Matlab符号偏微分
- 格式:pdf
- 大小:386.38 KB
- 文档页数:3
引言偏微分方程定解问题有着广泛的应用背景。
人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。
然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。
现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。
偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
常用的方法有变分法和有限差分法。
变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。
虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。
随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。
从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。
从这个角度说,偏微分方程变成了数学的中心。
一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
在MATLAB中,可以使用`dsolve`函数来求解微分方程组。
`dsolve`函数可以求解常微分方程(Ordinary Differential Equations,ODE)和偏微分方程(Partial Differential Equations,PDE)。
下面是一个示例,演示如何使用`dsolve`函数来求解一个简单的微分方程组:
```matlab
syms t x(t) y(t)
eq1 = @(t,x) x(t)/x(t-1) - 2; 第一个方程
eq2 = @(t,x) x(t-1)/x(t) - 3; 第二个方程
sol = dsolve({eq1, eq2}, x(t), t); 求解微分方程组
disp(sol); 显示解
```
在这个示例中,我们定义了两个方程`eq1`和`eq2`,然后使用`dsolve`函数来求解这两个方程组成的微分方程组。
注意,我们需要将方程以函数的形式传递给`dsolve`函数。
在`dsolve`函数中,第一个参数是一个包含所有方程的向量,第二个参数是要求解的未知函数。
`dsolve`函数将返回一个包含所有解的表达式。
在本例中,我们将解存储在`sol`变量中,并使用`disp`函数显示解。
请注意,在使用`dsolve`函数时,需要确保输入的方程是正确的,并且与所求解的问题相对应。
此外,还需要注意符号和函数的定义和使用方式。
引言偏微分方程定解问题有着广泛的应用背景。
人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。
然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。
现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。
偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
常用的方法有变分法和有限差分法。
变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。
虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。
随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。
从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。
从这个角度说,偏微分方程变成了数学的中心。
一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
一、介绍Matlab是一种强大的数学计算工具,用于解决各种数学问题,包括求解偏微分方程组。
偏微分方程组是描述自然界中许多物理现象的数学模型,其求解对于科学研究和工程应用具有重要意义。
在Matlab中,可以通过多种方法来求解偏微分方程组,包括有限差分方法、有限元方法、谱方法等。
本文将对Matlab中求解偏微分方程组的方法进行介绍和讨论。
二、有限差分方法有限差分方法是一种常用的求解偏微分方程组的数值方法。
其基本思想是将连续的变量离散化为有限个点,并利用差分逼近来近似偏微分方程的导数。
在Matlab中,可以通过编写相应的差分方程组来求解偏微分方程组。
对于二维热传导方程,可以将偏导数用中心差分逼近,并构建相应的差分方程来求解温度分布。
通过循环迭代的方式,可以逐步逼近偏微分方程的解,并得到数值解。
三、有限元方法有限元方法是另一种常用的求解偏微分方程组的数值方法。
其基本思想是将求解区域离散化为有限个单元,并在每个单元内建立近似函数来逼近原始方程。
在Matlab中,可以利用有限元建模工具箱来构建离散化的网格,并编写相应的有限元方程来求解偏微分方程组。
对于弹性力学方程,可以利用有限元方法来求解结构的位移和应力分布。
通过求解线性方程组,可以得到离散化网格上的数值解。
四、谱方法谱方法是一种利用特定基函数展开偏微分方程解的方法。
其基本思想是选取适当的基函数,并通过展开系数来得到偏微分方程的数值解。
在Matlab中,可以通过谱方法工具箱来实现对偏微分方程组的求解。
对于波动方程,可以利用正交多项式展开来逼近波函数,通过选取适当的基函数和展开系数,可以得到偏微分方程的数值解。
五、总结在Matlab中,有多种方法可以用来求解偏微分方程组,包括有限差分方法、有限元方法、谱方法等。
这些方法各有特点,适用于不同类型的偏微分方程和求解问题。
通过合理地选择方法和编写相应的数值算法,可以在Matlab中高效地求解偏微分方程组,为科学研究和工程应用提供重要支持。
Matlab 偏微分方程拟合一、引言1. Matlab 是一款功能强大的数学软件,广泛应用于工程、科学和计算领域。
2. 偏微分方程是描述自然现象中变量之间关系的数学模型,在许多领域中都有重要的应用。
3. 通过 Matlab 可以进行偏微分方程的拟合,从而得到模型的参数和解析解。
二、偏微分方程拟合的基本概念1. 偏微分方程是含有多个未知函数及其偏导数的方程。
2. 在实际应用中,往往需要根据观测数据来拟合偏微分方程,求解模型的参数。
3. 偏微分方程拟合的基本思想是寻找能够使模型与观测数据吻合的参数。
三、Matlab 中的偏微分方程拟合1. Matlab 提供了丰富的工具箱和函数用于偏微分方程的数值解和拟合。
2. 通过 Matlab 中的偏微分方程工具箱,可以进行参数估计、模型拟合和解析解求解。
3. Matlab 中的偏微分方程拟合工具能够帮助用户快速、准确地求解复杂的偏微分方程拟合问题。
四、偏微分方程拟合的实际案例1. 以热传导方程为例,利用 Matlab 进行偏微分方程拟合。
2. 根据实验数据,建立热传导方程的数学模型,并利用 Matlab 进行参数拟合。
3. 通过对比拟合结果与实际数据,验证 Matlab 对偏微分方程拟合的准确性和可靠性。
五、偏微分方程拟合的应用前景1. 偏微分方程拟合在工程、科学和计算领域具有广泛的应用前景。
2. 利用 Matlab 进行偏微分方程拟合,能够帮助用户快速、准确地解决复杂的数学建模和仿真问题。
3. 随着计算技术的不断进步,偏微分方程拟合在实际应用中将发挥越来越重要的作用。
六、总结1. Matlab 提供了强大的偏微分方程拟合工具,能够帮助用户解决复杂的数学建模和仿真问题。
2. 通过本文的介绍,读者可以了解到 Matlab 中偏微分方程拟合的基本概念、实际应用案例和应用前景。
3. 鼓励读者在实际工程和科学研究中,充分发挥 Matlab 偏微分方程拟合工具的优势,取得更好的研究成果。
[原创]偏微分方程数值解法的MATLAB源码【更新完毕】说明:由于偏微分的程序都比较长,比其他的算法稍复杂一些,所以另开一贴,专门上传偏微分的程序谢谢大家的支持!其他的数值算法见:..//Announce/Announce.asp?BoardID=209&id=82450041、古典显式格式求解抛物型偏微分方程(一维热传导方程)function [U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C)%古典显式格式求解抛物型偏微分方程%[U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C)%%方程:u_t=C*u_xx 0 <= x <= uX,0 <= t <= uT%初值条件:u(x,0)=phi(x)%边值条件:u(0,t)=psi1(t), u(uX,t)=psi2(t)%%输出参数:U -解矩阵,第一行表示初值,第一列和最后一列表示边值,第二行表示第2层……% x -空间变量% t -时间变量%输入参数:uX -空间变量x的取值上限% uT -时间变量t的取值上限% phi -初值条件,定义为内联函数% psi1 -边值条件,定义为内联函数% psi2 -边值条件,定义为内联函数% M -沿x轴的等分区间数% N -沿t轴的等分区间数% C -系数,默认情况下C=1%%应用举例:%uX=1;uT=0.2;M=15;N=100;C=1;%phi=inline('sin(pi*x)');psi1=inline('0');psi2=inline('0');%[U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C);%设置参数C的默认值if nargin==7C=1;end%计算步长dx=uX/M;%x的步长dt=uT/N;%t的步长x=(0:M)*dx;t=(0:N)*dt;r=C*dt/dx/dx;%步长比r1=1-2*r;if r > 0.5disp('r > 0.5,不稳定')end%计算初值和边值U=zeros(M+1,N+1);for i=1:M+1U(i,1)=phi(x(i));endfor j=1:N+1U(1,j)=psi1(t(j));U(M+1,j)=psi2(t(j));end%逐层求解for j=1:Nfor i=2:MU(i,j+1)=r*U(i-1,j)+r1*U(i,j)+r*U(i+1,j);endendU=U';%作出图形mesh(x,t,U);title('古典显式格式,一维热传导方程的解的图像') xlabel('空间变量x')ylabel('时间变量t')zlabel('一维热传导方程的解U')return;古典显式格式不稳定情况古典显式格式稳定情况2、古典隐式格式求解抛物型偏微分方程(一维热传导方程)function [U x t]=PDEParabolicClassicalImplicit(uX,uT,phi,psi1,psi2,M,N,C)%古典隐式格式求解抛物型偏微分方程%[U x t]=PDEParabolicClassicalImplicit(uX,uT,phi,psi1,psi2,M,N,C)%%方程:u_t=C*u_xx 0 <= x <= uX,0 <= t <= uT%初值条件:u(x,0)=phi(x)%边值条件:u(0,t)=psi1(t), u(uX,t)=psi2(t)%%输出参数:U -解矩阵,第一行表示初值,第一列和最后一列表示边值,第二行表示第2层……% x -空间变量% t -时间变量%输入参数:uX -空间变量x的取值上限% uT -时间变量t的取值上限% phi -初值条件,定义为内联函数% psi1 -边值条件,定义为内联函数% psi2 -边值条件,定义为内联函数% M -沿x轴的等分区间数% N -沿t轴的等分区间数% C -系数,默认情况下C=1%%应用举例:%uX=1;uT=0.2;M=50;N=50;C=1;%phi=inline('sin(pi*x)');psi1=inline('0');psi2=inline('0');%[U x t]=PDEParabolicClassicalImplicit(uX,uT,phi,psi1,psi2,M,N,C);%设置参数C的默认值if nargin==7C=1;end%计算步长dx=uX/M;%x的步长dt=uT/N;%t的步长x=(0:M)*dx;t=(0:N)*dt;r=C*dt/dx/dx;%步长比Diag=zeros(1,M-1);%矩阵的对角线元素Low=zeros(1,M-2);%矩阵的下对角线元素Up=zeros(1,M-2);%矩阵的上对角线元素for i=1:M-2Diag(i)=1+2*r;Low(i)=-r;Up(i)=-r;endDiag(M-1)=1+2*r;%计算初值和边值U=zeros(M+1,N+1);for i=1:M+1U(i,1)=phi(x(i));endfor j=1:N+1U(1,j)=psi1(t(j));U(M+1,j)=psi2(t(j));end%逐层求解,需要使用追赶法(调用函数EqtsForwardAndBackward)for j=1:Nb1=zeros(M-1,1);b1(1)=r*U(1,j+1);b1(M-1)=r*U(M+1,j+1);b=U(2:M,j)+b1;U(2:M,j+1)=EqtsForwardAndBackward(Low,Diag,Up,b);endU=U';%作出图形mesh(x,t,U);title('古典隐式格式,一维热传导方程的解的图像')xlabel('空间变量x')ylabel('时间变量t')zlabel('一维热传导方程的解U')return;此算法需要使用追赶法求解三对角线性方程组,这个算法在上一篇帖子中已经给出,为了方便,再给出来追赶法解三对角线性方程组function x=EqtsForwardAndBackward(L,D,U,b)%追赶法求解三对角线性方程组Ax=b%x=EqtsForwardAndBackward(L,D,U,b)%x:三对角线性方程组的解%L:三对角矩阵的下对角线,行向量%D:三对角矩阵的对角线,行向量%U:三对角矩阵的上对角线,行向量%b:线性方程组Ax=b中的b,列向量%%应用举例:%L=[-1 -2 -3];D=[2 3 4 5];U=[-1 -2 -3];b=[6 1 -2 1]'; %x=EqtsForwardAndBackward(L,D,U,b)%检查参数的输入是否正确n=length(D);m=length(b);n1=length(L);n2=length(U);if n-n1 ~= 1 || n-n2 ~= 1 || n ~= mdisp('输入参数有误!')x=' ';return;end%追的过程for i=2:nL(i-1)=L(i-1)/D(i-1);D(i)=D(i)-L(i-1)*U(i-1);endx=zeros(n,1);x(1)=b(1);for i=2:nx(i)=b(i)-L(i-1)*x(i-1);end%赶的过程x(n)=x(n)/D(n);for i=n-1:-1:1x(i)=(x(i)-U(i)*x(i+1))/D(i);endreturn;古典隐式格式在以后的程序中,我们都取C=1,不再作为一个输入参数处理3、Crank-Nicolson隐式格式求解抛物型偏微分方程需要调用追赶法的程序function [U x t]=PDEParabolicCN(uX,uT,phi,psi1,psi2,M,N)%Crank-Nicolson隐式格式求解抛物型偏微分方程%[U x t]=PDEParabolicCN(uX,uT,phi,psi1,psi2,M,N)%%方程:u_t=u_xx 0 <= x <= uX,0 <= t <= uT%初值条件:u(x,0)=phi(x)%边值条件:u(0,t)=psi1(t), u(uX,t)=psi2(t)%%输出参数:U -解矩阵,第一行表示初值,第一列和最后一列表示边值,第二行表示第2层……% x -空间变量% t -时间变量%输入参数:uX -空间变量x的取值上限% uT -时间变量t的取值上限% phi -初值条件,定义为内联函数% psi1 -边值条件,定义为内联函数% psi2 -边值条件,定义为内联函数% M -沿x轴的等分区间数% N -沿t轴的等分区间数%%应用举例:%uX=1;uT=0.2;M=50;N=50;%phi=inline('sin(pi*x)');psi1=inline('0');psi2=inline('0');%[U x t]=PDEParabolicCN(uX,uT,phi,psi1,psi2,M,N);%计算步长dx=uX/M;%x的步长dt=uT/N;%t的步长x=(0:M)*dx;t=(0:N)*dt;r=dt/dx/dx;%步长比Diag=zeros(1,M-1);%矩阵的对角线元素Low=zeros(1,M-2);%矩阵的下对角线元素Up=zeros(1,M-2);%矩阵的上对角线元素for i=1:M-2Diag(i)=1+r;Low(i)=-r/2;Up(i)=-r/2;endDiag(M-1)=1+r;%计算初值和边值U=zeros(M+1,N+1);for i=1:M+1U(i,1)=phi(x(i));endfor j=1:N+1U(1,j)=psi1(t(j));U(M+1,j)=psi2(t(j));endB=zeros(M-1,M-1);for i=1:M-2B(i,i)=1-r;B(i,i+1)=r/2;B(i+1,i)=r/2;endB(M-1,M-1)=1-r;%逐层求解,需要使用追赶法(调用函数EqtsForwardAndBackward)for j=1:Nb1=zeros(M-1,1);b1(1)=r*(U(1,j+1)+U(1,j))/2;b1(M-1)=r*(U(M+1,j+1)+U(M+1,j))/2;b=B*U(2:M,j)+b1;U(2:M,j+1)=EqtsForwardAndBackward(Low,Diag,Up,b);endU=U';%作出图形mesh(x,t,U);title('Crank-Nicolson隐式格式,一维热传导方程的解的图像')xlabel('空间变量x')ylabel('时间变量t')zlabel('一维热传导方程的解U')return;Crank-Nicolson隐式格式4、正方形区域Laplace方程Diriclet问题的求解需要调用Jacobi迭代法和Guass-Seidel迭代法求解线性方程组function [U x y]=PDEEllipseSquareLaplaceDirichlet(ub,phi1,phi2,psi1,psi2,M,type) %正方形区域Laplace方程的Diriclet边值问题的差分求解%此程序需要调用Jacobi迭代法或者Guass-Seidel迭代法求解线性方程组%[U x y]=PDEEllipseSquareLaplaceDirichlet(ub,phi1,phi2,psi1,psi2,M,type)%%方程:u_xx+u_yy=0 0<=x,y<=ub%边值条件:u(0,y)=phi1(y)% u(ub,y)=phi2(y)% u(x,0)=psi1(x)% u(x,ub)=psi2(x)%%输出参数:U -解矩阵,第一行表示y=0时的值,第二行表示第y=h时的值……% x -横坐标% y -纵坐标%输入参数:ub -变量边界值的上限% phi1,phi2,psi1,psi2 -边界函数,定义为内联函数% M -横纵坐标的等分区间数% type -求解差分方程的迭代格式,若type='Jacobi',采用Jacobi迭代格式% 若type='GS',采用Guass-Seidel迭代格式。
基础知识偏微分方程的定解问题各种物理性质的定常(即不随时间变化)过程,都可用椭圆型方程来描述。
其最典型、最简单的形式是泊松(Poisson)方程),(2222y x f yux u u =∂∂+∂∂=∆ (1)特别地,当 f ( x , y ) ≡ 0 时,即为拉普拉斯(Laplace)方程,又称为调和方程02222=∂∂+∂∂=∆yux u u (2)带有稳定热源或内部无热源的稳定温度场的温度分布,不可压缩流体的稳定无旋流动及静电场的电势等均满足这类方程。
Poisson 方程的第一边值问题为⎪⎩⎪⎨⎧Ω∂=Γ=Ω∈=∂∂+∂∂=∆Γ∈),(),(),(),(),(2222y x y x u y x y x f y ux u u y x ϕ (3) 其 中 Ω 为 以 Γ 为 边 界 的 有 界区 域 , Γ 为 分 段 光 滑 曲 线, Ω U Γ 称 为 定 解区 域 ,f (x, y),ϕ(x, y) 分别为 Ω,Γ 上的已知连续函数。
第二类和第三类边界条件可统一表示成)0(0),(>=⎪⎭⎫⎝⎛+∂∂Γ∈a u n u y x α (4) 其中 n 为边界 Γ 的外法线方向。
当α = 0 时为第二类边界条件,α ≠ 0 时为第三类边界条件。
在研究热传导过程,气体扩散现象及电磁场的传播等随时间变化的非定常物理问题时,常常会遇到抛物型方程。
其最简单的形式为一维热传导方程)0(022>=∂∂-∂∂a xua t u (5) 方程(5)可以有两种不同类型的定解问题: 初值问题(也称为 Cauchy 问题)⎪⎩⎪⎨⎧+∞<<∞-=+∞<<-∞>=∂∂-∂∂x x x u x t x ua tu )()0,(,0022ϕ (6) 初边值问题⎪⎪⎪⎩⎪⎪⎪⎨⎧<<===<<<<=∂∂-∂∂lx t g t l u t g t u x x u l x T t x ua t u 0),(),(),(),0()()0,(0,002122ϕ (7) 其中ϕ )(),(),(21x g x g x ϕ为已知函数,且满足连接条件)0()(),0()0(21g l g ==ϕϕ问题(7)中的边界条件)(),(),(),0(21t g t l u t g t u ==称为第一类界条件。