陶氏超滤膜配件规范及效果说明
- 格式:docx
- 大小:15.29 KB
- 文档页数:1
产品特点1)设计合理、完善、健康的超能净化技术1、采用现代先进饮用水过滤新技术中空纤维超滤膜,过滤除自来水中的各种有害物质。
2、根据水质条件搭配过滤的综合效果,完全清除自来水中的泥沙、悬浮物、有机物、胶体物质、余氯、重金属、细菌等有害物质。
3、在清除自来水中有害物质的同时,保留水中对人体有益的矿物质。
满足人体对常量元素和微量元素的需求。
4、采用先进高科技成果—炭晶抗氧化陶瓷,使普通水变成含有大量负离子具有高能量的向弱碱性偏的小分子团水,水质甘醇,常饮此水对增强人体新陈代谢,提高人体免疫力有很好的帮助作用。
净水器滤芯的详细介绍和使用说明5、通过陶氏净水器处理产出的水,水质甘醇,完全能突出“净化、矿化、活化”三大功能,水质优于国标《生活饮用水卫生标准》(GB5789-2006),其中感官及微生物指标达到《瓶(桶)装饮用纯净水卫生标准》2) 易更换,分体结构设计--分体式易更换结构设计,可独立更换滤芯,维护方便、快捷。
3)完美的外形设计采用国际先进技术,外形美观大方,结构质优耐用,可安装在橱柜内,也可挂在墙壁上,根据您的需要任意选择。
净水器滤芯的详细介绍和使用说明4)饮用水净化的首选水质清爽洁净,是家庭厨房用水的首选。
国家卫生部权威机构检测认证,多项指标优于卫生部《生活饮用水卫生标准》要求,可直接饮用。
各滤芯的名称及作用中空超滤滤芯高性能膜分离技术,浓缩和分离原水中分子物质,过滤精度高达0.01微米,有效去除水中的泥沙、铁锈、细菌、藻类、大分子有机物等有害物质。
保留有益矿物质和微量元素,净化水可直接饮用。
美国KDF滤芯KDF(一种高科技的美国专利滤芯),是高纯度的同锌合金,利用铜、锌在水中的电化反应,有效去除水中的重金属(铅、铁、汞、铜等)、余氯、硫化氢;同时抑制细菌、防止硬垢。
高密度烧结活性炭滤芯采用高品质粉末活性炭,利用独特的烧化型技术,高效滤除异色、异味、重金属及三卤甲烷等致癌物质,亦能强力抑制细菌繁殖。
Dow Water & Process SolutionsIntegraPac™ Module andSkid Product ManualVersion 1May 2013This manual is confidential. It is the property of Dow Water & Process Solutions. The contents may not be reproduced, transferred or released to any third party without the written permission of Dow Water & Process Solutions.Table of Contents1. Introduction (1)2. Description of DOW™IntegraPac™ Ultrafiltration Module (2)2.1 IntegraPac™ Module and Skid Features (2)2.2 IntegraPac™ Module and Skid Specifications (5)2.3 IntegraPac™ Module and Skid Installation (8)3. Shipping and Storage (9)4. DOW IntegraPac™ Ultrafiltration Process Description (11)4.1 Process Operations (11)4.2 Pretreatment (16)4.3 Cleaning (17)Summary of Information (17)4.4 Fouling (17)5. Operating Information (18)5.1 Start Up (18)Pre-start checks (18)Start Up (18)Module rinsing (19)5.2 Integrity Testing procedures (19)Pressure hold/decay (19)Visual inspection test (19)5.3 Shut Down (20)Manual shut down (20)Equipment shut down during automatic operation (20)5.4 Operating and Cleaning Logs (20)ReferencesFigure 1: Material Size and Membrane Process Guide (1)Figure 2: Wall Cross Section of the Hollow Fiber (2)Figure 3: IntegraPac TM Module Photograph (3)Figure 4: IntegraPac™ Skid Components (4)Figure 5: Module Reference for Dimensions (5)Figure 6: IntegraPac™ Skid Reference for Dimensions (7)Figure 7: Installation™ Drawing of Module (8)Figure 8: Pallet of IntegraPac™ Modules for Shipping (9)Figure 9: Filtration Step for DOW UF Modules (12)Figure 10: Air Scour Step for DOW UF Modules (12)Figure 11: Air Scour Drain for DOW UF Modules (13)Figure 12: Top Backwash Step for DOW UF Modules (13)Figure 13: Bottom Backwash Step for DOW UF Modules (14)Figure 14: Forward Flush Step for DOW UF Modules (14)Figure 15: Chemically Enhanced Backwash "Top" Step for DOW UF Modules (15)Figure 16: Chemically Enhanced Backwash "Bottom" step for DOW UF Modules (15)Figure 17: Clean in Place Cleaning Step for DOW UF Modules (16)Figure 18: Pressure Hold Test Schematic (20)TablesTable 1: IntegraPac TM Module Connections (5)Table 2: IntegraPac™ Module Dimensions and Specifications (5)Table 3: IntegraPac™ IP-51 and IP-77 Skid Details (6)Table 4: Glycerin addition for Freezing Point Depression (11)Table 5: DOW Ultrafiltration IntegraPac™ Modules and Skids Operating Conditions (11)Table 6: Qualified Feed Water Quality Parameters (17)Table 7: Summary of Cleaning Processes (17)DOW™ IntegraPac TM Ultrafiltration Module and Skid Product Manual1. IntroductionUltrafiltration (UF) involves pressure-driven separation of materials from a feed solution. The technology achieves separation through sieving and is used to remove particulate and microbial contaminants, but does not remove ions or molecules of low molecular weight. The process typically operates with a feed pressure of 4 to 100 psig (0.28 to 6.9 bar). UF plants are automated and have low operational labor requirements. Depending on the feed water quality, these systems can require frequent cleaning. UF membranes generally may have a service life of five years or longer, depending on system operations. UF technology is commercially available in tubular, hollow-fiber, plate and frame, flat sheet, and spiral wound configurations.UF membranes reject solutes ranging in size from 0.005 microns and larger. Figure 1 provides a guide to the relationship between common material sizes, separation processes, and pore size measurements. The UF membrane process separates molecules in solution on the basis of size. The pore size and molecular weight cut-off (MWCO) are often used to characterize a membrane. The pore size is the nominal diameter of the openings or micropores in the membrane expressed in micron (micron meters µm). The MWCO is the molecular mass or weight of a solute that rejects greater than 90 percent. The unit of measurement for MWCO is the Dalton (D).Different membrane materials with the same nominal MWCO may have differing solute rejection. Pore size distribution and uniformity rather than the chemical nature of the membrane material may cause this effect. Because factors other than pore size or MWCO affect the performance of membranes, challenge studies are used to demonstrate membrane performance and benchmark different membranes.Figure 1: Material Size and Membrane Process GuideThe DOW Ultrafiltration hollow fiber membrane shown in Figure 2 is 1.3 mm outside diameter and 0.7 mm inside diameter and is made from PVDF polymer. The fibers are strong because of a combination of the polymer type,The 0.03 μm nominal pore size combines high filtration performance and high flux. The smaller pore size provides stabile long term filtration performance compared to microfiltration hollow fiber membranes. Dow has taken its Ultrafiltration technology to a new product format, referred to as IntegraPac TM modules and skids. This range includes interconnecting end caps that reduce skid capital costs and engineering design efforts.2. Description of DOW ™ Ultrafiltration IntegraPac ™ Module2.1 IntegraPac TM Module FeaturesThe DOW Ultrafiltration IntegraPac TM modules are made from high strength, hollow fiber membranes and are engineered to reduce design and fabrication requirements with features and benefits including:∙ 0.03 µm pore size for removal of bacteria, viruses, and particulates, a 6 log removal of bacteria, a 2.5 log removal on viruses and a <2.5 SDI guarantee with proper operation∙ PVDF fibers which offer strength, chemical and fouling resistance which allows for extended membrane life and consistent long term performance∙ Outside-In flow configuration which allows higher TSS feed waters, while maintaining reliable system performance and producing high quality filtrateInnovative end-cap design enables direct coupling of modules reducing the need for piping and manifolds. The outside-in flow configuration allows the use of highly effective air scour cleaning which enhances particle removal and improves recovery. A dead-end flow format achieves higher recovery and energy savings. The module housing design eliminates the need for separate pressure vessels while the vertical orientation allows easy removal of air from cleaning and integrity testing processes.Figure 2: Wall Cross Section of the Hollow FiberThe IntegraPac TM module is shown in Figure 3. There are six connections on each module. The top end cap includes 4”DN 100 concentrate ports and an 1½” DN 40 union for the. The bottom end cap includes 4” DN 100 feed ports and a 3/8” air inlet connection on the side allowing for easy access. Included with the module are the couplers, air fitting, and transparent filtrate elbow. The IntegraPac TM skid offering is shown in Figure 4.Selective ActiveArea0.3 mm Wall ThicknessFeed Outside to InFiltrateSubstructureFigure 3: IntegraPac TM ModuleFiltrateConcentrateFeedAirConnectionF i g u r e 4: I n t e g r a P a c ™ S k i d C o m p o n e n t sFeed flow enters and is distributed into the modules through the side feed ports located on the bottom end cap. Feed flow enters the module on the outside of the fiber. The air connection is located on the side of the bottom end cap and is used for air scouring and integrity testing. The concentrate (discharge of waste flows from the outside of fiber) and filtrate ports (inside of fiber) are located on the top cap.Table 1: IntegraPac TM Module and Skid ConnectionsModule DN 100 (4 inch) Coupler DN 40 (1.5 inch) Threaded Union 3/8 inch Threaded (G3/8”) Skid DN 100 (4 inch) FlangeDN 150 (6 inch) Flange DN 65 (2.5inch) FlangeTable 1 shows the type and size of the connections for the IntegraPac ™ modules. 2.2 I NTEGRA P AC ™ M ODULE AND S KID S PECIFICATIONSTable 2 shows dimensions and specifications for the IntegraPac TM modules as depicted in Figure 5. Table 3 includes the dimensions and specifications for the IntegraPac TM skids as depicted in Figure 6. Note that manufacturing and thermal expansion tolerances are not included in the dimensions below. Refer to the installation drawings for this information.Table 2: IntegraPac ™ Module Dimensions and SpecificationsFigure 5: IntegraPac ™ IP 51 and IP 77 Module Reference DrawingT a b l e 3: I n t e g r a P a c I P -51 a n d I P -77 S k i d D e t a i l si g u r e 6: I n t e g r a P a c ™ S k i d R e f e r e n c e f o r D i m e n s i o n sx a m p l e : 2x 7 t e g r a P a c I P -51-14 A r r a n g e m e n t2.3 InstallationDetailed installation instructions are provided for the Dow IntegraPac TM skids upon request. Figure 7 provides the installation details for DOW™ IntegraPac TM modules.Figure 7: Installation™ Drawing for IntegraPac™ IP 51 and IP 77 Modules3. Shipping and StorageTo control bacterial growth and prevent damage caused by fibers drying out, the DOW TM Ultrafiltration IntegraPac TM modules are wetted and stored in a non-hazardous standard storage solution containing pH buffered food-grade 1% wt. sodium metabisulfite (SMBS). At the end of the manufacturing process, storage solution is automatically injected into the modules and all inlet and outlet ports are sealed using plastic discs, couplings, and threaded plugs. If the modules will be exposed to low temperatures, glycerin can be added to the storage solution to prevent freezing. The modules are sealed in a plastic bag prior to boxing. Depending on the total number of modules and method of shipping, the modules are either shipped on pallets as shown in Figure 8 below or in crates. Skid components (underframe, air scour piping, filtrate piping) are shipped in a separate boxes or crates.As part of the quality assurance program, all DOW™ IntegraPac™ modules are tested for integrity and performance (“wet tested”) at the factory, prior to packaging and s hipment.Storage solution is automatically delivered into the module housings prior to sealing of the module ports. The target volume of storage solution used for each module is 4L (1 gal) for IP-51; and 6L (1.6 gal) for IP-77. After adding storage solution and sealing the openings, the modules are enclosed in plastic bags prior to boxing for dust protection. The storage solution volume and complete sealing of the module ports and openings help ensure a stable solution environment during transportation and storage of new modules.The bagged modules are stored in cardboard boxes, with one module per box. Saddle-shaped cushion inserts are located at both ends of the box and along the module to support and protect the modules from damage during shipping and handling. Depending on the total number of modules and required shipping method, the boxed modules are either palleted or crated for transportation. Other skid parts are placed in crates and shipped with the modules.Mechanical damage to module housing, membrane, and connections may result if the module, boxed module, pallet or crate is dropped, and otherwise mishandled. The modules should be handled with care, with particular attention during transportation.Figure 8: Pallet of IntegraPac™ Modules for ShippingStorage of New IntegraPac™ Modules:Modules are recommended to be shipped and stored in their original packaging separate from the system racks, and loaded into the system just prior to start-up. There may be cases where the customer prefers to pre-install the modules on the system racks; for example, to allow factory acceptance testing of packaged or mobile systems prior to shipping, or work scheduling at site to eliminate the separate step for module loading.These guidelines should be followed for storage of new DOW TM IntegraPac™ modules:∙Keep modules in original factory packaging.∙To minimize the potential for leakage of storage solution, modules should be stored in horizontal position.∙To prevent collapse of the boxed modules, limit vertical stacking to four layers of modules.∙Store inside a cool and dry building or warehouse, away from sources of heat, ignition, and direct sunlight. An ambient temperature of 20°C (68 ºF) to 35°C (95 ºF) is recommended for ideal storageconditions.∙Temperature limits for modules during shipping and storage is 1ºC (33.8 ºF) to 40ºC (104 ºF). Modules must be protected from freezing or excessive heat during shipping and storage. In order to avoidabrupt variations in temperature; equalization should be allowed to occur at a maximum temperaturedifferential of +/- 1°C (1.8 ºF) per minute. If freezing conditions are anticipated during the customer’sshipping and storage of modules, please notify DW&PS at the time of order placement. Glycerine may be added to the storage solution at the factory prior to shipping to allow for shipment and storage atfreezing conditions.∙Sealed modules may be stored up to 1 year from date of manufacture, at the recommended storage conditions described above and in the original packaging.Storage of modules installed on a skid:Modules (hollow fibers) installed during assembly of a skid should not be allowed to dry out. Dry membrane fibers will irreversibly lose flux. Blank or “dummy” modules are available to accurat ely build and assemble a skid. Consult the manufacturer regarding modules installed on a skid and not planned for operations within 7 days. UF systems are designed to run continuously and membrane systems perform better when operated continuously. However, in reality UF systems will start-up and shutdown on some frequency. Before the UF system shuts down, the system must be cleaned using air-scour and filtrate water backwash to prevent bio-growth in the UF system.The water used for backwash before shutdown should not contain chemicals. Any feed water and backwash chemical dosing used should be stopped before the last cleaning and shutdown. After cleaning, all valves on the UF system should be closed to seal the system.To avoid leakage in the module housing end caps and clamps, the backpressure in the modules should be controlled when the UF system shuts down, especially in case of non-scheduled shutdowns, e.g. power failure or emergency shutdowns.When the system is down for greater than 96 hours, note the following:∙The module should not dry out. Dry membrane fibers will irreversibly lose flux at any time.∙The system should be adequately protected against bio-growth, flushed for duration of 30 to 60 minutes once a day, or operated every 24 hours. If flushing with feed water, the quality should be <10 NTU or<10 mg/L TSS.∙The system should be protected against temperature extremes. The UF system can be shut down for96 hours without adding storage solution or taking additional precautions for microbiological fouling.Storage of modules off skid:For cases of long-term shutdown where the modules will remain out- of-service for an extensive period of time (weeks to months), the modules can be removed from the skid and stored to eliminate maintenance operations. If the module has been in service, a Chemically Enhanced Backwash (CEB) or Clean In Place (CIP), followed by an air scour and backwash (without chemicals) should be conducted before decommissioning the equipment. Add 4 and 6 liters of storage solution into the feed port of an IP-51 and IP-77 IntegraPac™ module respectively. The module should be kept in the horizontal position at the time of filling, with the remaining ports and openings sealed. Once the target volume of storage solution is added into the module, seal the feed ports and store the modules in the horizontal position. Modules should be placed in a plastic bag for protection and keeping the modules clean.If the modules will be exposed to freezing conditions glycerin should be added to the storage solution. It is recommended that food grade glycerin be added to the storage solution at the target strength detailed in Table 5. Enough solution should be added to wet the hollow fibers. Completely filling the modules with solution is not required. Modules prepared as described can be stored for 90 days. Consult the manufacturer for storage durations greater than 90 days.Warranty return of modules:Review the project warranty information for authorization instructions before shipping modules for return. To prepare a module for shipment drain the module, plug or seal the openings/ports, and secure the module on a pallet or in a crate.Table 4: Glycerin addition for Freezing Point Depression4. DOW Ultrafiltration IntegraPac™ Process Description4.1 Process OperationsThe basic operating conditions for the DOW Ultrafiltration IntegraPac™ modules and Skids are shown in Table 6 below. Operating parameters for the cleaning steps are provided in the section that describes cleaning.Figure 9: Filtration Step for DOW UF IntegraPac Modules and SkidsNormal operation refers to the routine operating sequence of a system using the DOW TM Ultrafiltration IntegraPac™ module and includes the operating and backwash steps. Consult Dow for commissioning procedures. At initial start up the modules are flushed using a “forward flush” to remove any residual chemicals or trapped air from the module. The flush occurs on the outside of the fibers and does not filter the feed water to produce filtrate. After the forward flush is discontinued the modules can be placed in the operating mode. An operating cycle ranges from 20 to 90 minutes in duration. While operating, 100% of the feed water is converted to filtrate. This is also referred to as dead end filtration. As contaminants are removed and deposited on the hollow fiber membrane surface during the operating step the transmembrane pressure will rise. At the end of the preset operating cycle time, a backwash sequence commences.Figure 10: Air Scour Step for DOW UF IntegraPac™ Modules and SkidsThe backwash mode occurs automatically usually on a preset time basis. The steps include an air scour, draining by gravity, backwash through the top outlet, backwash through the bottom outlet, and a forward flush. The air scour step is used to loosen particulates deposited on the outside of the membrane surface. Air is introduced on the outside of the fibers using only the hold up water volume of the module. Displaced feedflow/concentrate is allowed to discharge through the top of the module for disposal. After 20 to 30 seconds of continuous or intermittent air scour the module is drained by gravity.Figure 11: Air Scour Gravity Drain Step for DOW UF IntegraPac™ Modules and SkidsAfter the gravity draining step, the first backwash step is performed. Filtrate flow is reversed from the inside of the fiber to the outside and backwash flow is removed from the module housing through the top outlet. Figure 12: Top Backwash Step for DOW UF IntegraPac™ Modules and SkidsThe second backwash step is performed to remove backwash water through the bottom outlet. Filtrate continues to flow from the inside of the fiber to the outside and backwash flow is removed from the module housing through the bottom outlet of the module, ensuring the entire length of fibers have been cleaned. The backwash steps can be repeated numerous times depending on the degree of fouling. After backwash is complete, a forward flush is performed to remove any remaining large particulates and air trapped on the outside of the fibers. After a backwash, the modules are returned to the normal operating mode.Figure 13: Bottom Backwash Step for DOW UF IntegraPac™ Modules and SkidsCEB operation refers to a chemically enhanced backwash. The frequency of a CEB is dependent on the feed water quality. On high quality feed waters a CEB may not be required. The CEB process is programmed to occur automatically but the frequency can be field adjusted after gaining site specific operating experience. The CEB is performed using UF filtrate and either an acid, or alkali chemical. The alkali solution can be a combination of oxidant and caustic to more efficiently clean contaminants from the membrane surface. Selection of chemicals is made according the DOW Ultrafiltration applications guidelines and understanding of the foulants in the feed water.Figure 14: Forward Flush Step for DOW UF IntegraPac™ Modules and SkidsThe CEB is performed using the steps of a normal backwash except during a CEB, chemical is dosed into the backwash water and a soak step is added after the second backwash step. In addition the CEB can be performed at reduced flow, usually 50% of the backwash flux.Figure 15: Chemically Enhanced Backwash "Top" Step for DOW UF IntegraPac™ Modules and SkidsThe soak is performed for 5 to 20 minutes and allows time for the chemical to react with contaminants that have attached to the membrane surface or penetrated the fiber wall. Intermittent air scour can be applied during the soak step. After the soak a routine backwash including air scour, gravity drain, top and bottom backwash, and forward flush is performed to remove any remaining particulates and purge residual chemicals. After a CEB and at the start of the operating step, the initial filtrate produced may be sent to waste to remove residual chemicals. This step is dependent on the system piping and valve design and the downstream requirements for the filtrate. Figure 16: Chemically Enhanced Backwash "Bottom" step for DOW UF IntegraPac™ Modules and SkidsCIPA clean in place (CIP) is an offline operation that includes backwashes and chemical recirculation and soaking to clean the hollow fibers. The CIP is an on demand operation. It can be an automated process but is most often conducted manually. The frequency of a CIP is dependent on the feed water quality and routine fouling control strategy but can range from 1 to 6 months. Prior to a CIP the routine backwash steps including air scour, draining, backwash through the top outlet, and backwash through the bottom outlet are performed. Thebackwash steps can be repeated multiple times to remove contaminants or foulants not requiring chemical removal. After completing the backwash steps, the module is drained by gravity to remove excess water and prevent dilution of the CIP chemical solution. The CIP chemical solutions are recirculated through the modules on the outside of the hollow fibers for 30 minutes through a chemical mixing and solution tank. A portion of the recycle stream can be passed through the hollow fibers and recycled to the chemical cleaning tank. A cartridge filter is used to remove particulates from the CIP solution during recycle. Note that the CIP solution can be heated to 40ºC to improve effectiveness for removing contaminants from the hollow fibers. The CIP solution pH can be measured during the cleaning process and refreshed with chemicals to maintain the target pH and effectiveness of the solution. A soak is performed after the initial recycle step for 60 minutes or longer depending on the degree of fouling that has occurred. After the soak step, CIP chemicals are again recycled through the modules on the outside of the hollow fibers for 30 minutes. Air scour for short durations can be performed during the soak and recycle steps to prevent channeling of the solution through the module. When the recycle is completed an air scour is performed and then the module is drained to remove the concentrated chemical solution. The top and bottom backwash and the forward flush steps are also performed to remove any remaining particulates on the outside of the fibers. After a CIP and at the start of the operating step, filtrate may be sent to waste to remove residual chemicals held in the fiber or module. The CIP steps described above are for a single alkali or acid chemical solution. If both an acid and alkali cleaning are required, the CIP steps would be repeated for each chemical solution.Figure 17: Clean in Place Cleaning Step for DOW UF IntegraPac™ Modules and Skids4.2 PretreatmentDOW Ultrafiltration IntegraPac™ Modules and Skids designs are based on qualified feed water conditions as shown in Table 7. The UF IntegraPac™ Modules and Skids can tolerate period excursions in feed water quality as shown as the maximum allowable in Table 7. If the feed water quality is outside of the design basis range Dow should be consulted to determine if a pilot study is needed to confirm performance or if a pretreatment step is necessary. Also, if the membrane filtration system is designed and installed to the conditions below but the feed water quality is not maintained, please consult Dow Water & Process Solutions.2 Residual in filtrateDepending on application, a safety screen of 100 - 300 microns is recommended on the feed before the UF IntegraPac™ Modules and Skids. In seawater applications, a strainer size of 100 – 150 microns is recommended to prevent the growth of barnacles and mussel larvae in upstream, process pipework and tanks. A variety of technologies can be used such as self-cleaning screens and filters and bag, cartridge, or disc filters. Depending on the type of water or range of feed water parameters other pretreatment processes such as oxidation, coagulation, clarification and media filtration may also be needed.4.3 CleaningSummary of InformationThe process operating parameters for the cleaning steps are provided in Table 8 below.4.4 FoulingThere are four types of fouling common to UF operations including particulate, biological, inorganic, and organic.Particulate fouling is caused by suspended solids, colloids, and turbidity. To reduce particulates in UF feed water coagulation, sedimentation, clarification, and filtration are often used. The common cleaning method for particulate fouling is air scour and backwash.Biological fouling is caused by the growth of microorganisms. Using in-line chemical feed of chlorine or biocide or eliminating nutrients by using PAC, GAC, or coagulation, can reduce biological fouling. The cleaning method for removal of biological fouling is Chemically Enhanced Backwash (CEB) with oxidizers or biocides (NaOCl,H2O2, SBS). Shock chlorination can also be effective for biological fouling control. Inorganic fouling is caused by the precipitation of inorganics on the membrane. The rate of inorganic fouling can be controlled through oxidation/precipitation and/or filtration as pretreatment to the UF or in some cases reducing the hardness of the feed water. The recommended cleaning method for removal of inorganic fouling is chemically enhanced backwash with acid at pH 2 (HCl, H2SO4, Citric, Oxalic Acid).Organic fouling is caused by organics adsorbing on the membrane (silt, organic acids, humus). PAC, GAC, or coagulation can be used to control the rate of organic fouling. The common cleaning method for removal of organic fouling is CEB with alkali at pH 12 (NaOH).5. Operating Information5.1 Start UpThe following procedures should be followed for start-up of DOW TM IntegraPac™ Ultrafiltration Modules and Skids. Manually start the equipment during initial operation. Flush the UF system to remove the storage solution used in shipping before starting the equipment. Target a filtrate flow of 60% of design during initial operations. After 24 hours the filtrate flow can be adjusted to design conditions.Pre-start checks1. The UF pre-treatment system should operate properly and the UF feed water should meet the design requirements. Ensure that chemical addition points are properly located and that proper mixing of chemicals in the feed streams can occur. Check the addition of pretreatment chemicals.2. Verify that the drain/waste collection system is functional3. Verify that the PLC program is loaded and functioning4. Complete an electrical system check. Verify that the instrumentation is working and calibration is completed. Calibrate gauges and meters based on manufacturers’ recommenda tions.5. Clean and connect interconnecting piping. Flush system without modules to remove fabrication debris. During the flushing operation, check all pipe connections and valves for leaks. Tighten connections where necessary.6. Residual air should be removed from the system during start-up.Start UpCheck that all valves are closed and pumps are off before starting the system. Start the equipment by following the steps below:1.Pumps should be aligned, lubricated, and properly rotated.2.Open valves and start the feed pump3.Fill system and start a flush4.Start the backwash pump5.Set and adjust the backwash pressure6.Set and adjust the inlet air pressure7.Set backwash time interval8.Set air scour time interval9.Set backwash sequence。
陶氏化学最新版膜元件技术手册
随着水处理行业的不断发展,各种配件也在市场上逐渐问世。
水处理设备中膜占据了很重要的位置,因为膜质量好的好坏直接影响设备出水质量,也间接影响了用水及工业生产的质量。
很多人在选膜的时候都不注意陶氏膜型号问题,总是认为通量越大的膜越好,其实不是的,以陶氏反渗透膜为例,陶氏反渗透膜的膜元件为螺旋卷式结构,简称卷式结构。
它是由多叶膜袋组成,每一叶膜袋由两片膜正面相背的膜片、置于两片膜片间的产品水流道和放置在膜表面的湍流网格状进水流道组成,该膜袋三边用胶粘剂密封,第四边开口于有孔的产水收集管上。
与其它元件结构,如管式、板式和中空纤维式相比,具有水流分布均匀、耐污染程度高、更换费用低、管路简单、易清洗维护保养和设计自由度大等优点,成为目前主要膜元件结构形式。
根据陶氏RO反渗透膜的进水水质选择膜的型号:
进水TDS≤1000ppm可选用超低压膜元件进水
3000ppm≥TDS≥1000ppm可选用抗污染膜元件进水
TDS≥3000ppm可选用苦咸水淡化膜元件
进水TDS≥5000PPM可选用海水淡化膜元件
根据产水量选择膜元件(考虑选择大膜还是小膜):
一般情况∶产水进水<4T/H的反渗透设备多选用4040膜元件;0.25吨/小时反渗透设备,选择4040的膜为1根,0.5吨/小时的2根,1吨/小时反渗透4根,以此类推。
产水量≥4T/H的反渗透设备多选用8040膜元件。
8040膜元件大概为1吨/小时,4吨/小时的反渗透设备就选择4根8040膜元件。
上文所述就是介绍了如何根据用途选择浙江陶氏反渗透膜元件型号,使用者可根据自己的要求与原水水质选择适合自己的膜。
陶氏超滤膜2880技术参数1. 引言超滤膜是一种常用于分离和过滤液体的薄膜,其孔径较小,可以有效地去除溶质和悬浮物。
陶氏超滤膜2880是一种高效、高通量的超滤膜,本文将介绍其技术参数及特点。
2. 技术参数陶氏超滤膜2880具有以下主要技术参数:2.1 膜材料陶氏超滤膜2880采用聚酰胺材料制成,聚酰胺是一种具有良好耐化学性和机械性能的聚合物材料。
该材料在超滤过程中能够有效地分离溶质和悬浮物,并保持较高的通量。
2.2 孔径大小陶氏超滤膜2880的孔径大小为0.01微米(μm),这意味着只有小于等于0.01μm的颗粒才能穿过该膜。
这样可以有效地去除大部分溶质、病毒、细菌等微小颗粒,从而实现液体的分离和纯化。
2.3 通量陶氏超滤膜2880具有较高的通量,通量是指单位时间内通过膜面积的液体体积。
该膜的通量可达到5000升/平方米/小时(L/m²/h),这意味着在相同时间内可以处理更多的液体,提高生产效率。
2.4 耐温性能陶氏超滤膜2880具有良好的耐温性能,可在较宽的温度范围内使用。
其耐温范围为0℃至45℃,适用于大部分工业生产环境下的超滤过程。
2.5 PH范围陶氏超滤膜2880适用于广泛的PH范围。
其适用PH范围为1至13,可以在酸性、中性和碱性环境下进行超滤过程。
2.6 操作压力陶氏超滤膜2880的操作压力为最大10巴(bar),压力越高,通过膜的液体流速越快。
然而,在选择操作压力时需要注意不要超过该膜所能承受的最大压力,以免损坏膜材料。
3. 特点与应用陶氏超滤膜2880具有以下特点和应用:3.1 高效分离由于陶氏超滤膜2880的孔径较小,可以有效地去除溶质和悬浮物,从而实现高效的分离和纯化。
该膜广泛应用于水处理、食品与饮料生产、药品制造等领域,可用于去除杂质、浊度、微生物等。
3.2 高通量陶氏超滤膜2880具有较高的通量,可以在相同时间内处理更多的液体。
这使得该膜在大规模工业生产中具有重要意义,能够提高生产效率和节约成本。
目录第一章公司简介 1 第二章超滤技术介绍 3 第三章DOW TM Ultrafiltration超滤膜介绍11 第四章DOW TM Ultrafiltration膜组件性能参数15 第五章超滤系统的设计21 第六章超滤装置的运行28 第七章超滤元件的完整性检测36 第八章系统的维护及故障分析38 第九章超滤装置的清洗40 第十章超滤膜组件的包装、运输与贮存43 第十一章工程运行实例44 第十二章免责说明50SFX2660安装指导图SFX2860安装指导图超滤系统通用P & IDDOW RESTRICTED - For internal use only第一章公司简介1.1 公司概况作为陶氏化学旗下的差异化业务部门,陶氏水处理及过程解决方案业务部提供广泛系列的离子交换树脂、反渗透膜、超滤膜以及连续电除盐产品,在工业与市政用水、化学工艺、制药、电力、居民用水以及污水处理与回用等各个主要应用领域占据着强有力的地位。
陶氏是世界唯一一家同时具有膜和离子交换树脂两大技术和产品的公司。
这两项技术均可从溶液中分离溶解的矿物质以及有机物,最终生成符合国际最严格水净化标准的水,从而以更低的运营成本生产出高品质的水。
陶氏水处理及过程解决方案以卓越的技术创新和强大的应用开发能力,结合精湛的设计和生产工艺,为客户提供高性能、超稳定、长寿命的陶氏超滤膜产品。
其拥有资深的膜分离技术专家、经验丰富的工程师和先进的分析检测手段为客户提供专业高效的服务,随时解决用户遇到的问题。
同时,凭借其先进的技术和对行业的深度了解为客户提供经济、节能、可持续发展的水处理解决方案。
DOW TM Ultrafilitration 陶氏超滤膜在饮用水处理、污水中水回用、反渗透预处理等方面有着广泛的应用。
其优异的性能帮助客户开发有挑战性的工程应用,从循环水零排放到炼油废水处理,从电子研磨废水回用到海水淡化预处理,陶氏超滤膜不断突破水处理的新领域。
陶氏膜元件手册选用反渗透和纳滤设备时需要考虑些什么?1. RO和NF基础RO和NF是一种错流过滤技术,可以去除水中杂质,其分离能力达到去除离子的水平。
毫无疑问,它可以去除较大的各类物质。
但由胶体、水垢及微生物(细菌、病毒和藻类)引起的污染,是RO和NF 系统运行面临的最主要的问题。
为避免发生这些问题而造成不必要的花费,在系统设计阶段,对这一潜在的污染问题就应采取考虑充分的预防措施。
当你明白细菌怎样随时间繁殖,你就会明白为什么生物污堵是RO和NF系统最应重点关注的因素,地表水、废水和海水等富含微生物活性的水源是极易污染膜系统的水源。
表1表明经过预处理后,即使只有一个细菌存活,在不长的时间内也可能会引发严重的膜系统微生物污染问题。
一个标准的工业RO和NF装置如图1所示,膜元件串联排列在压力容器内,几个压力容器并联排列成一段、两段或更多段,构成特定的一个系列,第二段通常用来处理第一段的浓水,以提高回收率。
让我们分析一下,当水流通过串联在一起的膜元件时产品水和浓缩水流量的变化趋势:全部进水被高压泵泵入膜元件内时,经过膜的过滤成为产水,余下的水对于该元件来讲成为它的浓水,该浓水继续进入后续元件内,成为后续元件的进水,由于水量减少,水流流速降低,而水中的杂质浓度却不断升高,这一状况在所有的压力容器内沿水流方向连续变化,直至流速减慢至刚好维持涡流状态流过膜表面。
用计算机进行设计计算时,应确保最后一段最末一支膜元件内的流速和浓度保持在最低极限之内,不致于在膜系统运行中发生因膜面流速过低,降低了元件错流自净的能力而产生杂质沉淀污染膜表面的问题。
这就是为什么RO和NF系统必须在设计范围内进行操作,任何变化如进水温度、进水化学特性或进水流速变化、水流分布不均匀和不平衡都将导致RO和NF系统操作超过设定的参数范围,引发膜系统污染。
2. 进水接下来需要考虑的是进水,诸如预期的水量、水质以及水源及其可能存在的问题。
有时目前的原水流量可以满足要求,但请你确定在预估原水量当中还应包括将来的用水量增加的计划,并且目前所需要水量的变化也应在设计时予以考虑。
陶氏超滤膜2880技术参数【原创实用版】目录1.陶氏超滤膜 2880 概述2.陶氏超滤膜 2880 的技术参数3.陶氏超滤膜 2880 的应用领域4.陶氏超滤膜 2880 的优点和局限性5.结语正文一、陶氏超滤膜 2880 概述陶氏超滤膜 2880 是一种由陶氏化学公司生产的超滤膜,具有较高的过滤精度和良好的耐化学性。
该产品广泛应用于水处理、饮料、食品和医药等领域,为用户提供安全、干净的溶液。
二、陶氏超滤膜 2880 的技术参数1.过滤精度:陶氏超滤膜 2880 的过滤精度可达到 10-100,000Da,能有效去除水中的悬浮物、细菌和病毒等。
2.膜材质:该超滤膜采用聚醚砜 (PEG) 材料制成,具有良好的耐热性和耐化学性。
3.膜形式:陶氏超滤膜 2880 有平板式和卷式两种形式,用户可根据实际需要进行选择。
4.工作温度:该超滤膜的工作温度范围为 5-45℃,适应性强。
5.工作压力:陶氏超滤膜 2880 的工作压力为 0.1-0.6MPa,可在低压条件下进行高效过滤。
三、陶氏超滤膜 2880 的应用领域1.水处理:陶氏超滤膜 2880 可应用于城市自来水、地下水、工业废水等的净化处理,提高水质。
2.饮料:该超滤膜可用于果汁、茶饮料、碳酸饮料等饮料的澄清和除菌处理,保证饮料的安全和口感。
3.食品:陶氏超滤膜 2880 可用于豆腐、豆浆、肉制品等食品的加工过程中,提高食品的品质和安全性。
4.医药:该超滤膜可应用于制药工艺中的除菌、除热源和澄清等过程,确保药品的质量和安全性。
四、陶氏超滤膜 2880 的优点和局限性1.优点:陶氏超滤膜 2880 具有较高的过滤精度,能有效去除水中的悬浮物和微生物;耐化学性好,适用于多种工业领域;低压条件下高效过滤,节能环保。
2.局限性:该超滤膜的过滤精度相对较低,不能满足高精度过滤的需求;膜材质较为脆弱,需要注意保护。
五、结语陶氏超滤膜 2880 作为一种高效、安全的过滤设备,广泛应用于水处理、饮料、食品和医药等领域。
目录第一章公司简介 1 第二章超滤技术介绍 3 第三章DOW TM Ultrafiltration超滤膜介绍11 第四章DOW TM Ultrafiltration膜组件性能参数15 第五章超滤系统的设计21 第六章超滤装置的运行28 第七章超滤元件的完整性检测36 第八章系统的维护及故障分析38 第九章超滤装置的清洗40 第十章超滤膜组件的包装、运输与贮存43 第十一章工程运行实例44 第十二章免责说明50SFX2660安装指导图SFX2860安装指导图超滤系统通用P & IDDOW RESTRICTED - For internal use only第一章公司简介1.1 公司概况作为陶氏化学旗下的差异化业务部门,陶氏水处理及过程解决方案业务部提供广泛系列的离子交换树脂、反渗透膜、超滤膜以及连续电除盐产品,在工业与市政用水、化学工艺、制药、电力、居民用水以及污水处理与回用等各个主要应用领域占据着强有力的地位。
陶氏是世界唯一一家同时具有膜和离子交换树脂两大技术和产品的公司。
这两项技术均可从溶液中分离溶解的矿物质以及有机物,最终生成符合国际最严格水净化标准的水,从而以更低的运营成本生产出高品质的水。
陶氏水处理及过程解决方案以卓越的技术创新和强大的应用开发能力,结合精湛的设计和生产工艺,为客户提供高性能、超稳定、长寿命的陶氏超滤膜产品。
其拥有资深的膜分离技术专家、经验丰富的工程师和先进的分析检测手段为客户提供专业高效的服务,随时解决用户遇到的问题。
同时,凭借其先进的技术和对行业的深度了解为客户提供经济、节能、可持续发展的水处理解决方案。
DOW TM Ultrafilitration 陶氏超滤膜在饮用水处理、污水中水回用、反渗透预处理等方面有着广泛的应用。
其优异的性能帮助客户开发有挑战性的工程应用,从循环水零排放到炼油废水处理,从电子研磨废水回用到海水淡化预处理,陶氏超滤膜不断突破水处理的新领域。
陶氏2880超滤膜参数1. 简介陶氏2880超滤膜是一种用于液体分离和浓缩的膜技术。
它采用聚合物材料制成,具有高通量、高截留率和优异的化学稳定性。
该膜广泛应用于水处理、食品与饮料工业、生物医药等领域。
2. 技术参数2.1 膜材料陶氏2880超滤膜采用聚酰胺材料制成,具有良好的耐化学性和机械强度。
该材料能够有效过滤不同尺寸的颗粒和溶质,并保持较高的通量。
2.2 孔径大小陶氏2880超滤膜的孔径大小通常在0.01微米至0.1微米之间。
这个范围内的孔径可以有效地截留大部分溶质和颗粒,同时允许溶剂和小分子通过。
2.3 截留率陶氏2880超滤膜具有较高的截留率,通常能够截留大于1000道尔顿(Dalton)的分子。
这使得它在去除细菌、病毒、蛋白质等大分子物质方面具有良好的效果。
2.4 通量陶氏2880超滤膜具有较高的通量,通常在1000 L/㎡·h以上。
这意味着单位面积上的膜通量很大,可以提高工艺效率和生产能力。
2.5 温度范围陶氏2880超滤膜能够在较宽的温度范围内工作,通常可耐受0℃至60℃的温度。
这使得它适用于不同工业领域中不同温度条件下的应用。
2.6 pH 范围陶氏2880超滤膜对 pH 值具有一定的适应性,通常能够耐受 pH 2至pH 11的范围。
但建议在使用前根据具体情况进行 pH 值调整和优化。
3. 应用领域陶氏2880超滤膜广泛应用于以下领域:3.1 水处理与废水回收由于陶氏2880超滤膜具有高截留率和较高的通量,它被广泛应用于水处理和废水回收领域。
通过超滤膜的过滤作用,可以有效去除水中的悬浮物、胶体、细菌等杂质,提高水质。
3.2 食品与饮料工业陶氏2880超滤膜在食品与饮料工业中的应用主要集中在浓缩、分离和净化方面。
例如,可以利用超滤膜将果汁中的水分浓缩,提高产品的口感和品质。
3.3 生物医药陶氏2880超滤膜在生物医药领域中被广泛应用于分离和纯化工艺。
它可以有效地去除溶液中的大分子杂质,提高生物制药产品的纯度和活性。
世韩超滤膜配件规范及效果说明
陶氏超滤膜技术现在是一个更成熟的水处理技术,广泛应用于水处理工厂。
超滤技术是一种膜分离过程,通过水过滤的压力。
在水里包含了一些胶体和相对高分子量的物质将会被过滤掉和水净化效果。
当水通过超滤膜时,大部分的水含有胶体硅可以删除,同时可以删除大量的有机物质等等。
在超滤技术中世韩超滤膜配件作为其中最重要的元件,根据推动力差别可分为逆渗透膜过滤、超滤膜过滤和微孔膜过滤。
超滤膜大多由醋酯纤维或与其性能类似的高分子材料制得。
例如纤维素衍生物、聚砜、聚丙烯腈、聚酰胺及聚碳酸酯等。
超滤膜过滤式使用压力采用超滤膜以压力差为推动力的膜过滤方法为超滤膜过滤。
通常情况下是根据膜层所能阻流的最小粒子的尺寸来分辨。
超滤膜一般为高分子分离膜,也可以制成平面膜或者是卷式膜等其他形式。
超滤膜最适于处理溶液中溶质的分离和增浓,或采用其他分离技术所难以完成的胶状悬浮液的分离。
超滤法作为水处理应用比较广泛的方法,其优点也是比较明显,在常温下就可以进行,温度5-45度之间都可以。
过滤过程不需要加热,对使溶液中的微量成分回收和低浓度,溶液的浓度浓缩都非常有效果。
超滤装置有很多种,比较常用的是卷式、板式、和中空纤维。
卷式超滤装置含有的膜面积相对来说说比较大,结构比较紧凑。
中空纤维是单位膜面积最大的装置方式。
这些装置的工作效率都比较高,占地面积小,具有良好结构。
超滤膜的工业应用非常广泛,已经成为新化工单元操作之一。
用于分离、浓缩和纯化的生物产品,医疗产品和食品工业。
还用于血液处理、废水处理和终端处理厂的准备。
我国已成功使用超滤膜浓缩净化的中草药。
超滤膜技术的进步,其过滤函数将得到改善和加强,对人类社会的贡献将会越来越多。