21.1一元一次方程
- 格式:ppt
- 大小:3.19 MB
- 文档页数:13
一元一次方程知识点归纳一元一次方程是代数中的基本知识之一,以下是关于一元一次方程的知识点归纳:
1.定义:一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。
2.一般形式:一元一次方程的一般形式为ax + b = c,其中a、
b、c为已知常数,x为未知数。
3.解的概念:解是使等式成立的未知数的值。
对于一元一次方程,解即为能够满足方程的未知数的值。
4.解法:解一元一次方程的常用方法包括移项、合并同类项、化简等步骤,通过逐步变换方程的形式来求解未知数的值。
5.解的性质:一元一次方程通常有唯一解,但也可能无解或有无穷多个解,取决于方程中系数的取值情况。
6.应用:一元一次方程在实际问题中有着广泛的应用,如物理、经济、工程等领域,常用于建模和问题求解。
第二十一章一元二次方程21.1一元二次方程教学目标1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1探究新知根据题意列方程.1.教材第2页问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.2.教材第2页问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?活动3归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得:3x2-3x=5x+10移项合并同类项,得:3x2-8x-10=0其中二次项系数是3,一次项系数是-8,常数项是-10.例2教材第3页例题.例3以-2为根的一元二次方程是()A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.判断下列方程是否为一元二次方程:(1)1-x2=0 (2)2(x2-1)=3y(3)2x2-3x-1=0 (4) x+2=0(5)(x+3)2=(x-3)2 (6)9x2=5-4x解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.21.2解一元二次方程。
一元二次方程解法及其配套练习定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.解法一——直接开方法适用范围:可解部分一元二次方程直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,我们也可以用直接开方法来解方程。
例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=即,所以,方程的两根x1,x2例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.•一年后人均住房面积就应该是10+•10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.例3.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?解: 设x 秒后△PBQ 的面积等于8cm 2 则PB=x ,BQ=2x 依题意,得:x ·2x=8 x 2=8 根据平方根的意义,得x=±即x 1,x 2可以验证,和都是方程x ·2x=8的两根,但是移动时间不能是负值. 所以秒后△PBQ 的面积等于8cm 2.例4.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x ,•那么二月份的营业额就应该是(1+x ),三月份的营业额是在二月份的基础上再增长的,应是(1+x )2. 解:设该公司二、三月份营业额平均增长率为x . 那么1+(1+x )+(1+x )2=3.31 把(1+x )当成一个数,配方得:(1+x+)2=2.56,即(x+)2=2.56 x+=±1.6,即x+=1.6,x+=-1.6方程的根为x 1=10%,x 2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.归纳小结:共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”. 由应用直接开平方法解形如x 2=p (p ≥0),那么x=转化为应用直接开平方法解形如(mx+n )2=p (p ≥0),那么mx+n=,达到降次转化之目的.若p <0则方程无解配套练习题BCAQP 12121232323232一、选择题1.若x 2-4x+p=(x+q )2,那么p 、q 的值分别是( ).A .p=4,q=2B .p=4,q=-2C .p=-4,q=2D .p=-4,q=-2 2.方程3x 2+9=0的根为( ).A .3B .-3C .±3D .无实数根 3.用配方法解方程x 2-x+1=0正确的解法是( ). A .(x-)2=,x=± B .(x-)2=-,原方程无解C .(x-)2=,x 1=x 2=D .(x-)2=1,x 1=,x 2=-二、填空题1.若8x 2-16=0,则x 的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________. 3.如果a 、b +b 2-12b+36=0,那么ab 的值是_______. 三、综合提高题1.解关于x 的方程(x+m )2=n .2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m ),•另三边用木栏围成,木栏长40m .(1)鸡场的面积能达到180m 2吗?能达到200m 吗? (2)鸡场的面积能达到210m 2吗?3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,•并说明你制作的理由吗?解法二——配方法适用范围:可解全部一元二次方程引例:要使一块矩形场地的长比宽多6m ,并且面积为16m 2,场地的长和宽各是多少? 列出方程化简后得:x 2+6x-16=0 x 2+6x-16=0移项→x 2+6x=16两边加(6/2)2使左边配成x 2+2bx+b 2的形式 → x 2+6x+32=16+9左边写成平方形式 → (x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5 解一次方程→x 1=2,x 2= -8可以验证:x 1=2,x 2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m ,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.配方法解一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;2313891331389235923235313(5)变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根.用配方法解一元二次方程小口诀 二次系数化为一 常数要往右边移一次系数一半方两边加上最相当例1.用配方法解下列关于x 的方程 (1)x 2-8x+1=0 (2)x 2-2x-=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上. 解:略例2.如图,在Rt △ACB 中,∠C=90°,AC=8m ,CB=6m ,点P 、Q 同时由A ,B•两点出发分别沿AC 、BC 方向向点C 匀速移动,它们的速度都是1m/s ,•几秒后△PCQ•的面积为Rt △ACB 面积的一半.分析:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半,△PCQ 也是直角三角形.•根据已知列出等式.解:设x 秒后△PCQ 的面积为Rt △ACB 面积的一半. 根据题意,得:(8-x )(6-x )=××8×6 整理,得:x 2-14x+24=0(x-7)2=25即x 1=12,x 2=2x 1=12,x 2=2都是原方程的根,但x 1=12不合题意,舍去. 所以2秒后△PCQ 的面积为Rt △ACB 面积的一半. 例3.解下列方程(1)2x 2+1=3x (2)3x 2-6x+4=0 (3)(1+x )2+2(1+x )-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x 的完全平方.解:略例4.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y ,那么(6x+7)2=y 2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y 则3x+4=y+,x+1=y- 12C A QP1212121212161612121616依题意,得:y 2(y+)(y-)=6 去分母,得:y 2(y+1)(y-1)=72y 2(y 2-1)=72, y 4-y 2=72(y 2-)2= y 2-=±y 2=9或y 2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=- 当y=-3时,6x+7=-3 6x=-10 x=-所以,原方程的根为x 1=-,x 2=-例5. 求证:无论y 取何值时,代数式-3 y 2+8y-6恒小于0.解:略配套练习题一、选择题1.配方法解方程2x 2-x-2=0应把它先变形为( ). A .(x-)2= B .(x-)2=0C .(x-)2=D .(x-)2=2.下列方程中,一定有实数解的是( ).A .x 2+1=0B .(2x+1)2=0C .(2x+1)2+3=0D .(x-a )2=a 3.已知x 2+y 2+z 2-2x+4y-6z+14=0,则x+y+z 的值是( ). A .1 B .2 C .-1 D .-24.将二次三项式x 2-4x+1配方后得( ). A .(x-2)2+3 B .(x-2)2-3 C .(x+2)2+3 D .(x+2)2-3 5.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( ). A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-116.如果mx 2+2(3-2m )x+3m-2=0(m ≠0)的左边是一个关于x 的完全平方式,则m 等于( ).A .1B .-1C .1或9D .-1或9二、填空题1.方程x 2+4x-5=0的解是________.2.代数式的值为0,则x 的值为________.12121616122894121722353235343138923138913109122221x x x ---3.已知(x+y )(x+y+2)-8=0,求x+y 的值,若设x+y=z ,则原方程可变为_______,所以求出z 的值即为x+y 的值,所以x+y 的值为______. 4.如果x 2+4x-5=0,则x=_______.5.无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是_______数. 6.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________. 三、综合提高题1.用配方法解方程.(1)9y 2-18y-4=0 (2)x 22.已知三角形两边长分别为2和4,第三边是方程x 2-4x+3=0的解,求这个三角形的周长. 3.如果x2-4x+y 2+13=0,求(xy )z 的值.4.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元? 5.已知:x 2+4x+y 2-6y+13=0,求的值.6.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.解法三——公式法适用范围:可解全部一元二次方程首先,要通过Δ=b^2-4ac 的根的判别式来判断一元二次方程有几个根 1.当Δ=b^2-4ac<0时 x 无实数根(初中)2.当Δ=b^2-4ac=0时 x 有两个相同的实数根 即x1=x23.当Δ=b^2-4ac>0时 x 有两个不相同的实数根 当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac )}/2a 来求得方程的根求根公式的推导用配方法解方程(1) ax 2-7x+3 =0 (2)a x 2+bx+3=0(3)如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0),试推导它的两个根x 1=,x 2=222x yx y -+2b a-(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+x=- 配方,得:x 2+x+()2=-+()2即(x+)2= ∵4a 2>0,4a2>0, 当b 2-4ac ≥0时≥0∴(x+)2=()2直接开平方,得:x+=± 即x=∴x 1=,x 2=由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a 、b 、c 代入式子x=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
《一元一次方程》讲义一、什么是一元一次方程在数学的世界里,一元一次方程是我们解决许多实际问题的有力工具。
那到底什么是一元一次方程呢?一元一次方程指的是只含有一个未知数,并且未知数的最高次数是1 的整式方程。
举个简单的例子,像 3x + 5 = 14 就是一个一元一次方程。
在这个方程中,只有一个未知数 x,而且 x 的最高次数是 1。
为了更清楚地理解一元一次方程,我们需要明白几个关键的概念。
首先是“元”,它表示未知数的个数;“次”则表示未知数的最高次数。
所以,“一元”就是一个未知数,“一次”就是未知数的最高次数是 1。
二、一元一次方程的形式一元一次方程的一般形式是:ax + b = 0(其中 a、b 是常数,且 a ≠ 0)。
在这个一般形式中,a 被称为方程的系数,x 是未知数,b 则是常数项。
例如,在方程 2x 7 = 0 中,2 是系数,-7 是常数项。
需要注意的是,当 a = 0 时,方程就不再是一元一次方程了。
比如0x + 5 = 0,因为 0x 等于 0,这个方程实际上就变成了 5 = 0,这显然是不成立的。
三、一元一次方程的解法接下来,我们来学习如何解一元一次方程。
解一元一次方程的基本步骤可以概括为:去分母、去括号、移项、合并同类项、系数化为 1。
(一)去分母如果方程中各项的分母不同,我们需要先找到分母的最小公倍数,然后将方程两边同时乘以这个最小公倍数,把分母去掉。
例如,方程(x + 1) / 2 +(x 1) / 3 = 6 ,分母 2 和 3 的最小公倍数是 6 ,方程两边同时乘以 6 ,得到 3(x + 1) + 2(x 1) = 36 。
(二)去括号如果方程中有括号,我们需要运用乘法分配律把括号去掉。
比如,在方程 3(x + 5) 2(2x 1) = 10 中,去括号得到 3x + 15 4x + 2 = 10 。
(三)移项把含有未知数的项移到方程的一边,常数项移到方程的另一边。
一元一次方程所有知识点教案1.通过化简,只含有一个未知数,并且所含未知数的最高次数是1的整式方程,叫一元一次方程.通常形式是ax+b=0(a,b为常数,且a≠0).2.从一元一次方程的定义来看,判断一元一次方程的标准是:(1)整式方程;(2)只含有一个未知数;(3)未知数的最高次数是1.练4下列方程中,是一元一次方程的是()A.3x=2x B.3x﹣(4+3x)=2 C.x+y=1 D.x2+1=55.已知某方程是一元一次方程,求参数【例1】如果(3+m)x|m|﹣2-x=3-x是关于x的一元一次方程,则m的值为()A.2 B.3 C.3或﹣3 D.2或3总结:1.关于x的方程就是说在方程中x是未知数,其余的字母都看成已知数.2.一元一次方程中只有未知数的一次项,不存在二次项,所以如果有二次项,那么二次项系数为0.3.方程中必须含有未知数的一次项,即化简后一次项系数不为0.练1 若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0 B.x=3 C.x=﹣3 D.x=26.已知一元一次方程的解,求参数【例2】已知x=2是2x+a=5的解,则a的值为()A.1 B.32C.﹣1 D.23总结:虽然是关于x的方程,但含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.根据方程解的定义,把解代入到原方程,就可以得到关于a的一元一次方程.练2 如果x=﹣1是关于x的方程3x﹣2m=5的根,则m的值是()A.﹣4 B.﹣2 C.1 D.﹣17.利用等式的性质对等式进行变形【例1】以下等式变形不正确的是()A.由x=y,得到x+2=y+2 B.由2a﹣3=b﹣3,得到2a=bC.由m=n,得到2am=2an D.由am=an,得到m=n总结:1.等式可抽象为天平,当天平两边放相同质量的物体时,天平处于平衡状态;如果在天平的两边各加(或减)相同质量的物体,则天平仍然处于平衡状态.2.等式变形时,每一步必须符合等式的性质,否则等式就不成立.在运用性质时特别注意以下两点:(1)运用等式的性质1时,等式两边要同时加上(或减去)同一个数,即两边进行相同的运算;(2)运用等式的性质2时,等式两边不能同除以0,因为0不能作除数或分母.练1.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平仍然平衡的有( )A .0个B .1个C .2个D .3个练2.等式1-43y =的两边同时 ,得到y =﹣12. 8.利用等式的性质解方程【例2】利用等式的性质解方程:(1)11618x = ; (2)5﹣x =7; (3)0.2x +5=7.总结:1. 一般来说,对于ax =b (x 是未知数,a ,b 是已知数,且a ≠0)形式的一元一次方程,在等式两边都除以a 即可求解.2. 当ax =b (x 是未知数,a ,b 是已知数,且a ≠0)中的系数a 是分数时,一般在等式两边都乘以它的倒数.3. 当ax =b (x 是未知数,a ,b 是已知数,且a ≠0)中的系数a 是小数时,可在等式两边都扩大相同的倍数,使小数化为整数,再在等式两边除以这个整数;或者直接把小数化为分数,再在等式两边都乘它的倒数.练3.下列利用等式的性质解方程中,正确的是( )A .由x ﹣5=6,得x =1B .由56x =,得56x = C .由﹣5x =10,得x =2 D .由x +3=4,得x =1练4.已知x +y +z =5,y +z =7,求x 的值,并说明根据等式的什么性质.五、课后小测一、选择题1.下列关于x 的式子一定是一元一次方程的有( )①ax +b =0(a ≠0);②ax =b ;③当a =﹣1时,方程15a +x 4+3a =1;④(a 2+1)x =1. A .1个 B .2个 C .3个 D .4个2.下列方程中是一元一次方程的是( )一、选择题 1.若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为( )A .-1B .0C .1D .132.已知关于x 的方程4x -3m =2的解是x =m,则m 的值时( )A .2B .-2C .1D .-13.小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y +12=12y ﹣.小明翻看了书后的答案,此方程的解是y =﹣53,则这个常数是( ) A .1 B .2 C .3 D .44.已知关于x 的方程ax ﹣8=20+a 的解是x =﹣3,则a 的值为( )A .﹣4B .﹣6C .﹣7D .﹣35.如果关于x 的方程13210m x+=是一元一次方程,则m 的值为( ) A .13B .3C .﹣3D .不存在 二、填空题6.已知方程232)1(2=-+-x x a 是关于x 的一元一次方程,则a =______.7.已知3x n ﹣1+5=0为一元一次方程,则n =______.8.已知(m ﹣1)x |m |=m +2n 是关于x 的一元一次方程,若n 是它的解,则n ﹣m =_______.9.若x =﹣2是关于x 的方程2x +m ﹣4=0的解,则m 的值为_______.三、解答题10.已知关于x 的方程(m ﹣4)x 2+(m ﹣2)x +3m ﹣1=0.求当m 为何值时,它是一元一次方程.11.若关于x 的方程(k ﹣1)x 2+kx ﹣6k =0是一元一次方程,求k 的值和方程的解.12.已知关于x 的方程3a ﹣x =2x +3的解为2,求代数式(﹣a )2﹣2a +1的值.11.王凯在解方程2x=5x时,在方程两边同时除以x,竟得到2=5,你知道他错在什么地方吗?12.a、b、c三个物体的重量如下图所示:回答下列问题:(1)a、b、c三个物体就单个而言哪个最重?(2)若天平一边放一些物体a,另一边放一些物体c,要使天平平衡,天平两边至少应该分别放几个物体a和物体c?13.下列方程的变形是否正确?为什么?(1)由3+x=5,得x=5+3.(2)由7x=﹣4,得x=7 -4.(3)由12y ,得y=2.(4)由3=x﹣2,得x=﹣2﹣3.六、小结二、学习目标:1.会合并同类项解一元一次方程;2.会移项解一元一次方程;3.会通过一元一次方程解决实际问题.二、知识回顾:1.等式性质1:等式两边加(减)同一个数(或式子),结果仍相等.如果a=b,那么a±c=b±c.2.等式性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.如果a=b,那么ac=bc.如果a=b(c≠0),那么a bc c=.四、知识梳理:1.合并同类项解一元一次方程合并同类项是指把多项式中的同类项合并成一项;而对一元一次方程方程合并同类项是指把含有未知数的项合成一项,把不含未知数的项合并成一项.(一般把含未知数的项移到等号的左边,常数项移到等号的右边).2.移项解一元一次方程移项是把等式一边的某项变号后移到另一边,其依据是等式性质1.如解方程3225x x-=+时,可在方程的两边先加2,再减2x,得32222522x x x x-+-=++-,即变形为3252x x-=+.与原方程相比较,这个变形过程可用下图来表示.运用移项可以把方程左边的项移到右边,也可以把方程右边的项移到左边,但要牢记:移项一定要变号!四、典例探究1.移项、合并同类项求方程的解【例1】解下列方程:(1)-2x—4x=-12+3×(-4);(2)-3x+5x+x=-15-(-6);(3)8844-=+xx解一元一次方程——移项与合并同类项19.解下列方程:(1)3x -5x =-6;(2)-2y +y 23=2×3-8;(3)6x =3x +6;(4)2x +7=5.20.解下列方程:(1)5x -2=-7x +8;(2)x x 513156+=-.21.已知图1和图2中的多边形的周长都是7,求他们的各边长.22.足球表面是由一些黑色的正五边形和白色的正六边形皮块组成,黑、白皮块的数目之比为3∶5,一个足球的表面积有32个皮块.请问,足球表面有黑、白皮块各多少块?23.3x-2x=m的解与3x+2x=7-2的解互为相反数,试求这两个方程的解及m的值.24.甲、乙二人在400米的环形跑道上练习赛跑,甲的平均速度是5.5米/秒,乙的平均速度是4.5米/秒.两人从同一地点,同时起跑,若同向而行,则甲、乙二人经过多少时间首次相遇?25.小丽在今年5月份上海世博会开幕后,在世博园里参观了4天.这四天各天的日期之和是86,那么你知道小丽在世博园里参观的日期吗?26.北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?27.如图是的一个长方形恰好分成六个正方形,其中有两个正方形的边长相等,如果最小的正方形的边长为3厘米,求这个长方形的面积.六、小结解一元一次方程——去括号三、学习目标:1.掌握去括号法则;2.探究通过“去括号”的方法解一元一次方程;3.善于用解方程的方法去解决实际问题.二、知识回顾:1.一元一次方程的解法我们学了哪几步?2.移项,合并同类项,系数化为1,要注意什么?①移项时要变号.(变成相反数).②合并同类项时,只是把同类项的系数相加作为所得项的系数,字母部分不变.③系数化为1,也就是说方程两边同时除以未知数前面的系数.3.还记得乘法分配律吗?用字母怎样表示?一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.字母表示:a(b+c)=ab+ac.五、知识梳理:1.去括号当方程中出现括号时,应该先去括号.法则:(1)括号前是“+”号,把括号和它前面的“+”号一起去掉,括号里各项都不变符号;(2)括号前是“-”号,把括号和它前面的“-”号一起去掉,括号里各项都改变符号.依据:去括号法则以及乘法的分配律.做法:一般是先去小括号,再去中括号,最后去大括号.2.解一元一次方程的一般步骤到目前为止解一元一次方程的一般步骤有:四、典例探究1.判断方程去括号后的关系式【例1】解方程2(x+3)﹣5(1﹣x)=3(x﹣1),去括号正确的是()A.2x+6﹣5+5x=3x﹣3 B.2x+3﹣5+x=3x﹣3C.2x+6﹣5﹣5x=3x﹣3 D.2x+3﹣5+x=3x﹣1总结:去括号时要注意:(1)括号前的数要乘括号内的每一项;(2)括号前面是正号,去括号后,括号内各项不变号;(3)括号前面是负号,去掉括号和负号时,括号内各项都要变号.练1.解方程2(x﹣1)﹣3=5时,去括号,得()A.2x+1﹣3=5 B.2x﹣2﹣3=5 C.2x+2﹣3=5 D.2x﹣1﹣3=5练2.方程12﹣(2x﹣4)=﹣(x﹣7)去括号得.2.解含括号的一元一次方程【例2】解方程:(1)2(3x﹣2)﹣(x﹣10)=4(3x﹣2)(2)34138+1 43242xx⎡⎤⎛⎫--=⎪⎢⎥⎝⎭⎣⎦.六、小结四、学习目标:1.掌握解一元一次方程中“去分母”的方法,并能解这种类型的方程;2.了解一元一次方程解法的一般步骤.二、知识回顾:1.等式性质2的内容是什么?等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用式子表示:如果a=b,那么ac=bc;如果a=b,c≠0,那么a bc c=.2.当方程中含有括号时,如何解一元一次方程?六、知识梳理:1.去分母目的:使方程中的各项均不含分母(或分母为1).方法:在方程两边都乘各分母的最小公倍数.依据:等式的性质2.注意事项:(1)去分母时容易漏乘不含分母的项.如将方程3123x x-=去分母时,错化为912x x-=.(2)去分母后,对于原来含有加减运算的分子漏加括号.如将方程1452xx--=去分母时,错化为8110x x--=.解一元一次方程——去分母2.解一元一次方程的一般步骤:四、典例探究1.对方程进行去分母变形【例1】解方程21101136x x++-=时,去分母正确的是()A.2x+1﹣(10x+1)=1 B.4x+1﹣10x+1=6C.4x+2﹣10x﹣1=6 D.2(2x+1)﹣(10x+1)=1总结:1.方程中含有分母时,一般先去分母,再做其他变形.2.去分母时,方程的两边同乘以各分母的最小公倍数就可以把分母去掉.3.去分母时应注意:(1)所选的乘数是方程中所有分母的最小公倍数;(2)用各分母的最小公倍数乘方程的两边时,不要漏乘方程中不含分母的项;(3)去掉分母后,分数线也同时去掉,分子上的多项式要用括号括起来.练1.下列解方程去分母正确的是()A.由1132x x--=,得2x﹣1=3﹣3xB.由232124x x---=-,得2(x﹣2)﹣3x﹣2=﹣4C.由131236y y yy+-=--,得3y+3=2y﹣3y+1﹣6yD.由44153y y+-=,得12y﹣1=5y+20练2.解方程15143x xx+-=-时,去分母得()A.4(x+1)=x﹣3(5x﹣1)B.x+1=12x﹣(5x﹣1)。
一元一次方程的定义及解法方程定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a0)。
方程简介一元一次方程(linearequationinone)通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。
通常形式是ax+b=0(a,b为常数,且a0)。
一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。
我们将ax+b=0(其中x是未知数,a、b是已知数,并且a0)叫一元一次方程的标准形式。
这里a是未知数的系数,b是常数,x的次数必须是1。
即一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。
方程一词来源于我国古算术书《九章算术》。
在这本著作中,已经会列一元一次方程。
法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。
在19世纪以前,方程一直是代数的核心内容。
详细内容合并同类项1.依据:乘法分配律2.把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项3.合并时次数不变,只是系数相加减。
移项1.含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
2.依据:等式的性质3.把方程一边某项移到另一边时,一定要变号。
性质性质等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立解法步骤使方程左右两边相等的未知数的值叫做方程的解。
一般解法:1.去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号4.合并同类项:把方程化成ax=b(a0)的形式;5.系数为成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。
第二十一章一元二次方程21.1一元二次方程一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程是一元二次方程的是A.x2﹣y=1 B.x2+2x﹣3=0C.x2+1x=3 D.x﹣5y=6【答案】B2.关于x的一元二次方程(m﹣1)x2+2x+m2﹣1=0,常数项为0,则m值等于A.1 B.﹣1C.1或﹣1 D.0【答案】B【解析】由题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1,故选B.3.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是A.1 B.0C.−1 D.2【答案】B【解析】把x=1代入x2﹣x﹣m=0得1﹣1﹣m=0,解得m=0.故选B.4.若px2-3x+p2-p=0是关于x的一元二次方程,则A.p=1 B.p>0C.p≠0 D.p为任意实数【答案】C【解析】∵方程px2-3x+p2-p=0是关于x的一元二次方程,∴二次项系数p≠0.故选C.5.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为A.6、2、5 B.2、﹣6、5C.2、﹣6、﹣5 D.﹣2、6、5【答案】C【解析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣6、﹣5.故选C.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.6.已知a﹣b+c=0,则一元二次方程ax2+bx+c=0(a≠0)必有一个根是A.1 B.﹣2C.0 D.﹣1【答案】D【名师点睛】本题考查的是一元二次方程的根,即方程的解的定义.解题的关键是要掌握一元二次方程ax2+bx+c=0(a≠0)中几个特殊值的特殊形式:x=1时,a+b+c=0;x=﹣1时,a﹣b+c=0.7.若关于x的一元二次方程ax2﹣b x+4=0的解是x=2,则2020+2a﹣b的值是A.2016 B.2018C.2020 D.2022【答案】B【解析】∵关于x的一元二次方程ax2﹣bx+4=0的解是x=2,∴4a﹣2b+4=0,则2a﹣b=﹣2,∴2020+2a ﹣b=2020+(2a﹣b)=2020+(﹣2)=2018.故选B.【名师点睛】本题考查了一元二次方程的解定义.解题时,利用了“整体代入”的数学思想.二、填空题:请将答案填在题中横线上.8.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为__________.【答案】1【解析】将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.9.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=__________.【答案】-1【解析】∵方程(m−1)x|m|+1−3x+1=0是关于x的一元二次方程,∴|m|=1,m−1≠0,解得:m=−1.故答案为:−1.10.若是方程的一个根,则的值为__________.【答案】2018【解析】由题意可知:2m2-3m-1=0,∴2m2-3m=1,∴原式=3(2m2-3m)+2015=2018,故答案为2018.【名师点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.11.已知关于x的方程(m+2)x²+4mx+1=0是一元二次方程,则m的取值范围是__________.【答案】m≠−2【名师点睛】本题考查了一元二次方程的定义,解题的关键是掌握判断一个方程是否是一元二次方程需注意几个方面:化简后;一个未知数;未知数的最高次数是2;二次项的系数不为0;整式方程. 12.若关于x的方程的常数项为0,则m的值等于__________.±【答案】32【解析】由题意知,方程(m-3)x2 +5x+m2 -18=0的常数项为m2−18,所以m2−18=0,±,解得:m=32±.故答案为:32【点睛】本题考查了方程的一般式,本题常数项为0时方程可为一元一次方程也可为一元二次方程,不论哪一种情况,都符合题意,这是解题的关键所在,也是易错点.13.一元二次方程2x2+4x﹣1=0的一次项系数及常数项之和为__________.【答案】3【解析】由题意,得:4+(﹣1)=3.故答案为3.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.14.已知一个一元二次方程的一个根为3,二次项系数是1,则这个一元二次方程可以是__________.(只需写出一个方程即可)【答案】x 2﹣3x =0【解析】一元二次方程的一个根为3,二次项系数是1,这个一元二次方程可以为x 2-3x =0.故答案为x 2−3x =0.【名师点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.灵活应用整体代入的方法计算.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.已知关于x 的方程(m 2 -1)x 2 -(m +1)x +m =0.(1)m 为何值时,此方程是一元一次方程?(2)m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项. 【答案】(1)m =1;(2)m ≠±1,二次项系数为m 2-1、一次项系数为-(m +1),常数项为m .16.已知x 是一元二次方程x 2+3x ﹣1=0的实数根,求代数式 2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值. 【答案】13【解析】原式=()()()333322x x x x x x +--÷-- ()()()()321323333x x x x x x x x --=⨯=-+-+. ∵x 2+3x ﹣1=0.∴x 2+3x =1.∴x (x +3)=1.∴原式=()11333x x ==+. 17.已知x =1是关于x 的一元二次方程x 2﹣4mx +m 2=0的根,求代数式()()()2233m m m m --+-的值.【答案】2. 18.已知实数a 是方程的根. (1)计算的值;(2)计算的值.【答案】(1)2015;(2)5.【解析】(1)∵实数a 是方程的根,∴. ∴,即 . ∴; (2).∵,∴..。
人教版九年级数学上册 21.1--21.3基础检测含答案21.1 一元二次方程1.下列方程中,是关于x的一元二次方程的是( )(A)ax2+bx+c=0 (B)++2=0(C)3y2+x=1 (D)3(x+1)2=2(x+1)2.把一元二次方程x(x+1)=3x+2化为一般形式,正确的是( )(A)x2-2x-2=0 (B)x2-2x+2=0(C)x2-3x-1=0 (D)x2+4x+3=03.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项是0,则( )(A)m=4 (B)m=2(C)m=2或m=-2 (D)m=-24.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为( )(A)-2 (B)2 (C)-4 (D)45.(2019新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参赛,根据题意,可列方程为( )(A)x(x-1)=36 (B)x(x+1)=36(C)x(x-1)=36 (D)x(x+1)=366.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1 200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.7.(2019宜宾)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是 .8.把下列方程化成一元二次方程的一般形式,并指出其中的二次项系数、一次项系数和常数项.(1)2x 2=1-3x;(2)5x(x-2)=-3(x 2+1).9.已知关于x 的方程(m 2+2)x 2+(m-1)x-4=3x 2.(1)当m 是何值时原方程是一元二次方程;(2)当m 是何值时原方程是一元一次方程.10.已知实数a,b 满足a 2-3a+1=0,b 2-3b+1=0,则关于一元二次方程x 2-3x+1=0的根的说法中正确的是( )(A)x=a,x=b 都不是该方程的解(B)x=a 是该方程的解,x=b 不是该方程的解(C)x=b 是该方程的解,x=a 不是该方程的解(D)x=a,x=b 都是该方程的解的值是2a -24a 则代数式,的一个根=x+422x 是方程)a 资阳11.(2019 .的值是a 则,是一元二次方程=11)-(a 的方程x 若关于12. .13.已知关于x 的一元二次方程x 2+mx+2=0与x 2+2x+m=0有一个公共根,则此公共根是x= ,m= .14.已知关于x的一元二次方程(m+1)x|m-1|+2x-n=0的一个根是1,求m,n的值.15.(核心素养—运算能力)如图,请作答以下三个房间的问题.第二十一章21.1 一元二次方程1.(2020东营期中)下列方程中,是关于x的一元二次方程的是( D )(A)ax2+bx+c=0 (B)++2=0(C)3y2+x=1 (D)3(x+1)2=2(x+1)2.把一元二次方程x(x+1)=3x+2化为一般形式,正确的是( A )(A)x2-2x-2=0 (B)x2-2x+2=0(C)x2-3x-1=0 (D)x2+4x+3=03.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项是0,则( D )(A)m=4 (B)m=2(C)m=2或m=-2 (D)m=-24.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为( B )(A)-2 (B)2 (C)-4 (D)45.(2019新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参赛,根据题意,可列方程为( A )(A)x(x-1)=36 (B)x(x+1)=36(C)x(x-1)=36 (D)x(x+1)=366.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1 200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为x(x+40)=1 200 .7.(2019宜宾)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的65根据题意可列方程是百分率为×x,--(1+5%)×(110%)50(1-x)2=65-50 .8.把下列方程化成一元二次方程的一般形式,并指出其中的二次项系数、一次项系数和常数项.(1)2x2=1-3x;(2)5x(x-2)=-3(x2+1).解:(1)移项,得2x2+3x-1=0.二次项系数为2,一次项系数为3,常数项为-1.(2)去括号,得5x2-10x=-3x2-3.移项,合并同类项,得8x2-10x+3=0.二次项系数为8,一次项系数为-10,常数项为3.9.已知关于x的方程(m2+2)x2+(m-1)x-4=3x2.(1)当m是何值时原方程是一元二次方程;(2)当m是何值时原方程是一元一次方程.解:原方程可化为(m2-1)x2+(m-1)x-4=0,(1)当m2-1≠0,即m≠±1时,原方程是一元二次方程.(2)当m2-1=0且m-1≠0,即m=-1时,原方程是一元一次方程.10.已知实数a,b 满足a 2-3a+1=0,b 2-3b+1=0,则关于一元二次方程x 2-3x+1=0的根的说法中正确的是( D )(A)x=a,x=b 都不是该方程的解(B)x=a 是该方程的解,x=b 不是该方程的解(C)x=b 是该方程的解,x=a 不是该方程的解(D)x=a,x=b 都是该方程的解的值是2a -24a 则代数式,的一个根=x+422x 是方程)a 资阳11.(2019 8 .的值是a 则,方程是一元二次=11)-(a 的方程x 若关于12. -1 .13.已知关于x 的一元二次方程x 2+mx+2=0与x 2+2x+m=0有一个公共根,则此公共根是x= 1 ,m= -3 .14.已知关于x 的一元二次方程(m+1)x |m-1|+2x-n=0的一个根是1,求m,n 的值.解:由一元二次方程的定义得解得m=3,所以原方程为4x 2+2x-n=0,把x=1代入,得4+2-n=0,解得n=6,所以m=3,n=6.15.(核心素养—运算能力)如图,请作答以下三个房间的问题.21.2解一元二次方程一.选择题(共12小题)1.用配方法解一元二次方程x2-4x-9=0,可变形为()A.(x-2)2=9 B.(x-2)2=13 C.(x+2)2=9D.(x+2)2=132.下列方程中,没有实数根的是()A.x2-2x-3=0 B.(x-5)(x+2)=0 C.x2-x+1=0 D.x2=1 3.一元二次方程y2+y−0.75=0配方后可化为()A.(y+0.5)2=1 B.(y-0.5)2=1 C.(y+0.5)2=0.5 D.(y-0.5)2=0.754.已知关于x的一元二次方程x2-(2m-1)x+m2=0有实数根,则m的取值范围是()A.m≠0B.m≤0.25 C.m<0.25 D.m>0.255.关于x的方程ax2+(1-a)x-1=0,下列结论正确的是()A.当a=0时,方程无实数根B.当a=-1时,方程只有一个实数根C.当a=1时,有两个不相等的实数根D.当a≠0时,方程有两个相等的实数根6.已知a,b是方程x2+3x-5=0的两个实数根,则a2-3b+2020的值是()A.2016 B.2020 C.2025 D.20347.α、β是方程2x2-2x-3=0的两根,则(α+1)(β+1)的值为()A.-0.5 B.0.5 C.3.5 D.1.58.定义运算:a*b=2ab,若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a 的值为()A.m B.2-2m C.2m-2 D.-2m-29.已知实数x满足(x2-2x+1)2+2(x2-2x+1)-3=0,那么x2-2x+1的值为()A.-1或3 B.-3或1 C.3 D.110.三角形两边的长是6和8,第三边满足方程x2-24x+140=0,则三角形周长为()A.24 B.28 C.24或28 D.以上都不对11.已知关于x的一元二次方程x2+(2m+1)x+m-1=0的两个根分别是x1,x2,且满足x12 +x22=3,则m的值是()A.0 B.-2 C.0 或-0.5 D.-2或012.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a-1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3 B.4 C.5 D.6二.填空题(共5小题)13.填空:x2-2x+3=(x- )2+2.14.关于x的一元二次方程mx2-(3m-1)x+2m-1=0.其根的判别式的值为1,则该方程的根为.15.若关于x的一元二次方程ax2-x+1=0有实数根,则a的最大整数值是.16.已知x1,x2是关于x的方程x2-(m-1)x-m=0的两个根,且x1+x2=3,则m的值是.17.对于实数a,b,定义运算“*“,a*b=例如4*2,因为4>2,所以4*2=4 2-4×2=8.若x1,x2是一元二次方程x2-8x+16=0的两个根,则x1*x2= .三.解答题(共5小题)18.解下列方程(1)x2-8x+15=0;(2)19.已知:关于x的一元二次方程x2+mx=3(m为常数).(1)证明:无论m为何值,该方程都有两个不相等的实数根;(2)若方程有一个根为2,求方程的另一个根.20.已知关于x的一元二次方程(x-m)2+2(x-m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根.(2)若该方程有一个根为4,求m的值.21.已知关于x的一元二次方程x2-4x-2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.22.已知关于x的一元二次方程x2+2x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等的实数根是a,b,求的值.参考答案1-5:BCABC 6-10:DBDDA 11-12:CC13、114、15、-116、417、018、19、(1)证明:x2+mx-3=0,∵a=1,b=m,c=-3∴△=b2-4ac=m2-4×1×(-3)=m2+12,∵m2≥0,∴m2+12>0,∴△>0,∴无论m为何值,该方程都有两个不相等的实数根;(2)-1.520、(1)证明:(x-m)2+2(x-m)=0,原方程可化为x2-(2m-2)x+m2-2m=0,∵a=1,b=-(2m-2),c=m2-2m,∴△=b2-4ac=[-(2m-2)]2-4(m2-2m)=4>0,∴不论m为何值,该方程总有两个不相等的实数根.(2)解:将x=4代入原方程,得:(4-m)2+2(4-m)=0,即m2-10m+24=0,解得:m1=4,m2=6.故m的值为4或6.21、:(1)由题意可知,△=(-4)2-4×1×(-2k+8)≥0,整理得:16+8k-32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)k=322、:(1)∵方程有两个不相等的实数根,∴△=b2-4ac=4+4k>0,解得k>-1.∴k的取值范围为k>-1;(2)由根与系数关系得a+b=-2,a•b=-k,21.3 实际问题与一元二次方程一、选择题(本大题共12道小题)1.已知3是关于x的方程x2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为( )A. 7B. 10C. 11D. 10或112.某市2008年国内生产总值(GDP)比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是( )A. 12%+7%=x%B. (1+12%)(1+7%)=2(1+x%)C. 12%+7%=2·x%D. (1+12%)(1+7%)=(1+x%)23. 绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=9004.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止至2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆.设2013年底至2015年底该市汽车拥有量的年平均增长率为x.根据题意列方程得( )A. 10(1+x)2=16.9B. 10(1+2x)=16.9C. 10(1-x)2=16.9D. 10(1-2x)=16.95. 有5人患了流感,经过两轮传染后共有605人患了流感,假设每轮传染中一个人传染相同数量的人,则第一轮传染后患流感的人数为()A.10 B.50 C.55 D.456. 如图,某小区有一块长为18 m,宽为 6m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60m2,两块绿地之间及周边留有宽度相等的人行通道.若设人行通道的宽度为x m,则可列出关于x的方程是( )A. x2+9x-8=0B. x2-9x-8=0C. x2-9x+8=0D. 2x2-9x+8=07. 某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=5078. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施.调查发现,每件衬衫每降价1元,平均每天可多售出2件,若商场每天要盈利1200元,则每件衬衫应降价()A.5元B.10元C.20元D.10元或20元9. 在一幅长为80 cm,宽为50 cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5400 cm2,设金色纸边的宽为x cm,那么x满足的方程是()A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=010. 如图,在△ABC中,∠ABC=90°,AB=8 cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1 cm/s,点Q的速度为2 cm/s,点Q移动到点C后停止运动,点P也随之停止运动.运动下列时间后,能使△PBQ的面积为15 cm2的是( )A.2 s B.3 sC.4 s D.5 s11. 某专卖店销售一种机床,三月份每台售价为2万元,共销售60台.根据市场调查知:这种机床每台售价每增加0.1万元,每个月就会少售出1台.四月份该专卖店想将销售额提高25%,则这种机床每台的售价应定为()A.3万元B.5万元C.8万元D.3万元或5万元12. 某市2018年GDP比2017年增长了11.5%,由于受到国际因素的影响,2019年的G DP比2018年增长了7%.若这两年GDP的年平均增长率为x,则x满足的关系式是() A.11.5%+7%=xB.(1+11.5%)×(1+7%)=2(1+x)C.11.5%+7%=2xD.(1+11.5%)×(1+7%)=(1+x)2二、填空题(本大题共6道小题)13. 中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入为20000元,到2018年人均年收入达到39200元,则该地区居民人均年收入平均增长率为.(用百分数表示)14. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是73,求每个支干又长出多少个小分支.如果设每个支干又长出x 个小分支,那么依题意可列方程为__________________.15. 某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡每张的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,设每张贺年卡应降低x个0.1元,则所列方程为__________________________________.16. 相邻的两个自然数,若它们的平方和比这两数中较小数的2倍大51,则这两个自然数分别为________.17.一个两位数,它的十位数字比个位数字大1,个位数字与十位数字的平方和比这个两位数小19,则这个两位数是________.18. 某校课外生物小组的试验园地是长32 m,宽20 m的矩形,为了便于管理,现要在试验园地开辟宽度均为x m的小道(图中的阴影部分).(1)如图①,在试验园地开辟一条纵向小道,则剩余部分的面积为________m2(用含x的代数式表示);(2)如图②,在试验园地开辟三条宽度相等的小道,其中一条是横向的,另两条互相平行.若使剩余部分的面积为570 m2,则小道的宽度为________m.三、解答题(本大题共3道小题)19. 某广告公司制作广告的收费标准是以面积为单位,在不超过规定的面积a(m2)的范围内,每张广告费1000元,如果超过a(m2),那么除了要交1000元的广告费以外,超过的部分还要按每平方米50a元交费.下表是该公司对两家用户广告的收费面积和广告费情况的记录.红星公司要制作一张大型公益广告,其材料形状是矩形,如果它的四周是空白,并且四周各空0.5 m,空白部分不收广告费,中间的矩形部分才是广告的收费面积.这张广告的长、宽之比为3∶2,并且红星公司为此支出110400元的广告费.(1)求a的值;(2)红星公司要制作的这张广告的长和宽各是多少米?解题突破(7题)利用烟草公司及食品公司的广告费建立方程求a的值,利用红星公司支出的广告费和收费标准求其广告的收费面积,利用收费面积和已知条件求这张广告的长与宽.20. 三个连续的正奇数,最大数与最小数的积比中间的一个数的6倍多3,求这三个奇数.21. 某批发商以每件50元的价格购进800件T恤,第一个月以单价80元/件销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,每件每降低1元,可多售出10件,但最低单价应高于购进的价格.第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元/件,设第二个月每件降低x元.(1)填表:(不需化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少?人教版九年级数学21.3 实际问题与一元二次方程课时训练-答案一、选择题(本大题共12道小题)1. 【答案】D【解析】∵3是方程x2-(m+1)x+2m=0的一个实数根,∴9-3(m+1)+2m=0,解得m=6,∴方程为x2-7x+12=0,解得x1=3,x2=4,若等腰△ABC的腰长为3,底边长为4,则其周长为3+3+4=10;若等腰△ABC的腰长为4,底边长为3,则周长为4+4+3=11.2. 【答案】D【解析】设2007年国内生产总值为a ,依题意得a (1+12%)×(1+7%)=a (1+x %)2,即(1+12%)(1+7%)=(1+x %)2.3. 【答案】B4. 【答案】A【解析】因为年平均增长率为x ,从2013年到2015年连续增长两年,开始量为10万辆,结束量为16.9万辆,则可列方程10(1+x )2=16.9.5. 【答案】C6. 【答案】C【解析】因为人行道的宽度为x 米,所以阴影部分的长为(18-3x )米,宽为(6-2x )米,故阴影部分面积为(18-3x )(6-2x )=60,化简得x 2-9x +8=0.故选C.7. 【答案】B8. 【答案】C [解析] 设每件衬衫降价x 元,则每天可售出(20+2x )件,根据题意,得(40-x )(20+2x )=1200,解得x 1=10,x 2=20. ∵要扩大销售,减少库存,∴x =20.9. 【答案】B10. 【答案】B[解析] 设运动时间为t s ,则BP =(8-t)cm ,BQ =2tcm ,由三角形的面积公式列方程,得12·(8-t)·2t =15, 解得t 1=3,t 2=5(当t =5时,BQ =10 cm ,不合题意,舍去). ∴动点P ,Q 运动3 s 后,能使△PBQ 的面积为15 cm 2.11. 【答案】D [解析] 设这种机床每台的售价定为x 万元,则x ⎝ ⎛⎭⎪⎫60-x -20.1=2×60×(1+25%),解得x 1=3,x 2=5.12. 【答案】D[解析] 设2017年的GDP为1,∵2018年的GDP比2017年增长了11.5%,∴2018年的GDP为1+11.5%.∵2019年的GDP比2018年增长了7%,∴2019年的GDP为(1+11.5%)×(1+7%).∵这两年GDP的年平均增长率为x,∴2019年的GDP也可表示为(1+x)2,∴可列方程为(1+11.5%)×(1+7%)=(1+x)2.二、填空题(本大题共6道小题)13. 【答案】40%[解析]设该地区居民人均年收入平均增长率为x,则20000(1+x)2=39200,解得x1=0.4,x2=-2.4(舍去),∴该地区居民人均年收入平均增长率为40%.故答案为:40%.14. 【答案】x2+x+1=73[解析] 设每个支干又长出x个小分支,根据题意,得x2+x+1=73.15. 【答案】(0.3-0.1x)(500+100x)=12016. 【答案】5,6[解析] 设较小的自然数为x,则较大的自然数为(x+1).根据题意,得x2+(x+1)2=2x+51,解得x1=5,x2=-5(舍去).则这两个自然数分别为5,6.17. 【答案】32 [解析]设这个两位数的十位数字为x,则个位数字为x-1.根据题意,得x2+(x-1)2=10x+(x-1)-19,解得x1=3,x2=3.5(舍去),∴10x+(x-1)=32.18. 【答案】(1)20(32-x ) (2)1[解析] (1)根据题意,得剩余部分的面积为20(32-x )m 2. (2)根据题意,得(32-2x )(20-x )=570, 解得x 1=1,x 2=35(不合题意,舍去). 即小道的宽度为1 m.三、解答题(本大题共3道小题)19. 【答案】解:(1)由题中表格可知3≤a <6. 根据题意,得1000+50a (6-a )=1400, 解得a 1=4,a 2=2(舍去),则a =4.(2)设这张广告的收费面积为S m 2,根据题意,得 1000+50×4(S -4)=110400,解得S =551. 设这张广告的长、宽分别为3x m ,2x m. 根据题意,得(3x -1)(2x -1)=551, 整理,得6x 2-5x -550=0, 解得x 1=10,x 2=-556(舍去), 则3x =30,2x =20.答:红星公司要制作的这张广告的长和宽分别是30 m 和20 m.20. 【答案】解:设这三个连续的正奇数分别为2n -1,2n +1,2n +3(n 为正整数). 根据题意,得(2n +3)(2n -1)-6(2n +1)=3, 解得n 1=3,n 2=-1(舍去).当n =3时,2n -1=5,2n +1=7,2n +3=9. 即这三个奇数分别为5,7,9.21. 【答案】解:(1)填表如下:(2)根据题意,得200×(80-50)+(200+10x)(80-x-50)+[800-200-(200+10x)](40-50)=9000,整理,得10x2-200x+1000=0,解得x1=x2=10.当x=10时,80-x=70>50.答:第二个月的单价应是70元/件.。
一元一次方程的定义及解法方程定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a0)。
方程简介一元一次方程(linearequationinone)通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。
通常形式是ax+b=0(a,b为常数,且a0)。
一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。
我们将ax+b=0(其中x是未知数,a、b是已知数,并且a0)叫一元一次方程的标准形式。
这里a是未知数的系数,b是常数,x的次数必须是1。
即一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。
方程一词来源于我国古算术书《九章算术》。
在这本著作中,已经会列一元一次方程。
法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。
在19世纪以前,方程一直是代数的核心内容。
详细内容合并同类项1.依据:乘法分配律2.把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项3.合并时次数不变,只是系数相加减。
移项1.含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
2.依据:等式的性质3.把方程一边某项移到另一边时,一定要变号。
性质性质等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立解法步骤使方程左右两边相等的未知数的值叫做方程的解。
一般解法:1.去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号4.合并同类项:把方程化成ax=b(a0)的形式;5.系数为成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。