焦点,点P 在双曲线上,满足12PF PF ⋅=0,若△PF1F 2的内切圆半径与外接圆半径之比为13,则该双曲线的离心率为_____. 【答案】2【解析】120PF PF =,12PF PF ∴⊥.∴12PF F ∆的外接圆半径为1212F F c =,∴12PF F ∆的内切圆的半径为3c.设12PF F ∆的内切圆的圆心为M ,过M 作x 轴的垂线MN ,连接1MF ,2MF ,则3cMN =,设1NF m =,2NF n =,则2m n c +=,①不妨设P 在第一象限,由双曲线的定义可知122PF PF m n a -=-=,② 由①②可得m a c =+,n c a =-,12PF PF ⊥,且1MF ,2MF 分别是12PF F ∠,21PF F ∠的角平分线,12214MF F MF F π∴∠+∠=,又121tan 33()MN c c MF F NF m a c ∠===+,2123()MN cMF F NF c a ∠==-, ∴2223()3()119()c c c a c a c c a ++-=--,化简可得2292a c =,故292e =,e ∴=.故答案为:2.【点睛】本题考查了双曲线的性质,直线与圆的位置关系,属于中档题14. 数学家欧拉在1765年提出定理:三角形的外心、重心、垂心,依次在同一条直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称为三角形的欧拉线.已知ABC ∆的顶点)4,0(),0,2(B A ,若其欧拉线方程为02=+-y x ,则顶点C 的坐标是 . 【答案】()4,0-【解析】设(),C m n ,由重心坐标公式得,ABC ∆的重心为24,33m n ++⎛⎫⎪⎝⎭, 代入欧拉线方程得:242033m n++-+=,整理得:40m n -+= ① AB 的中点为()1,2,40202AB k -==--,AB 的中垂线方程为()1212y x -=-,即230x y -+=. 联立23020x y x y -+=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩..ABC ∴∆的外心为()1,1-.则()()22221131m n ∴++-=+,整理得:22228m n m n ++-= ② 联立①②得:4,0m n =-=或0,4m n ==.当0,4m n ==时,B C 重合,舍去.∴顶点C 的坐标是()4,0-. 考点:1新概念问题;2三角形的外心,重心,垂心.15.已知、分别为双曲线的左、右焦点,点在双曲线上,、分别为的重心、内心.若轴,则的外接圆半径______.【答案】5【解析】不妨设在第一象限,,.依题意,,. 由、分别为的重心、内心,轴,得的内切圆半径.1F 2F 22:1412x y C -=P C G I 12F PF △GI x 12F PF △R =()00,P x y 11PF r =22PF r =124r r -=128F F =G I 12F PF GIx 12F PF 013r y =所以. 又.所以. 故,结合,得,.由此得到,.因此.所以的外接圆半径. 16.已知椭圆C :22143x y +=的左、右焦点分别为1F ,2F ,点P 是椭圆上一动点(与左、右顶点不重合),过2F 的直线l 交椭圆C 于,A B 两点,过A 作x 轴的垂线交椭圆C 与另一点Q (Q 不与,A B 重合).设ABQ △的外心为G ,则2||AB GF 的值为 .【答案】【分析】由题意知,直线AB 的斜率存在,且不为0,设直线AB 为1x my =+,代入椭圆方程得()2234690my my ++-=.设()()1122,,,A x y B x y ,利用弦长公式求得||AB ,利用AB 的垂直平分线方程求得G 的坐标,两个都用m 表示,代入2||AB GF 中,即可得答案. 【详解】由题意知,直线AB 的斜率存在,且不为0,设直线AB 为1x my =+, 代入椭圆方程得()2234690m y my ++-=. 设()()1122,,,A x y B x y ,则12122269,3434m y y y y m m --+==++, 所以AB 的中点坐标为2243,3434m m m -⎛⎫⎪++⎝⎭,所以()2122121|||3434m AB y m m +===++. 因为G 是ABQ △的外心,所以G 是线段AB 的垂直平分线与线段AQ 的垂直平分线的交点,AB 的垂直平分线方程为22343434m y m x m m ⎛⎫+=-- ⎪++⎝⎭, 令0y =,得2134x m =+,即21,034G m ⎛⎫⎪+⎝⎭,所以222213313434m GF m m +=-=++ ()()1211221201118223F PF S F P F F F P r r r y =++⋅=++⋅121200142F PF SF F y y =⋅⋅=()1100118423r r y y ++⋅=1216r r +=124r r -=110r =26r =2221122F P F F F P =+212PF F F ⊥12F PF 1152R F P ==所以()22222121||1234433334mAB mmGFm++===++.【点睛】本题考查椭圆方程的求解、离心率、直线与椭圆位置关系中的定值问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将问题转化为关于变量m的表达式,进而求证得到定值.。