广东省六校2019届高三第二次联考(理数)
- 格式:doc
- 大小:984.50 KB
- 文档页数:11
2019年广州市普通高中毕业班综合测试(二)数学(理科)试卷 第Ⅰ卷(选择题共60分)一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.在答题卷上相应题目的答题区域内作答.1.已知复数)2()3(i i m z +-+=在复平面内对应的点在第三象限,则实数m 的取值范围是( )A .)1,(-∞B .)32,(-∞C .)1,32(D .),1()32,(+∞-∞2.己知集合}0181|{<--=x x A ,则=A C R ( ) A .2|{<x x 或}6≥xB .2|{≤x x 或}6≥xC .2|{<x x 或}10≥xD .2|{≤x x 或}10≥x3.某公司生产C B A ,,三种不同型号的轿车,产量之比依次为4:3:2,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n 的样本,若样本中A 种型号的轿车比B 种型号的轿车少8辆,则=n ( )A .96B .72C .48D .364.执行如图所示的程序框图,则输出z 的值是( )A .21B .22C .23D .245.己知点A 与点)2,1(B 关于直线03=++y x 对称,则点A 的坐标为( )A .)4,3(B .)5,4(C .)3,4(--D .)4,5(--6.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为ξ,则数学期望=ξE ( )A .54 B .1 C .57 D .27.已知51cos sin =+αα,其中),2(ππα∈,则( ) A .724-B .34-C .247 D .724 8.过双曲线)0,0(12222>>=-b a b y a x 的左焦点F 作圆9222a y x =+的切线,切点为E ,延长FE 交双曲线右交于点P ,若FE PF 2=,则双曲线的离心率为( )A .317 B .617 C .510 D .210 9.若曲线2223+-=x x y 在点A 处的切线方程为64-=x y ,且点A 在直线01=-+ny mx (其中0,0>>n m )上,则nm 21+的最小值为( ) A .24B .223+C .246+D .2810.函数)||,0)(sin(2)(πϕωϕω<>+=x x f 的部分图像如图所示,先把函数)(x f y =图像上各点的横坐标缩短到原来的21倍,纵坐标不变,再把得到的图像向右平移4π个单位长度,得到函数)(x g y =的图像,则函数)(x g y =的图像的一条对称轴为( )A .43π=x B .4π=x C .4π-=x D .43π-=x 11.已知点P 在直线012=-+y x 上,点Q 在直线032=++y x 上,PQ 的中点为),(00y x M ,且7100≤-≤x y ,则x y 的取值范围为( ) A .]512,2[B .]0,52[-C .]41,165[-D .]52,2[-12.若点)0,(t A 与曲线x e y =上点P 的距离的最小值为32,则实数t 的值为( )A .32ln 4-B .22ln 4-C .33ln 3+D .23ln 3+第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.在答题卷上的相应题目的答题区域内作答. 13.若21,x e 是夹角为︒60的两个单位向量,向量212e e a +=,则=||a.14.若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是.15.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”如果把以上这段文字写成公式就是])2([41222222b c a c a S -+-=,其中c b a ,,是ABC ∆的内角C B A ,,的对边.若B A C cos sin 2sin =,且22,1,c b 成等差数列,则ABC ∆面积S 的最大值为.16.有一个底面半径为R ,轴截面为正三角形的圆锥纸盒,在该纸盒内放一个棱长均为a 的四面体,并且四面体在纸盒内可以任意转动,则a 的最大值为____.三、解答题:共70分.解答题应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分.17.己知}{n a 是递增的等比数列,432=+a a ,341=a a . (1)求数列}{n a 的通项公式;(2)令n n na b =,求数列}{n b 的前n 项和n S .18.科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:根据上表的数据得到如下的散点图.(1)根据上表中的样本数据及其散点图: (i )求x ;(ii )计算样本相关系数(精确到0.01),并刻画它们的相关程度.(2)若y 关于x 的线性回归方程为x b yˆ56.1ˆ+=,求b ˆ的值(精确到0。
侧视图正视图试卷类型:A2019年广州市普通高中毕业班综合测试(二)数学(理科)2018.4本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数z 满足 i 2z =,其中i 为虚数单位,则z 的虚部为A .2-B .2C .2-iD .2i2.若函数()y f x =是函数3xy =的反函数,则12f ⎛⎫⎪⎝⎭的值为 A .2log 3- B .3log 2- C .19D3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x >C .存在0x ∈R ,使得3200x x ≤D .对任意x ∈R ,都有32x x ≤4. 将函数()2cos2(f x x x x =+∈R )的图象向左平移6π个单位长度后得到函数 ()y g x =,则函数()y g x =A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数,也不是偶函数5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3, 将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是A .16 B .13 C .12 D .386.设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为A .16B .13C7.一个几何体的三视图如图1,则该几何体D CB A 的体积为A .6π4+B .12π4+C .6π12+D .12π12+ 8.将正偶数2,4,6,8,按表1的方式进行排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253表二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB ==,则AE AF ⋅的值为 .12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦,当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 .(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t=-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则△AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,3BD =. (1) 求cos A 的值; (2)求sin C 的值.图217.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45,FE D CBA a 图3重量/克0.0320.02452515O 由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;(注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n =,则样本数据的平均值为112233n n X x p x p x p x p =++++. (3)从盒子中随机抽取3个小球,其中重量在(]5,15内的小球个数为ξ,求ξ的分布列和数学期望.18.(本小题满分14分) 如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2 1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值.图4 19.(本小题满分14分) 已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E . (1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两 点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个定点? 若是,求这两个定点的坐标;若不是,说明理由. 21.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=. (1)求,a b 的值;(2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围; (3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+. 2019年广州市普通高中毕业班综合测试(二) 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a 12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) (1)解:在△ABD 中,1AB AD ==,3BD =, ∴222cos 2AB AD BD A AB AD +-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分 (2)解:由(1)知,1cos 3A =,且0A <<π,∴sin 3A==. ……………6分∵D 是边AC 的中点,∴22AC AD ==.在△ABC 中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分 解得3BC =. ……………10分由正弦定理得,sin sin BC ABA C=, ……………11分 ∴1sin sin AB A C BC ⨯⋅===……………12分 17.(本小题满分12分)(1) 解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分 解得0.03x =. ……………2分 (2)解:50个样本小球重量的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分 由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分M O H F E D CB A (3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫ ⎪⎝⎭. ……………5分 ξ的取值为0,1,2,3, ……………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫=== ⎪⎝⎭. ……………10分 ∴ξ的分布列为:……………11分∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分 (或者13355E ξ=⨯=)18.(本小题满分14分)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt△BFC 中,2224FB FC BC +==,又FB FC =,得FB = ∴EM =……………3分在△AME 中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EO BD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分在Rt △AOE中,tan AOAEO EO∠==……………13分 ∴直线AE 与平面BDE. ……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形. ∴EO ∥FH ,且1EO FH == 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD , ∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴,建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,nAE⋅=n AE n AE=. ……………11分∴cos 3θ==,sin tan cos θθθ==……………13分 ∴直线AE 与平面BDE . ……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分 即()112n n n na n a a n +--=+,得12n n a a +-=. ……………5分 当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分 ∴数列{}n a 是以10a =为首项,公差为2的等差数列.∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分 整理得,()()111n n nS n S n n +=+++, ……………2分 两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列.∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分 又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分 (2)解法1:∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅,①()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅,② ……………11分①-②得0121344444n n n T n --=++++-⋅14414nnn -=-⋅-()13413n n -⋅-=.……………13分∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:∵22log log n n a n b +=,∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅.由()12311n nx x x x x x x x+-++++=≠-, ……………11分两边对x 取导数得,012123n x x x nx -++++=()()12111n n nx n x x +-++-. ………12分 令4x =,得()()0122114243414431419n n nn n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦. ……………13分 ∴ ()131419n n T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E 的方程为24x y =. ……………2分解法2:设点M 的坐标为(),x y ,依题意, 得1MF y =+,1y =+, ……………1分化简得24x y =.∴曲线E 的方程为24x y =. ……………2分(2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=,解得1,22x k ==±. ∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224AB x y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………4分令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………7分∴2ST=()()()2221212122221614k x x x x x x k k k +-+-==. ……………8分设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=- ⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………9分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. ……………10分展开得()()22222414414k x x y k k k++++=-=. ……………11分 令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=, 即()()12420x x k --+=,解得2x =或142x k =-. ……………4分∴1142x k =-,22111114414y x k k ==-+. ∴点B 的坐标为()211142,441k k k --+. ……………5分同理,设直线AC 的方程为()212y k x -=-, 则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………6分 ∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………8分 设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………9分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分 整理得,()224410x x y k+-++=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()af x b x'=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<,等价于2ln 2x k x x <-. ……………4分令()2ln 2x g x x x =-,则()()ln 11ln g x x x x x '=-+=--. ……………5分 令()1ln h x x x =--,则()111x h x x x-'=-=.当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=.……………6分 从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增,故()()112g x g >=. ……………7分 因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分 ∴所求k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分解法2:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<恒成立. ……………4分令()ln 2x kg x x x=-+,则()222112222k x x k g x x x x -+'=--=-.方程2220x x k -+=(﹡)的判别式48k ∆=-.(ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<,故函数()g x 在()1,+∞上单调递减.由于()()110,2ln 21022kg k g =-+>=-+>, 则当()1,2x ∈时,()0g x >,即ln 02x kx x-+>,与题设矛盾. …………5分(ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x --+'=-=-<. 故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分(ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x ==>, 则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<.故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减, 从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x kg x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022x x x-+<, 得2221ln 022x x x -+<,从而()20g x <. 故当1x >时,()()20g x g x ≤<,符合题意. ……………8分专业资料word 完美格式 综上所述,k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分 (3)证明:由(2)得,当1x >时,1ln 022x x x-+<,可化为21ln 2x x x -<, …10分 又ln 0x x >,从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n =分别代入上面不等式,并相加得,11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………12分111121n n =+--+ ……………13分223222n n n n --=+. ……………14分。
(广州二中,深圳实验,珠海一中,中山纪念,东莞中学,惠州一中)广东省六校高三第二次联考试题理科数学一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项符合题目要求.1.已知复数R),(为虚数单位),若为纯虚数,则( )A. 1B.C. 2D.【答案】A【解析】【分析】直接利用复数代数形式的乘除运算化简,然后利用纯虚数得到答案.【详解】∵z1=2+ai(a∈R),z2=1﹣2i,∴,由为纯虚数,则,解得a=1,故选:A.【点睛】本题考查了复数代数形式的乘除运算,考查了纯虚数的定义,是基础题.2.设全集,集合,,则A. B.C. D.【答案】B【解析】【分析】根据并集的定义求得A∪B,再根据补集的定义即可求解.【详解】∵集合A={x|﹣1<x<5},集合B={x|﹣2<x<4},∴A∪B={x|﹣2<x<5},={x|﹣5<x≤2},故选:B.【点睛】本题考查集合的交、并、补集的混合运算,是基础题.3.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走378里路,第一天健步走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问此人第5天走的路程为()A. 36里B. 24里C. 18里D. 12里【答案】D【解析】【分析】由题意可知,每天走的路程里数构成以为公比的等比数列,由S6=378求得首项,再由等比数列的通项公式求得该人第五天走的路程.【详解】记每天走的路程里数为{a n},由题意知{a n}是公比的等比数列,由S6=378,得=378,解得:a1=192,∴=12(里).故选:D.【点睛】等比数列的基本量运算问题的常见类型及解题策略:①化基本量求通项.求等比数列的两个基本元素和,通项便可求出,或利用知三求二,用方程求解.②化基本量求特定项.利用通项公式或者等比数列的性质求解.③化基本量求公比.利用等比数列的定义和性质,建立方程组求解.④化基本量求和.直接将基本量代入前项和公式求解或利用等比数列的性质求解.4.函数的单调递增区间是()A. B.C. D.【答案】B【解析】【分析】利用正弦函数的单调性,求出相应的区间,即可得到结论.【详解】由(n∈Z),可得≤x≤(n∈Z),令n=﹣k,则可得函数y=3sin的单调递增区间是故选:B.【点睛】本题考查函数的单调性,考查学生的计算能力,正确运用正弦函数的单调区间是关键.5.下列有关命题的说法中错误的是( )A. 若为真命题,则中至少有一个为真命题.B. 命题:“若是幂函数,则的图象不经过第四象限”的否命题是假命题.C. 命题“,有且”的否定形式是“,有且”.D. 若直线和平面,满足.则“” 是“”的充分不必要条件.【答案】C【解析】【分析】A.根据复合命题真假关系进行判断即可;B.根据逆否命题的等价性判断命题的逆命题为假命题即可;C.根据全称命题的否定是特称命题进行判断;D.根据线面平行的判定定理及性质定理进行判断.【详解】对于A,若为真命题,则中至少有一个为真命题.正确;对于B,命题的逆命题是若y=f(x)的图象不经过第四象限,则y=f(x)是幂函数,错误比如函数y=2x的函数图象不经过第四象限,满足条件,但函数f(x)是指数函数,故命题的逆命题是假命题,则命题的否命题也是假命题,正确;对于C,命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是“∃n0∈N*,f(n0)∉N*或f (n0)>n0”,错误;对于D,若直线和平面,满足.则“” 是“”的充分不必要条件,正确,故选:C【点睛】本题主要考查命题的真假判断,涉及四种命题,含有量词的命题的否定,复合命题以及充分条件和必要条件的判断,知识点较多综合性较强,但难度不大.6.某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.【答案】C【解析】由三视图可知,该几何体是一个半圆柱挖取一个倒立的四棱锥,∴本题选择C选项.点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.7.如图所示,在△ABC中,AD=DB,点F在线段CD上,设,,,则的最小值为()A. B. C. D.【答案】A【解析】【分析】用表示,由C,D,F三点共线得出x,y的关系,消去y,得到关于x的函数f(x),利用导数求出f(x)的最小值.【详解】=2x y.∵C,F,D三点共线,∴2x+y=1.即y=1﹣2x.由图可知x>0.∴==.令f(x)=,得f′(x)=,令f′(x)=0得x=或x=﹣(舍).当0<x<时,f′(x)<0,当x时,f′(x)>0.∴当x=时,f(x)取得最小值f()==3+2.故选:A.【点睛】本题考查了平面向量的基本定理,函数的最值,属于中档题.8.已知是定义域为的奇函数,满足,若,则( )A. B. C. D.【答案】B【解析】【分析】由题意可得f(0)=0,f(x)为周期为4的函数,分别求得一个周期内的函数值,计算可得所求和.【详解】f(x)是定义域为(﹣∞,+∞)的奇函数,可得f(﹣x)=﹣f(x),f(1﹣x)=f(1+x)即有f(x+2)=f(﹣x),即f(x+2)=﹣f(x),进而得到f(x+4)=﹣f(x+2)=f(x),f(x)为周期为4的函数,若f(1)=2,可得f(3)=f(﹣1)=﹣f(1)=﹣2,f(2)=f(0)=0,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,可得f(1)+f(2)+f(3)+…+f(2018)=504×0+2+0=2.故选:B.【点睛】本题考查抽象函数的函数值的求和,注意运用函数的周期性,考查转化思想和运算能力,属于中档题.9.已知函数在区间上是增函数,且在区间上存在唯一的使得,则的取值不可能为( )A. B. C. D.【答案】D【解析】【分析】由f(x)=2sinωx可得[﹣,]是函数的递增区间,结合已知可得[﹣,]⊇[],可解得0<ω≤,又函数在区间上存在唯一的使得,根据正弦函数的性质可得0≤≤π,进而得解.【详解】f(x)=2sinωx,∴[﹣,]是函数的递增区间,且[﹣,].又∵函数在[]上递增,∴[﹣,]⊇[],∴得不等式组:﹣≤﹣,≤,又∵ω>0,∴0<ω≤,又在区间上存在唯一的使得,根据正弦函数的性质可知ωx=2kπ+,k∈Z,即函数在x=+处取得最大值,可得0≤≤π,∴ω≥,综上,可得ω∈[,].故选:D.【点睛】本题主要考查正弦函数的图象特征,判断[﹣,]⊇[]是解题的关键,属于中档题.10.将正奇数数列依次按两项、三项分组,得到分组序列如下:,称为第1组,为第2组,依此类推,则原数列中的位于分组序列中( )A. 第组B. 第组C. 第组D. 第组【答案】A【解析】【分析】求出2019为第1010个证奇数,根据富足规则可得答案.【详解】正奇数数列1,3,5,7,9,的通项公式为则2019为第1010个奇数,因为按两项、三项分组,故按5个一组分组是有202组,故原数列中的2019位于分组序列中第404组选A.【点睛】本题考查闺女是推理,属中档题.11.定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1分拆为若干个不同的单位分数之和。
广东省2019年广州市普通高中毕业班综合测试(二)理科数学试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=m(3+i)-(2+i)在复平面内对应的点在第三象限,则实数m的取值范围是A.B.D.2.己知集合,则A. {x|x<2或x≥6}B. {x|x≤2或x≥6}C. { x|x<2或x≥10}D. {x|x≤2或x≥10}3.8)A. 96B. 72C. 48D. 364.)A. 21B. 22C. 23D. 245.)6.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女)A. B. 1D. 27.已知)A. B. 8.过双曲线延长,则双曲线的离心率为()A. B. D.9.若曲线y= x3-2x2+2在点A处的切线方程为y=4x-6,且点A在直线mx+ ny -l=0(其中m>0,n>0)上,的最小值为A. B. C. D.10.的图像的一条对称轴为()11.已知点上,点上,,且)A. B. D.12.若点上点的距离的最小值为,则实数)A. B. D.二、填空题:本题共4小题,每小题5分,共20分.13.若e1,e2是夹角为60°的两个单位向量,向量a=2e1+e2,则|a|= ____.14.若展开式中的系数是80,则实数的值是_______.15.秦九韶是我国南宋著名数学家,在他著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得,,的内角,,的对边为.1,成等差数列,则________.16.________.三、解答题:共70分,解答应写出文字说明、证明过程和演算步骤,第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17.己知{a n}是递增的等比数列,a2+a3 =4,a l a4=3.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.18.科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:根据上表的数据得到如下的散点图.(1)根据上表中的样本数据及其散点图:(i)(ii)计算样本相关系数(精确到0.01),并刻画它们的相关程度.(2)若y关于x0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量。
2019年广州市普通高中毕业班综合测试(二)理科数学一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A. B. D.【答案】B【解析】【分析】根据复数的几何意义建立不等式关系即可.若复数在复平面内对应的点在第三象限,所以的取值范围是故选B.【点睛】该题考查的是有关复数在复平面内对应的点的问题,属于简单题目.2.)A. 或【答案】D【解析】【分析】先解分式不等式求集合A,再由补集的定义直接求解即可.【详解】解:由,则R故选:D.【点睛】本题主要考查集合的基本运算,比较基础.3.的样本,若样本中8辆,则 )A. 96B. 72C. 48D. 36【答案】B 【解析】 【分析】根据分层比例列式求解.B.【点睛】本题考查分层抽样,考查基本分析求解能力,属基础题.4.)A. 21B. 22C. 23D. 24【答案】B 【解析】试题分析:运行第一次,,,;运行第二次,,,,,停止运行,所以输出的B .考点:程序框图.5. )A.B.D.【答案】D 【解析】 【分析】根据对称列式求解.D.【点睛】本题考查关于直线对称点问题,考查基本分析求解能力,属基础题.6.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女)A. B. 1 D. 2【答案】B【解析】【分析】先列随机变量,再分别求解对应概率,最后根据数学期望公式求结果.,所以,选B.【点睛】本题考查数学期望,考查基本分析求解能力,属基础题.7.)A. B. D.【答案】D【解析】【分析】再根据二倍角正切公式得结果.【详解】因,且,因为,从而 D.【点睛】本题考查同角三角函数关系以及二倍角正切公式,考查基本分析求解能力,属基础题.8.的左焦点,则双曲线的离心率为()A. B. D.【答案】A【解析】【分析】再根据切线得OE.,所以PF,PF,A.【点睛】本题考查双曲线定义以及离心率,考查基本分析求解能力,属中档题.9.,且点)A. B. D.【答案】C【解析】【分析】设A(s,t),求得函数y的导数可得切线的斜率,解方程可得切点A,代入直线方程,再由基本不等式可得所求最小值.【详解】解:设A(s,t),y=x3﹣2x2+2的导数为y′=3x2﹣4x,可得切线的斜率为3s2﹣4s,切线方程为y=4x﹣6,可得3s2﹣4s=4,t=4s﹣6,解得s=2,t=2或由点A在直线mx+ny﹣l=0(其中m>0,n>0),可得2m+2n=1成立,(s,2m+2n))=2(32(当且仅当n时,取得最小值6+4,故选:C.【点睛】本题考查导数的运用:求切线斜率,以及基本不等式的运用:求最值,考查运算能力,属于基础题.10.的图像的一条对称轴为()A. B. D.【答案】C【解析】【分析】.,选C.【点睛】本题考查由图象求函数解析式、三角函数图象变换以及正弦函数性质,考查基本分析求解能力,属中档题.11.已知点在直线上,的中点为)A.B.D.【答案】B 【解析】【分析】.M 在直线AB,,因此的取值范围为选B.【点睛】本题考查线性规划求范围,考查基本分析求解能力,属中档题.12.的)A. B. D.【答案】D【解析】【分析】先设切点B.【详解】A为圆心,B,则在B点处切线的斜率为,选D.【点睛】本题考查利用导数求函数最值,考查综合分析求解能力,属难题.二、填空题.13.是夹角为.【答案】【解析】【分析】,;.故答案为:【点睛】考查单位向量的概念,向量的数量积运算及计算公式,向量长度的求法.14.80________.【答案】2【解析】解:(ax-1)5的展开式中x3的系数C53(ax)3•(-1)2=10a3x3=80x3,则实数a的值是2,15.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得,,,的对边为.1,成等差数列,则________.【解析】【分析】再根据余弦定理化简得1成等差数列,所以的最大值为.【点睛】本题考查正余弦定理以及二次函数性质,考查基本分析求解能力,属中档题.16.________.【解析】【分析】.正四面体外接球恰为圆锥内切球,所以【点睛】本题考查圆锥内切球以及正四面体外接球,考查基本分析求解能力,属中档题.三、解答题.解答应写出文字说明、证明过程和演算步骤.17.,(1)求数列(2,求数列【答案】 (2)【解析】【分析】(1)解法1:运用等比数列的通项公式,解方程可得首项和公比,即可得到所求通项公式;解法2:运用等比数列的性质建立方程.(2,利用错位相减求和.【详解】解法1:(1的公比为,是递增的等比数列,所以数列解法2:(1,是递增的等比数列,(2)由(1①-所以【点睛】本题考查等比数列的通项公式的运用,考查数列的错位相减求和,以及化简整理的运算能力,属于基础题.18.科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表: (年龄(脂肪根据上表的数据得到如下的散点图.(1)根据上表中的样本数据及其散点图: (i(i )计算样本相关系数(精确到0.01),并刻画它们的相关程度. (20.01),并根据回归方程估计年龄为50岁时人体的脂肪含量.【答案】(1) (ⅰ)47 (ⅱ)见解析;%.【解析】【分析】(1)(i)根据上表中的样本数据,利用平均数的公式求得结果;(ii 以推断人体脂肪含量和年龄的相关程度很强.(2结果.【详解】(1)根据上表中的样本数据及其散点图:.因为,(2.的线性回归方程为.【点睛】该题考查的是有关回归分析的问题,涉及到的知识点有平均值的计算,根据相关系数r的大小判断相关性,回归直线的性质,属于简单题目.19.(1(2.【答案】(1)见解析;(2【解析】【分析】(1)先根据计算得线线线线垂直,再根据线面垂直判定定理以及面面垂直判定定理得结论,(2)建立空间直角坐标系,利用空间向量求二面角.【详解】(1为中,中,,,,所以平面(2由(1设平面的法向量为设二面角为,由于的余弦值为.【点睛】本题考查线面垂直判定定理、面面垂直判定定理以及利用空间向量求二面角,考查基本分析论证与求解能力,属中档题.20.(1(2并说明理由.【答案】(1;(2)相离.【解析】【分析】(1)根据直接法求轨迹方程,(2离与半径大小进行判断.【详解】(1,整理得所以动点的轨迹的方程(2的直线为轴时,显然不合题意.因为,.的中点坐标为.到直线的距离为.与以线段为直径的圆相离.【点睛】本题考查直接法求轨迹方程以及直线与圆位置关系,考查基本分析求解能力,属中档题.21.(1)讨论函数的单调性;(2【答案】(1)见解析;(2)见证明【解析】【分析】(1)函数f(x)的定义域为(0,+∞),f′(x x>0,利用分类讨论思想,结合导数性质能讨论函数f(x)的单调性.(2)先求k f(﹣2k)=ln(﹣2k.然后证明x1+x2≥)(1+t)2<﹣8lnt,即证8lnt+(1+t)2<0,(t>0).设h(t)=8lnt+(1+t)2,t>1.则h(t)=8t>1.由此能证明x1+x2>【详解】(1,函数.时,,,时,函数时,函数(2方法1:由(1要使函数有两个零点,首先,,则因为,所以在上单调递增,的取值范围是.方法2:,则,且:方法1:,即,即证.,所以即证,.所以.在上单调递减,.方法2:,即,需证.,所以即证所以在上单调递减,.方法3:因为,是函数,需证.只需证.,所以,所以.方法4:因为,是函数,即证明,则.所以在上单调递增,所以.,.方法5:,所以在上单调递减.在上恒成立.【点睛】本题考查函数单调性的讨论,考查不等式的性质,考查导数性质、函数的单调性、最值等基础知识,考查运算求解能力,考查化归与转化思想,是难题.22.(.在以坐标原点为极点,.(1(2.【答案】(1;(2【解析】【分析】(1的普通方程,根据2)利用直线参数方程几何意义求解.【详解】(1,.因为(2)解法1的直角坐标方程为,可设该方程的两个根为整理得,因为,所以综上所述,直线的倾斜角为解法2,两点,且的,整理得.综上所述,直线【点睛】本题考查参数方程化普通方程、极坐标方程化直角坐标方程以及直线参数方程应用,考查综合分析求解能力,属中档题.23.[选修4-5:不等式选讲](1)时,解不等式(2)若存在实数x a的取值范围.【答案】(1;(2【解析】【分析】(1)根据绝对值定义转化为两个不等式组,解可得,(2)根据绝对值定义转化为分段函数,根据函数最值可得结果.【详解】(1综上可知,不等式的解集为(2..所以实数的取值范围为.【点睛】本题考查含绝对值不等式,考查基本分析求解能力,属基本题.。
广东省2019届高三六校第二次联考2019-11-2 本试卷共4页,20小题,满分150分.考试用时120分钟.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合A.B.C.D.2.若,则下列结论不正确...的是A.B.C.D.3.函数,已知的两个极值点为,,则A.B.C.D.4.设,,则函数的最大值为A.B.C.D.5.函数对于任意实数满足条件,若,则A.B.C.D.6.如图,Rt△ABC中,AC⊥BC,D在边AC上,已知BC=2,CD=1,∠ABD=45°,则AD =A.2 B.5 C.4 D.17.在平面直角坐标系中,不等式组(为常数)表示的平面区域的面积是4,则的最小值为A.B.C.D.8.在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染16后面最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个红色子数列中,由1开始的第2019个数是A.3948 B.3953 C.3955 D.3958二、填空题:本大题共6小题,每小题5分,满分30分.9.已知数列为等差数列,且,则____________.10.在中,角,,所对的边分别是,,,若,且,则的面积等于____________.11.方程在上有解,则的取值范围是____________.12.设曲线在点(1,1)处的切线与轴的交点的横坐标为,令,则的值为____________.13.设函数,[]表示不超过的最大整数,则函数[]的值域是____________.14.若定义在区间上的函数对上的任意个值,,…,,总满足≤,则称为上的凸函数.已知函数在区间上是“凸函数”,则在△中,的最大值是____________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分)已知向量,,函数.(1)求函数的最小正周期和值域;(2)在中,分别是角的对边,且,,,且,求的值.16.(本小题满分12分)数列的前项和为,数列满足,且,.(1)求,的表达式;(2)设,求数列的前项和.17.(本小题满分14分)某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.(1)求分公司一年的利润(万元)与每件产品的售价的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润最大,并求出的最大值.18.(本小题满分14分)已知,若在区间上的最大值为,最小值为,令.(1)求的函数表达式;(2)判断的单调性,并求出的最小值.19.(本小题满分14分)已知函数,其中,为参数,且.(1)当时,判断函数是否有极值;(2)要使函数的极小值大于零,求参数的取值范围;(3)若对(2)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围.20.(本小题满分14分)已知,.(1)若恒成立,求的取值范围;(2)若广东省2019届高三六校第二次联考数学(理科)参考答案及评分标准一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A 2.C 3.D 4.D 5.D 6.B 7.D 8.C二、填空题:本大题共6小题,每小题5分,满分30分.9.10.11.12.13.14.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分)解:(1)………………3分∴函数的最小周期,值域为………………5分(2)………………6分是三角形内角∴,∴即: (8)分∴即:………………10分将可得:解之得:∴∴,………………12分16.(本小题满分12分)解:(1)………………2分当时,,所以………………3分………………4分成等比数列,且首项,公比………………5分,………………6分(2),………………7分令,记则相减,故………………10分故………………12分17.(本小题满分14分)解:(1)分公司一年的利润(万元)与售价的函数关系式为:………………4分(2)………………5分令得或(不合题意,舍去). (6)分,.在两侧的值由正变负.………………8分所以(a)当即时,.………………10分(b)当即时,,……12分所以………………13分答:若,则当每件售价为9元时,分公司一年的利润最大,最大值(万元);若,则当每件售价为元时,分公司一年的利润最大,最大值(万元). (14)分18.(本小题满分14分)19.(本小题满分14分)解:(I)当时则在内是增函数,故无极值。
侧视图正视图试卷类型:A2019年广州市普通高中毕业班综合测试(二)数学(理科)2018.4本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数z 满足 i 2z =,其中i 为虚数单位,则z 的虚部为A .2-B .2C .2-iD .2i 2.若函数()y f x =是函数3x y =的反函数,则12f ⎛⎫⎪⎝⎭的值为 A .2log 3- B .3log 2- C .19D3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x > C .存在0x ∈R ,使得3200x x ≤ D .对任意x ∈R ,都有32x x ≤ 4. 将函数()2cos 2(f x x x x =+∈R )的图象向左平移6π个单位长度后得到函数 ()y g x =,则函数()y g x =A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数,也不是偶函数5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3, 将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是A .16B .13C .12D .386.设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为 A .16 B .13C.6 D.37.一个几何体的三视图如图1,则该几何体的体积为D CB AA .6π4+B .12π4+C .6π12+D .12π12+ 8.将正偶数2,4,6,8,按表1的方式进行排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253表二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB ==,则AE AF ⋅的值为 .12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦, 当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 . (二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t=-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则△AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,3BD =. (1) 求cos A 的值; (2)求sin C 的值.图217.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样 本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45,由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;FE D CBA a 图3重量/克0.0320.02452515O (注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n =,则样本数据的平均值为112233n n X x p x p x p x p =++++. (3)从盒子中随机抽取3个小球,其中重量在(]5,15内的小球个数为ξ,求ξ的分布列和数学期望.18.(本小题满分14分) 如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2 1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值.图4 19.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E . (1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两 点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个定点? 若是,求这两个定点的坐标;若不是,说明理由. 21.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=. (1)求,a b 的值;(2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围; (3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+. 2019年广州市普通高中毕业班综合测试(二) 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a 12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) (1)解:在△ABD 中,1AB AD ==,BD =∴222cos 2AB AD BD A AB AD+-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分 (2)解:由(1)知,1cos 3A =,且0A <<π,∴sin 3A==. ……………6分∵D 是边AC的中点,∴22AC AD ==.在△ABC 中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分 解得BC =……………10分由正弦定理得,sin sin BC ABA C=, ……………11分 ∴1sin sin 33AB A C BC ⋅===……………12分 17.(本小题满分12分)(1) 解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分 解得0.03x =. ……………2分 (2)解:50个样本小球重量的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分 由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分(3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫⎪⎝⎭.……………5分 ξ的取值为0,1,2,3, ……………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,M O H F E D C B A ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫=== ⎪⎝⎭. ……………10分 ∴ξ的分布列为:……………11分∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分 (或者13355E ξ=⨯=)18.(本小题满分14分)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt△BFC 中,2224FB FC BC +==,又FB FC =,得FB = ∴EM =……………3分在△AME 中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分 ∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EO BD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分在Rt △AOE中,tan AOAEO EO∠==……………13分 ∴直线AE 与平面BDE……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形. ∴EO ∥FH ,且1EO FH == 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD , ∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴, 建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -.∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,n AE⋅=n AE n AE3=. ……………11分∴cos θ==,sin tan cos θθθ==……………13分 ∴直线AE 与平面BDE ……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分 即()112n n n na n a a n +--=+,得12n n a a +-=. ……………5分 当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分 ∴数列{}n a 是以10a =为首项,公差为2的等差数列.∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分 整理得,()()111n n nS n S n n +=+++, ……………2分 两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列.∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分 又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分 (2)解法1:∵22log log n n a n b +=,∴221224n an n n b n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅,①()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅,② ……………11分 ①-②得0121344444n nn T n --=++++-⋅14414n nn -=-⋅-()13413n n -⋅-=. ……………13分∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:∵22log log n n a n b +=,∴221224n an n n b n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅.由()12311n nx x x x x x x x+-++++=≠-, ……………11分两边对x 取导数得,012123n x x x nx -++++=()()12111n n nx n x x +-++-. ………12分 令4x =,得()()0122114243414431419n n n n n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦. ……………13分 ∴ ()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E 的方程为24x y =. ……………2分解法2:设点M 的坐标为(),x y ,依题意, 得1MF y =+,1y =+, ……………1分化简得24x y =.∴曲线E 的方程为24x y =. ……………2分 (2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=, 解得1,22x k ==±.∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224AB x y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………4分令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………7分∴2ST =()()()2221212122221614k x x x x x x k k k +-+-==. ……………8分 设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=- ⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………9分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. ……………10分展开得()()22222414414k x x y k k k++++=-=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=,即()()12420x x k --+=,解得2x =或142x k =-. ……………4分∴1142x k =-,22111114414y x k k ==-+.∴点B 的坐标为()211142,441k k k --+. ……………5分同理,设直线AC 的方程为()212y k x -=-,则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………6分 ∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………8分 设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………9分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分 整理得,()224410x x y k+-++=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()af x b x'=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x k x x -+<,等价于2ln 2x k x x <-. ……………4分令()2ln 2x g x x x =-,则()()ln 11ln g x x x x x '=-+=--. ……………5分 令()1ln h x x x =--,则()111x h x x x-'=-=.当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=.……………6分 从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增,故()()112g x g >=. ……………7分 因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分∴所求k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分解法2:由(1)得()ln 2x f x x =-. 当1x >时,()0k f x x +<恒成立,即ln 02x kx x -+<恒成立. ……………4分 令()ln 2x k g x x x =-+,则()222112222k x x kg x x x x -+'=--=-.方程2220x x k -+=(﹡)的判别式48k ∆=-.(ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<,故函数()g x 在()1,+∞上单调递减.由于()()110,2ln 21022kg k g =-+>=-+>, 则当()1,2x ∈时,()0g x >,即ln 02x kx x-+>,与题设矛盾. …………5分(ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x --+'=-=-<. 故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分 (ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x =<=>, 则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<.故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减, 从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x kg x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022x x x-+<, 得2221ln 022x x x -+<,从而()20g x <.故当1x >时,()()20g x g x ≤<,符合题意. ……………8分 综上所述,k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分(3)证明:由(2)得,当1x >时,1ln 022x x x -+<,可化为21ln 2x x x -<, …10分又ln 0x x >,从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n =分别代入上面不等式,并相加得, 11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………12分 111121n n =+--+ ……………13分11 / 11 223222n n n n--=+. ……………14分。
广东省六校(广州二中,深圳实验,珠海一中,中山纪念,东莞中学,惠州一中)2019届高三第二次联考试题理科数学一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项符合题目要求.1.已知复数R),(为虚数单位),若为纯虚数,则( )A. 1B.C. 2D.【答案】A【解析】【分析】直接利用复数代数形式的乘除运算化简,然后利用纯虚数得到答案.【详解】∵z1=2+ai(a∈R),z2=1﹣2i,∴,由为纯虚数,则,解得a=1,故选:A.【点睛】本题考查了复数代数形式的乘除运算,考查了纯虚数的定义,是基础题.2.设全集,集合,,则A. B.C. D.【答案】B【解析】【分析】根据并集的定义求得A∪B,再根据补集的定义即可求解.【详解】∵集合A={x|﹣1<x<5},集合B={x|﹣2<x<4},∴A∪B={x|﹣2<x<5},={x|﹣5<x≤2},故选:B.【点睛】本题考查集合的交、并、补集的混合运算,是基础题.3.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走378里路,第一天健步走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问此人第5天走的路程为()A. 36里B. 24里C. 18里D. 12里【答案】D【解析】【分析】由题意可知,每天走的路程里数构成以为公比的等比数列,由S6=378求得首项,再由等比数列的通项公式求得该人第五天走的路程.【详解】记每天走的路程里数为{a n},由题意知{a n}是公比的等比数列,由S6=378,得=378,解得:a1=192,∴=12(里).故选:D.【点睛】等比数列的基本量运算问题的常见类型及解题策略:①化基本量求通项.求等比数列的两个基本元素和,通项便可求出,或利用知三求二,用方程求解.②化基本量求特定项.利用通项公式或者等比数列的性质求解.③化基本量求公比.利用等比数列的定义和性质,建立方程组求解.④化基本量求和.直接将基本量代入前项和公式求解或利用等比数列的性质求解.4.函数的单调递增区间是()A. B.C. D.【答案】B【解析】【分析】利用正弦函数的单调性,求出相应的区间,即可得到结论.【详解】由(n∈Z),可得≤x≤(n∈Z),令n=﹣k,则可得函数y=3sin的单调递增区间是故选:B.【点睛】本题考查函数的单调性,考查学生的计算能力,正确运用正弦函数的单调区间是关键.5.下列有关命题的说法中错误的是( )A. 若为真命题,则中至少有一个为真命题.B. 命题:“若是幂函数,则的图象不经过第四象限”的否命题是假命题.C. 命题“,有且”的否定形式是“,有且”.D. 若直线和平面,满足.则“” 是“”的充分不必要条件.【答案】C【解析】【分析】A.根据复合命题真假关系进行判断即可;B.根据逆否命题的等价性判断命题的逆命题为假命题即可;C.根据全称命题的否定是特称命题进行判断;D.根据线面平行的判定定理及性质定理进行判断.【详解】对于A,若为真命题,则中至少有一个为真命题.正确;对于B,命题的逆命题是若y=f(x)的图象不经过第四象限,则y=f(x)是幂函数,错误比如函数y=2x的函数图象不经过第四象限,满足条件,但函数f(x)是指数函数,故命题的逆命题是假命题,则命题的否命题也是假命题,正确;对于C,命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是“∃n0∈N*,f(n0)∉N*或f(n0)>n0”,错误;对于D,若直线和平面,满足.则“” 是“”的充分不必要条件,正确,故选:C【点睛】本题主要考查命题的真假判断,涉及四种命题,含有量词的命题的否定,复合命题以及充分条件和必要条件的判断,知识点较多综合性较强,但难度不大.6.某几何体的三视图如图所示,则该几何体的体积为( )A. B.C. D.【答案】C【解析】由三视图可知,该几何体是一个半圆柱挖取一个倒立的四棱锥,∴本题选择C选项.点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.7.如图所示,在△ABC中,AD=DB,点F在线段CD上,设,,,则的最小值为()A. B. C. D.【答案】A【解析】【分析】用表示,由C,D,F三点共线得出x,y的关系,消去y,得到关于x的函数f(x),利用导数求出f(x)的最小值.【详解】=2x y.∵C,F,D三点共线,∴2x+y=1.即y=1﹣2x.由图可知x>0.∴==.令f(x)=,得f′(x)=,令f′(x)=0得x=或x=﹣(舍).当0<x<时,f′(x)<0,当x时,f′(x)>0.∴当x=时,f(x)取得最小值f()==3+2.故选:A.【点睛】本题考查了平面向量的基本定理,函数的最值,属于中档题.8.已知是定义域为的奇函数,满足, 若,则( )A. B. C. D.【答案】B【解析】【分析】由题意可得f(0)=0,f(x)为周期为4的函数,分别求得一个周期内的函数值,计算可得所求和.【详解】f(x)是定义域为(﹣∞,+∞)的奇函数,可得f(﹣x)=﹣f(x),f(1﹣x)=f(1+x)即有f(x+2)=f(﹣x),即f(x+2)=﹣f(x),进而得到f(x+4)=﹣f(x+2)=f(x),f(x)为周期为4的函数,若f(1)=2,可得f(3)=f(﹣1)=﹣f(1)=﹣2,f(2)=f(0)=0,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,可得f(1)+f(2)+f(3)+…+f(2018)=504×0+2+0=2.故选:B.【点睛】本题考查抽象函数的函数值的求和,注意运用函数的周期性,考查转化思想和运算能力,属于中档题.9.已知函数在区间上是增函数,且在区间上存在唯一的使得,则的取值不可能为( )A. B. C. D.【答案】D【解析】【分析】由f(x)=2sinωx可得[﹣,]是函数的递增区间,结合已知可得[﹣,]⊇[],可解得0<ω≤,又函数在区间上存在唯一的使得,根据正弦函数的性质可得0≤≤π,进而得解.【详解】f(x)=2sinωx,∴[﹣,]是函数的递增区间,且[﹣,].又∵函数在[]上递增,∴[﹣,]⊇[],∴得不等式组:﹣≤﹣,≤,又∵ω>0,∴0<ω≤,又在区间上存在唯一的使得,根据正弦函数的性质可知ωx=2kπ+,k∈Z,即函数在x=+处取得最大值,可得0≤≤π,∴ω≥,综上,可得ω∈[,].故选:D.【点睛】本题主要考查正弦函数的图象特征,判断[﹣,]⊇[]是解题的关键,属于中档题.10.将正奇数数列依次按两项、三项分组,得到分组序列如下:,称为第1组,为第2组,依此类推,则原数列中的位于分组序列中( )A. 第组B. 第组C. 第组D. 第组【答案】A【解析】【分析】求出2019为第1010个证奇数,根据富足规则可得答案.【详解】正奇数数列1,3,5,7,9,的通项公式为则2019为第1010个奇数,因为按两项、三项分组,故按5个一组分组是有202组,故原数列中的2019位于分组序列中第404组选A.【点睛】本题考查闺女是推理,属中档题.11.定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1分拆为若干个不同的单位分数之和。
广东省六校2019届高三第二次联考试题理科数学本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项符合题目要求.1.已知复数R),(为虚数单位),若为纯虚数,则( )A. 1B.C. 2D.【答案】A【解析】【分析】直接利用复数代数形式的乘除运算化简,然后利用纯虚数得到答案.【详解】∵z1=2+ai(a∈R),z2=1﹣2i,∴,由为纯虚数,则,解得a=1,故选:A.【点睛】本题考查了复数代数形式的乘除运算,考查了纯虚数的定义,是基础题.2.设全集,集合,,则A. B.C. D.【答案】B【解析】【分析】根据并集的定义求得A∪B,再根据补集的定义即可求解.【详解】∵集合A={x|﹣1<x<5},集合B={x|﹣2<x<4},∴A∪B={x|﹣2<x<5},={x|﹣5<x≤2},故选:B.【点睛】本题考查集合的交、并、补集的混合运算,是基础题.3.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走378里路,第一天健步走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问此人第5天走的路程为()A. 36里B. 24里C. 18里D. 12里【答案】D【解析】【分析】由题意可知,每天走的路程里数构成以为公比的等比数列,由S6=378求得首项,再由等比数列的通项公式求得该人第五天走的路程.【详解】记每天走的路程里数为{a n},由题意知{a n}是公比的等比数列,由S6=378,得=378,解得:a1=192,∴=12(里).故选:D.【点睛】等比数列的基本量运算问题的常见类型及解题策略:①化基本量求通项.求等比数列的两个基本元素和,通项便可求出,或利用知三求二,用方程求解.②化基本量求特定项.利用通项公式或者等比数列的性质求解.③化基本量求公比.利用等比数列的定义和性质,建立方程组求解.④化基本量求和.直接将基本量代入前项和公式求解或利用等比数列的性质求解.4.函数的单调递增区间是()A. B.C. D.【答案】B【解析】【分析】利用正弦函数的单调性,求出相应的区间,即可得到结论.【详解】由(n∈Z),可得≤x≤(n∈Z),令n=﹣k,则可得函数y=3sin的单调递增区间是故选:B.【点睛】本题考查函数的单调性,考查学生的计算能力,正确运用正弦函数的单调区间是关键.5.下列有关命题的说法中错误的是( )A. 若为真命题,则中至少有一个为真命题.B. 命题:“若是幂函数,则的图象不经过第四象限”的否命题是假命题.C. 命题“,有且”的否定形式是“,有且”.D. 若直线和平面,满足.则“” 是“”的充分不必要条件.【答案】C【解析】【分析】A.根据复合命题真假关系进行判断即可;B.根据逆否命题的等价性判断命题的逆命题为假命题即可;C.根据全称命题的否定是特称命题进行判断;D.根据线面平行的判定定理及性质定理进行判断.【详解】对于A,若为真命题,则中至少有一个为真命题.正确;对于B,命题的逆命题是若y=f(x)的图象不经过第四象限,则y=f(x)是幂函数,错误比如函数y=2x的函数图象不经过第四象限,满足条件,但函数f(x)是指数函数,故命题的逆命题是假命题,则命题的否命题也是假命题,正确;对于C,命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是“∃n0∈N*,f(n0)∉N*或f (n0)>n0”,错误;对于D,若直线和平面,满足.则“” 是“”的充分不必要条件,正确,故选:C【点睛】本题主要考查命题的真假判断,涉及四种命题,含有量词的命题的否定,复合命题以及充分条件和必要条件的判断,知识点较多综合性较强,但难度不大.6.某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.【答案】C【解析】由三视图可知,该几何体是一个半圆柱挖取一个倒立的四棱锥,∴本题选择C选项.点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.7.如图所示,在△ABC中,AD=DB,点F在线段CD上,设,,,则的最小值为()A. B. C. D.【答案】A【解析】【分析】用表示,由C,D,F三点共线得出x,y的关系,消去y,得到关于x的函数f(x),利用导数求出f(x)的最小值.【详解】=2x y.∵C,F,D三点共线,∴2x+y=1.即y=1﹣2x.由图可知x>0.∴==.令f(x)=,得f′(x)=,令f′(x)=0得x=或x=﹣(舍).当0<x<时,f′(x)<0,当x时,f′(x)>0.∴当x=时,f(x)取得最小值f()==3+2.故选:A.【点睛】本题考查了平面向量的基本定理,函数的最值,属于中档题.8.已知是定义域为的奇函数,满足,若,则( )A. B. C. D.【答案】B【解析】【分析】由题意可得f(0)=0,f(x)为周期为4的函数,分别求得一个周期内的函数值,计算可得所求和.【详解】f(x)是定义域为(﹣∞,+∞)的奇函数,可得f(﹣x)=﹣f(x),f(1﹣x)=f(1+x)即有f(x+2)=f(﹣x),即f(x+2)=﹣f(x),进而得到f(x+4)=﹣f(x+2)=f(x),f(x)为周期为4的函数,若f(1)=2,可得f(3)=f(﹣1)=﹣f(1)=﹣2,f(2)=f(0)=0,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,可得f(1)+f(2)+f(3)+…+f(2018)=504×0+2+0=2.故选:B.【点睛】本题考查抽象函数的函数值的求和,注意运用函数的周期性,考查转化思想和运算能力,属于中档题.9.已知函数在区间上是增函数,且在区间上存在唯一的使得,则的取值不可能为( )A. B. C. D.【答案】D【解析】【分析】由f(x)=2sinωx可得[﹣,]是函数的递增区间,结合已知可得[﹣,]⊇[],可解得0<ω≤,又函数在区间上存在唯一的使得,根据正弦函数的性质可得0≤≤π,进而得解.【详解】f(x)=2sinωx,∴[﹣,]是函数的递增区间,且[﹣,].又∵函数在[]上递增,∴[﹣,]⊇[],∴得不等式组:﹣≤﹣,≤,又∵ω>0,∴0<ω≤,又在区间上存在唯一的使得,根据正弦函数的性质可知ωx=2kπ+,k∈Z,即函数在x=+处取得最大值,可得0≤≤π,∴ω≥,综上,可得ω∈[,].故选:D.【点睛】本题主要考查正弦函数的图象特征,判断[﹣,]⊇[]是解题的关键,属于中档题.10.将正奇数数列依次按两项、三项分组,得到分组序列如下:,称为第1组,为第2组,依此类推,则原数列中的位于分组序列中( )A. 第组B. 第组C. 第组D. 第组【答案】A【解析】【分析】求出2019为第1010个证奇数,根据富足规则可得答案.【详解】正奇数数列1,3,5,7,9,的通项公式为则2019为第1010个奇数,因为按两项、三项分组,故按5个一组分组是有202组,故原数列中的2019位于分组序列中第404组选A.【点睛】本题考查闺女是推理,属中档题.11.定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1分拆为若干个不同的单位分数之和。
广东省六校2019届高三第二次联考数学(文科)注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.作答选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。
3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.设集合2{log (1)0}M x x =-<,集合{2}N x x =≥-,则MN =( )A.{}22x x -≤<B.{}2x x ≥-C.{}2x x <D.{}12x x <<2. 已知复数z 满足||2z z z =+=,(z 为z 的共轭复数)(i 为虚数单位)则z =( )A. 1i +B. 1i -C.1i +或1i -D.1i -+或1i --3.已知1sin 54πα⎛⎫-= ⎪⎝⎭,则3cos 25πα⎛⎫+=⎪⎝⎭( ) A.78-B.78C.18D.18- 4.等差数列{}n a 中22008a =,2008200416a a =-,则其前n 项和n S 取最大值时n 的值为( )A. 503B.504C.503或504D.5055.下列命题中,为真命题的是( )A .0x R ∃∈,使得00xe ≤ B .2sin π,)sin x x k k Z x+≥≠∈ C .2,2xx R x ∀∈>D .,a b R ∈,1,1a b >>是1ab >的充分不必要条件6.四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,则异面直线AP 与BD 所成的角为( )A.6π B. 4π C. 3π D. 23π 7.已知,x y 满足⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,则y x z +=2的最大值为( )A. 4B. 3C. 2D.1 8.已知菱形ABCD 的边长为2,3B π∠=,点P 满足AP AB λ=,R λ∈若3BD CP ⋅=-,则λ=( ) A.12 B. 12- C. 13 D. 13- 9.已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的图象如图所示,则下列说法正确的是( )A. 函数()f x 的周期为πB. 函数()y f x π=-为偶函数C. 函数()f x 在[,]4ππ--上单调递增D. 函数()f x 的图象关于点3(,0)4π对称10.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,左右焦点分别为12,F F ,点A 在双曲线C上,若12AF F 的周长为10a ,则12AF F 的面积为( )A. 2B.2 C. 230a D. 215a11.在正方体1111ABCD A B C D -中,点P 是侧面11BCC B 内的一动点,若点P 到直线BC 与到直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A. 直线B. 圆C. 双曲线D.抛物线 12.设函数()xf x x e -=-,直线y mx n =+是曲线()y f x =的切线,则m n +的最小值是( )A. 1e -B. 1C. 11e -D. 311e+ 二、填空题:共4小题,每小题5分,共20分。
广东省六校2019届高三第二次联考数学(理科)注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.作答选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。
3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项符合题目要求.(1)已知复数∈+=a ai z (21R ),i z 212-=(i 为虚数单位),若21z z为纯虚数,则a =( )A.1B .5C .2D .3(2)设全集{}55U x x =-<<,集合{}2450A x x x =--<,集合{}B 24x x =-<<,则(A B)U C ⋃=( )A. B. C. D.(3)中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走378里路,第一天健步走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问此人第5天走的路程为( )A .36里 B.24里 C.18里 D. 12里 (4)函数3sin 23y x π⎛⎫=-⎪⎝⎭的单调递增区间是( ) A .2,2,22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B . 511,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ C .5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .32,2,22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ (5) 下列有关命题的说法中错误的是( )A .若p q ∨为真命题,则,p q 中至少有一个为真命题.B.命题:“若()y f x =是幂函数,则()y f x =的图象不经过第四象限”的否命题 是假命题.C .命题“n N *∀∈,有()f n N *∈且()f n n ≤”的否定形式是“0n N *∃∈,有0()f n N *∈且00()f n n >”.D .若直线,m n 和平面α,满足,m n αα⊄⊂.则“//m n ” 是“//m α”的充分不必要条件.(6)某几何体的三视图如图所示,则该几何体的体积为( )A.32163π-B.16163π-C.3283π-D.1683π-(7)如图所示,在△ABC 中,AD=DB ,点F 在线段CD 上, 设=,=,AF xa yb =+u u u r r r,则141x y ++的 最小值为( )A. 223+B. 246+C. 226+D. 36(8) 已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+, 若()12f =,则()()()()1232018f f f f ++++=L L ( )A . 2B . 3C . 4D . 5(10) 将正奇数数列1,3,5,7,9,L L 依次按两项、三项分组,得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),L L ,称(1,3)为第1组,(5,7,9)为第2组,依此类推,则原数列中的2019位于分组序列中( )A.第404组B.第405组C.第808组D.第809组(11)定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1分拆为若干个不同的单位分数之和。
如:1111111111111=1=1=236246122561220+++++++++,,依此类推11111111111111=26123042567290110132156m n ++++++++++++, 其中,m n N *∈,且 m n <,设sin,(x )()21,(x )xm m f x mm π⎧-≤≤⎪=⎨⎪>⎩,则()n f x dx m =-⎰( ) A.5 B.6 C.7 D.9(12)已知关于x 的不等式()x x x x me me ->有且仅有两个正整数解(其中e =2.71828… 为自然对数的底数),则实数m 的取值范围是( ) A .(4165e ,394e ] B .(394e ,243e ] C .[4165e ,394e ) D .[394e ,243e)二.填空题:本题共4小题,每小题5分,共20分.(13)设变量,x y 满足约束条件:-222x x y y x ≥⎧⎪+≤⎨⎪≥⎩,则22z x y =+的最大值是 .(14)已知向量,a b r r 夹角为45︒,且1,2a a b =+=r r r ,则b =r .(15)24,()43,x x f x x x x λλλ->∈⎧⎪=⎨-+≤⎪⎩R 已知,函数,若函数()f x 恰有2个零点,则λ的取值范围是 .(16)如图,正方体1111ABCD-A B C D 的棱长为a ,动点P 在对角线1BD 上,过点P 作垂直于1BD 的平面γ,记这样得到的截面多边形(含三角形)的周长为y ,设BP x =,则当,a 33x ⎤∈⎥⎣⎦时,函数()y f x =的值域为_ _ .三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)已知等比数列{}na 的前n 项和为n S ,且12,,n n S a +成等差数列()*n N ∈.(1)求a 的值及数列{}n a 的通项公式;(2)若()1n n b an a =-+ 求数列{}n b 的前n 项和n T .(18)(本小题满分12分)已知向量)()2,1,sin ,cos m x n x x =-=u r r ,函数()12f x m n =⋅+u r r .(1)若()0,,43x f x π⎡⎤∈=⎢⎥⎣⎦,求cos 2x 的值;(2)在ABC ∆中,角A,B,C 对边分别是,,a b c ,且满足2cos 2b A c ≤, 求()f B 的取值范围.(19)(本小题满分12分)据气象中心观察和预测:发生于菲律宾的东海面M 地的台风,现在已知台风向正南方移动 其移动速度(/)v km h 与时间()t h 的函数图象如图所示,过线段OC 上一点(,0)T t 作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为()t h 内台风所经过的路程()s km .(1) 当4t =时,求s 的值,并将s 随t 变化的规律用数学关系式表示出来;(2)若N 城位于M 地正南方向,且距N 地650km ,试判断这场台风是否会侵袭到N 城,如果会,在台风发生后多少时间它将侵袭到N 城?如果不会,请说明理由.(1)求证; 平面PAE ⊥平面ABCE ;(2)若平面PAE 和平面PBC 的交线为l ,求二面角B l E --的余弦值.(21)(本小题满分12分) 已知函数ln ()xf x x a=+(a R ∈),曲线()y f x =在点(1,(1))f 处的切线方程为1y x =-. (1)求实数a 的值,并求()f x 的单调区间; (2)试比较20192018与20182019的大小,并说明理由;(3)求证:0x >当时()23f x x +<,(22)(本小题满分12分)设函数2()(32)x x f x x a e e =+-+,其中a R ∈. (1)讨论函数()f x 极值点的个数,并说明理由; (2)若0,()0x f x ∀>≥成立,求a 的取值范围.数学(理科)参考答案一.选择题:本大题共12小题,每小题5分。
二.填空题:本大题共4小题,每小题5分13. 8 14.15. [)[)1,34,+∞U 16. {}三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤。
17. 解析:(1)∵12,,n n S a +成等差数列,∴122n n S a +=+,…1分 当1n =时, 11224S a a ==+,122aa =+………2分 当2n ≥时, 112n n n n a S S --=-=,………3分 ∵{}n a 是等比数列,∴11a =,则212a+=,得2a =-, ∴数列{}n a 的通项公式为12n n a -= ()*n N ∈ ………5分(2)由(1)得 ()()121212n n n b n a n -=-=-⋅,……6分则2311325272n T =⨯+⨯+⨯+⨯ ()1212n n -++-⋅L L ,①232123252n T =⨯+⨯+⨯++L L ()()1232212n n n n --⋅+-⋅,②……7分①-②得2112222n T -=⨯+⨯+⨯++L L ()122212n n n -⨯--⋅,…8分()()2112222212n n n -=++++--⋅L L()()11421212n n n -=+---⋅ ()2323n n =--⋅-.∴()2323nn T n =-⋅+.…10分18.解:(1)()21cos cos sin 32+-=x x x x f x x 2cos 212sin 23-=3362sin =⎪⎭⎫ ⎝⎛-=πx -----2分 Q 又⎥⎦⎤⎢⎣⎡∈4,0πx 3626πππ≤-≤-∴x3662cos =⎪⎭⎫ ⎝⎛-∴πx -------4分 ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=∴662cos 2cos ππx x 2162sin -2362cos ⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-=ππx x 632233212336-=⨯-⨯=--------6分 (2)由a c A b 32cos 2-≤,得a c bca cb b 3222222-≤-+⋅ ac b c a 3222≥-+ ----8分232cos 222≥-+=∴bc b c a B --9分 (0,)0,6B B ππ∈∴<≤Q ----10分从而得6626πππ≤-<-B 故()⎥⎦⎤⎝⎛-∈⎪⎭⎫ ⎝⎛-=21,2162sin πB B f ------12分 19. 解析:(Ⅰ)由图象可知:直线OA 的方程是:3v t =,直线BC 的方程是:270v t =-+ 当4t =时,12v =,所以1412242s =⨯⨯=.…………2分 当010t ≤≤时,213322s t t t =⨯⨯=;……………3分 当1020t <≤时,11030(10)30301502s t t =⨯⨯+-⨯=-…………4分 当2035t <≤时,21150300(20)(27030)705502s t t t t =++⨯-⨯-++=-++ …………5分综上可知s 随t 变化的规律是223[0,10]230150(10,20]70550(20,35]tt s t t t t t ⎧∈⎪⎪⎪=-∈⎨⎪⎪-+-∈⎪⎩…………7分 (Ⅱ)[0,10]t ∈Q ,2max 3101506502s =⨯=<, ………8分(10,20]t ∈,max 3020150450650s =⨯-=< ………9分当(20,35]t ∈时,令270550650t t -++=,解得30t =,(40t =舍去)………11分即在台风发生后30小时后将侵袭到N 城.……12分 20.解析:(1)连接BE ,在平行四边形ABCD 中,∵2,DE AD == 045ADC ∠=, 2AE ∴=∴AE DE ⊥,即AE PE ⊥,且AE BA ⊥. ………2分 在Rt BEA V中,得BE ==又因为2PE =,PB =∴222PE BE PB +=,即PE BE ⊥. …………4分又∵AE ⊂平面ABCE ,BE ⊂平面ABCE ,且AE BE E ⋂=,∴PE ⊥平面ABCE 又∵PE ⊂平面PAE ,∴平面PAE ⊥平面ABCE . …………6分(2)由(1)得,,PE AE CE 两两垂直,故以E 为原点, ,,EC EA EP 所在直线分别为,,x y z 轴建立空间直角坐标系.则(0,2,0)A -,C(2,0,0), P(0,0,2),B(4,2,0)-.∴ (2,0,2)PC =-u u u r ,(2,2,0)BC =-u u u r. …………7分可知1(1,0,0)n =u r是平面PAE 的一个法向量,…8分设平面PBC 的一个法向量为2(,,)n x y z =u u r ,则00x z x y -=⎧⎨-+=⎩ ,可取2(1,1,1)n =u u r …10分所以121212cos ,3n n n n n n ⋅==⋅u r u u ru r u u r u r u u r ………11分…………12分 21.【解析】(1)依题意,2ln '()()x ax x f x x a +-=+, ……1分 所以211'(1)(1)1a f a a+==++,又由切线方程可得'(1)1f =,即111a=+,解得0a =,…… 2分 此时ln ()x f x x =,21ln '()xf x x-=, 令'()0f x >,所以1ln 0x ->,解得0x e <<;令'()0f x <,所以1ln 0x -<,解得x e >,所以()f x 的增区间为:(0,)e ,减区间为:(,)e +∞.……4分(2) 由(1)知,函数()f x 在(,)e +∞上单调递减,所以(2018)(2019)f f >…6分2019201820192018ln 2018ln 20192019ln 20182018ln 2019ln 2018ln 20192018201920182019.....7⋯>⇔>⇔>⇔>即分(3)法1:2ln ()232332ln 0xf x x x x x x x +<+<⇔-->欲证,即证22220ln 132ln 321331113(x )0,241.2x x x x x x x x x x x >≤-∴--≥-+-=-+=⋯-+>∴⋯Q 又当时原命题成立. 分法2:2ln ()232332ln 80xf x x x x x x x +<+<⇔-->⋯⋯欲证,即证分220002min 00001621()32ln ,()62,()0(0,x )()0;(x ,)()0,()()(x )32ln 10x x g x x x x g x x x xg x x x g x x g x g x g x g x x x --'=--=⋯⋯--='=⇒=''∴∈<∈+∞>==--设则令当时当时故y=在处取得唯一的极小值,即最小值分22000000000001()062103211()2ln ln 221212212()(,)()()ln ln ln102323363g x x x x x g x x x x x x x y g x g x g '=⇒--=⇒=+∴=+--=--<<=∴>=--=>=Q Q 又且在上递减,min ()0()23x f x x >∴+<即g ……12分(其他解法酌情给分)22. 解:(1)2()231xx f x ae ae '=-+,设0x e t =>,则2()()231f x g t at at '==-+,…………1分当a=0时,()10f x '=>,函数f(x)在R 上为增函数,无极值点. ……2分 当a>0时,298a a ∆=-, 若809a <≤时,0∆≤, ()0f x '≥,函数f(x)在R 上为增函数,无极值点. ……3分 若89a >时,0∆>,设2()231g t at at =-+的两个不相等的正实数根为12,t t ,且12t t <, 则212()2312()()x x x x f x ae ae a e t e t '=-+=--,所以当1(,ln ),()0x t f x '∈-∞>,()f x 单调递增;当12(ln ,ln ),()0x t t f x '∈<,()f x 单调递减;当2(ln ,),()0x t f x '∈+∞>,()f x 单调递增.因此此时函数f(x)有两个极值点. ……4分 同理当0a <时,2()231g t at at =-+的两个不相等的实数根12,t t ,且120t t <<, 当2(ln ,),()0x t f x '∈+∞<,()f x 单调递减,当2(,ln ),()0x t f x '∈-∞>,f(x)单调递增,所以函数()f x 只有一个极值点. ……5分综上可知,当809a ≤≤时()f x 无极值点;当0a <时()f x 有一个极值点;当89a >时,()f x 有两个极值点.(6分)(2)对于0,1xx e t ∀>=>, 由(1)知当809a ≤≤时函数()f x 在R 上为增函数,由(0)0f =,所以()0f x ≥成立. …………8分11 若89a >,设2()231g t at at =-+的两个不相等的正实数根为12,t t , 12t t <且1212131,22t t t t a =<+=,∴1234t t <<.则若0,()0x f x ∀>≥成立,则要求21t <, 即(1)2a 3a 10g =-+≥,解得1a ≤.此时f(x)在(0,)+∞为增函数,0,()0x f x ∀>≥成立.…………10分若当0a <时,222()(32)(32)(31)2x x x x x x x f x x a e e e a e e ae a e a =+-+≤+-+=--+,又21,()(31)20x t e t at a t a ϕ=>=--+≥显然不恒成立. 综上所述,a 的取值范围是01a ≤≤.(12分)。