【教学设计】切线的性质
- 格式:pdf
- 大小:15.87 KB
- 文档页数:2
切线的性质和判定教案教案标题:切线的性质和判定教学目标:1. 理解切线的定义和性质。
2. 学会判定给定点与曲线的切线关系。
3. 掌握切线的斜率和方程的计算方法。
教学准备:1. 教师准备:教师课件、黑板、粉笔、切线相关的教学素材和案例。
2. 学生准备:学生课本、笔记本、铅笔、计算器。
教学过程:一、导入(5分钟)1. 引入切线概念:教师通过引发学生对曲线和切线的认知,例如:你们曾经在生活中遇到过什么是曲线吗?切线又是什么?请举例说明。
2. 激发学生兴趣:教师通过展示一些有趣的图形和实际应用案例,引起学生对切线的兴趣。
二、概念讲解(15分钟)1. 定义切线:教师通过示意图和示例,引导学生理解切线的定义,即与曲线相切于一点且切线斜率等于曲线斜率。
2. 切线性质:教师讲解切线与曲线的相对位置关系,以及切线的斜率和曲线的斜率之间的关系。
三、切线的判定(20分钟)1. 几何判定法:教师讲解几何判定法,即切线与曲线相切于一点时,切线与曲线在该点处的切点和切线方向相同。
2. 代数判定法:教师讲解代数判定法,即通过求解曲线方程和切线方程的交点,判断给定点与曲线的切线关系。
四、切线方程的计算(20分钟)1. 切线斜率的计算:教师通过示例演示切线斜率的计算方法,即利用导数的定义求出曲线在给定点的切线斜率。
2. 切线方程的计算:教师通过示例演示切线方程的计算方法,即利用点斜式或截距式求出切线的方程。
五、练习与巩固(15分钟)1. 学生个人练习:学生根据教师提供的练习题,独立完成切线的性质和判定相关的练习。
2. 小组合作讨论:学生分组进行讨论,互相解答疑惑,共同巩固所学知识。
六、拓展与应用(10分钟)1. 实际应用:教师通过展示一些实际问题,如工程设计、物体运动等,引导学生将切线的性质和判定应用到实际问题中。
2. 拓展知识:教师简要介绍其他相关概念,如法线、切点等,拓展学生的知识面。
七、总结与反思(5分钟)1. 总结:教师对本节课的重点内容进行总结,并强调切线的性质和判定方法。
切线的判定和性质数学教案标题:切线的判定与性质——数学教案一、教学目标1. 知识目标:理解和掌握圆的切线的定义,以及切线的判定和性质。
2. 能力目标:通过解决相关问题,提高学生的逻辑推理能力和空间想象能力。
3. 情感态度价值观目标:培养学生积极思考、勇于探索的学习态度,增强学生对数学学习的兴趣。
二、教学重点与难点1. 教学重点:切线的判定方法和性质。
2. 教学难点:理解并应用切线的判定定理和性质解决实际问题。
三、教学过程(一)引入新课教师引导学生回顾上节课关于圆的知识,提出问题:“如何判断一条直线是否为圆的切线?”以此引出本节课的主题——切线的判定和性质。
(二)讲解新知1. 切线的定义:与圆只有一个公共点的直线叫做圆的切线。
2. 切线的判定:(1) 判定定理1:经过半径的外端并且垂直于这条半径的直线是圆的切线。
(2) 判定定理2:到圆心的距离等于半径的直线是圆的切线。
3. 切线的性质:(1) 性质1:过圆心且垂直于切线的直线必经过切点。
(2) 性质2:从圆外一点引圆的两条切线,它们的切线长相等。
(三)课堂练习设计一些相关的练习题,让学生在实践中巩固所学知识。
如:例题1:已知OA,OB为圆O的两条半径,∠AOB=60°,P为劣弧AB上的动点,过P作圆O的切线PC,设∠APB=α,求证:tanα=2sinα。
例题2:已知△ABC中,∠A=90°,AB=AC,D是BC边的中点,E是AC边上的任意一点,DE与以C为圆心,CA为半径的圆相切于F点,证明:AF⊥BE。
(四)课堂小结引导学生总结本节课的主要内容,包括切线的定义、判定定理和性质,并强调这些知识在解题中的重要性。
(五)课后作业布置适量的课后作业,帮助学生进一步巩固和应用所学知识。
四、教学反思在教学过程中,应注重引导学生主动参与,鼓励他们通过独立思考和合作交流来解决问题。
同时,要关注学生的个体差异,提供有针对性的教学指导,以满足他们的不同学习需求。
切线的判定和性质数学教案设计第一章:导言1.1 课程背景本节课我们将学习一种特殊的直线——切线。
在初中阶段,我们已经学习了直线、射线、线段等基本概念。
通过学习切线,我们将对函数图像有更深入的了解,并掌握一种新的解决问题的方法。
1.2 教学目标(1)了解切线的定义及其特点;(2)掌握切线的判定方法;(3)能运用切线的性质解决实际问题。
第二章:切线的定义及特点2.1 教学内容本节课我们将学习切线的定义及特点。
我们通过具体例子观察函数图像上的切线,引导学生发现切线的特点。
给出切线的定义,并从几何角度分析切线的性质。
2.2 教学活动(1)展示几个函数图像,引导学生观察并描述切线的外观特点;(2)给出切线的定义,让学生理解切线与函数图像的关系;(3)通过几何图形,引导学生分析切线的性质,如切线与函数图像的交点为切点,切线与函数图像的切点处的导数为切线的斜率等。
第三章:切线的判定方法3.1 教学内容本节课我们将学习切线的判定方法。
我们回顾一下导数的定义,引入切线的判定方法。
通过实例讲解如何运用切线的判定方法。
3.2 教学活动(1)回顾导数的定义,让学生理解导数与切线的关系;(2)给出切线的判定方法,让学生掌握如何判断一条直线是否为切线;第四章:切线的性质4.1 教学内容本节课我们将学习切线的性质。
我们通过几何图形引导学生理解切线的性质。
给出切线的性质定理,并解释其含义。
通过实例讲解如何运用切线的性质。
4.2 教学活动(1)通过几何图形,引导学生理解切线的性质,如切线与函数图像的切点处的导数为切线的斜率,切线与函数图像的交点为切点等;(2)给出切线的性质定理,让学生掌握切线的性质;第五章:运用切线解决实际问题5.1 教学内容本节课我们将学习如何运用切线解决实际问题。
我们通过具体例子引导学生理解切线在实际问题中的应用。
给出运用切线解决实际问题的方法,并解释其原理。
通过实例讲解如何运用切线解决实际问题。
5.2 教学活动(1)展示几个实际问题,引导学生观察并发现其中涉及到的切线;(2)给出运用切线解决实际问题的方法,让学生理解切线在实际问题中的作用;第六章:切线方程的求法6.1 教学内容本节课我们将学习如何求解切线的方程。
数学教案-切线的判定和性质切线的判定和性质(一)教学目标:1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.教学重点:切线的判定定理和切线判定的方法;教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.教学过程()设计(一)复习、发现问题1.直线与圆的三种位置关系在图中,图(1)、图(2)、图(3)中的直线和⊙O是什么关系?2、观察、提出问题、分析发现(教师引导)图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.(二)切线的判定定理:1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.2、对定理的理解:引导学生理解:①经过半径外端;②垂直于这条半径.请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.(三)切线的判定方法教师组织学生归纳.切线的判定方法有三种:①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.(四)应用定理,强化训练例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。
数学教案-切线的判定和性质一、教案简介本教案旨在帮助学生掌握切线的判定和性质。
通过本教案的学习,学生将了解如何判断一条直线是否为曲线的切线,并掌握切线的性质,如切点、切线方向等。
本教案适用于高中数学教学中切线相关知识的教学。
二、教学目标1.了解判定一条直线为曲线的切线的几何条件;2.掌握切线的性质,如切点、切线方向等;3.运用所学知识解决相关问题。
三、教学重点1.切线的判定几何条件;2.切线的性质。
四、教学内容和方法1. 切线的判定切线是曲线与该曲线上的某一点之间相切的直线。
切线的判定可以通过以下几何条件来进行判断:•条件1:直线过曲线上的一点;•条件2:直线与曲线相交于该点。
2. 切线的性质性质1:切点切线与曲线相交的点称为切点。
性质2:切线的方向切线上的两点在曲线上对应的两点连线的斜率等于切线的斜率。
性质3:切线的斜率切线的斜率等于曲线在切点处的导数。
3. 相关问题的解决将学生分成小组进行练习,解决如下问题:1.已知函数y=x3−2x2−3x+2,求曲线y=x3−2x2−3x+2上切线方程的斜率和截距;2.已知函数$y = \\sqrt{x}$,求曲线$y = \\sqrt{x}$上切线方程的斜率和截距。
五、教学步骤1.导入:通过引入一个实际生活中的例子,如汽车与曲线的切线,引起学生的兴趣,并提出问题:“如何判断一条直线是否为曲线的切线?切线有哪些性质?”;2.讲解:通过讲解切线的判定条件和性质,帮助学生理解切线的概念和相关知识;3.实例演示:通过解析具体的数学问题,讲解切线的判定和性质的应用;4.练习:将学生分成小组,进行相关问题的练习;5.总结:对本节课的主要内容进行总结,并强调切线的重要性和应用价值;6.作业布置:布置相关作业,巩固所学知识。
六、教学评估1.练习题的完成情况;2.学生对切线的判定和性质的理解情况;3.教学过程中的讨论和思考问题的情况。
七、教学延伸1.利用电子白板或数学软件进行切线的绘制和切线方程的计算,帮助学生更加直观地理解切线的概念和性质;2.结合实际问题,让学生应用切线的知识解决实际问题,提高学生对数学知识的应用能力。
切线的判定和性质数学教案第一章:导言教学目标:1. 了解切线的定义和基本概念。
2. 理解切线与曲线的关系。
教学内容:1. 引入切线的定义,解释切线与曲线的关系。
2. 介绍切线的特点和性质。
教学方法:1. 通过图形和实例直观地展示切线与曲线的关系。
2. 使用数学符号和公式来表示切线的特点和性质。
教学活动:1. 引导学生观察图形,找出曲线的切点。
2. 引导学生利用数学公式计算切线的斜率和方程。
作业:1. 练习找出给定曲线的切点。
2. 练习计算给定切线的斜率和方程。
第二章:切线的判定条件教学目标:1. 掌握切线的判定条件。
2. 能够判断曲线上的点是否为切点。
教学内容:1. 介绍切线的判定条件。
2. 解释判定条件的数学意义。
教学方法:1. 通过图形和实例讲解切线的判定条件。
2. 使用数学符号和公式来表示判定条件。
教学活动:1. 引导学生观察图形,找出曲线的切点。
2. 引导学生利用判定条件判断曲线上的点是否为切点。
作业:1. 练习判断给定曲线上的点是否为切点。
2. 练习利用判定条件证明给定点为切点。
第三章:切线的斜率和方程教学目标:1. 掌握切线的斜率和方程的计算方法。
2. 能够计算给定切线的斜率和方程。
教学内容:1. 介绍切线的斜率和方程的计算方法。
2. 解释斜率和方程的数学意义。
教学方法:1. 通过图形和实例讲解切线的斜率和方程的计算方法。
2. 使用数学符号和公式来表示斜率和方程。
教学活动:1. 引导学生观察图形,找出曲线的切点。
2. 引导学生利用判定条件判断曲线上的点是否为切点。
3. 引导学生计算给定切线的斜率和方程。
作业:1. 练习计算给定曲线上的切线的斜率和方程。
2. 练习利用判定条件证明给定点为切点,并计算其斜率和方程。
第四章:切线的性质教学目标:1. 掌握切线的性质。
2. 能够应用切线的性质解决实际问题。
教学内容:1. 介绍切线的性质。
2. 解释切线性质的数学意义。
教学方法:1. 通过图形和实例讲解切线的性质。
切线的判定和性质数学教案设计第一章:导言1.1 课程引入介绍切线的基本概念,让学生了解切线在几何学中的重要性。
通过实际例子,引导学生思考切线与曲线的关系。
1.2 切线的定义给出切线的定义,解释切线与曲线的接触点。
引导学生通过图形加深对切线的理解。
第二章:切线的判定2.1 判定条件一:切点在曲线上引导学生理解切点在曲线上的条件。
通过实际例子,展示切点在曲线上时,切线的性质。
2.2 判定条件二:切线与曲线有唯一交点解释切线与曲线有唯一交点的条件。
通过图形和实际例子,引导学生理解判定条件二。
第三章:切线的性质3.1 性质一:切线与半径垂直引导学生理解切线与半径垂直的性质。
通过图形和实际例子,展示切线与半径垂直的性质。
3.2 性质二:切线与曲线相切时,切线斜率等于曲线导数解释切线斜率等于曲线导数的性质。
通过实际例子,展示切线斜率等于曲线导数的性质。
第四章:切线的应用4.1 应用一:求曲线在某点的切线方程引导学生掌握求曲线在某点的切线方程的方法。
通过实际例子,展示求曲线在某点的切线方程的步骤。
4.2 应用二:求曲线的切线与曲线的交点引导学生掌握求曲线的切线与曲线的交点的方法。
通过实际例子,展示求曲线的切线与曲线的交点的步骤。
引导学生回顾切线的判定和性质,加深对切线的理解。
通过练习题,巩固学生对切线的判定和性质的掌握。
5.2 拓展切线在其他领域的应用引导学生思考切线在其他领域的应用,如物理学、工程学等。
激发学生对切线应用的兴趣和好奇心。
第六章:切线方程的求法6.1 切线方程的斜率截距式解释切线方程的斜率截距式的概念。
引导学生通过图形和实际例子,理解斜率截距式在求切线方程中的应用。
6.2 切线方程的一般式解释切线方程的一般式的概念。
引导学生通过图形和实际例子,理解一般式在求切线方程中的应用。
第七章:切线与曲线的位置关系7.1 切线与曲线相切解释切线与曲线相切的条件。
引导学生通过图形和实际例子,理解切线与曲线相切时的特点。
切线的性质
建议思考的问题:
如何处理好课本的知识点,才更利于学生掌握?
学生会选择正确的性质定理去证明一些简单的几何例题吗?
课堂实录:
(一)引入
[师]:前面两节课我们学习了直线与圆的三种位置关系。
那么是哪三种位置关系呢?设o的半径为r,圆心o到直线l的距离d,那么这三种位置关系与d与的关系是什么?
[点评]:采用这种方法复习的目的是已达到,可是引入新课未免平淡,针对性也不强。
[生]:直线l与圆o相交 d<r;直线l与圆o相离 d>r;直线l与圆o相切 d=r (学齐声回答,看来这个问题难度较低,不至于引人入胜。
)
[师]:请同学们翻开书本,看图6-8,我提几个问题。
如果AT切O于A,那么半径OA有什么关系?过点A的直线AT的垂线一定过圆心吗?过圆心引AT的垂线一定过切点A吗?从而引出课题(板书节)请同学分组讨论,并回答。
(学生中少有讨论,大多数同学感到茫然)
[师]:有谁来回答这个问题?大家比一比,赛一赛?(教师提出问题后没有学生回答)
[点评]:显然这几个问题与前面的问题比较起来难度有较大的提高。
梯度过于
明显。
最后教师采取了点名的方法叫了三名成绩优异的学生回答出了垂直过圆
心、过切点。
新课的引入在这里,教师已陷入被动与学互动变成了个别优秀学生
的秀场,何来比一比,赛一赛?如果没有学生的积极主动参与是不能取得好的效
果的。
[师]:刚才这几位同学的回答非常正确,你们真棒!
[点评]:对学生的回答用赞赏语言,适时地进行激励,激发学生的学习兴趣。
[师]:1、大家抬头黑板,听听我的分析:由直线L和O相切可推半径OA与OA 的长度有什么关系?因此它们在位置上有什么关系(由学生集体回答)
2、思考下列问题:过圆心垂直于切线的直线(OA)
过切点的半径
过切点与切线垂直的直线
这三者之间有什么关系?
[点评]:为什要听老师析呢:分析后学生是否就真正理解了呢?思考的这三个问
问题都是老师事先设计好的,至于为什么要这样设计,有什么应用意义,在引入切线的三条性质的问题情境创设上是还有改变目前的这种“八股”模式?
课后分析与思考:《数学课程标准》强调:“参加特定数学活动,具体情境中初步认识对象的特征。
获得一些经验”。
“教师应激发学的学习积极性。
向学生提供充分从事数学活动的机会。
帮助他们在自主探索和合作交流的过程中真正理解和掌
握基本的数学知识与技能等”。
“学生是数学学习的主人,教师是数学学习组织者、引导者与合作者”教师应该意识到随着新一轮课和改革的推论,针对老教材,我们的教学方式也要随之改变。
根据新课程的要求,这堂课的引入是否可以这样的。
教师设计:
[复习作图题]:已知圆及圆上一点,怎样过该点作圆的切线。
已知一直线及直线上一点,作一半径等于定长的圆与该直线相切于该点。
[提出新问题]:1、已知O与直线L相切,怎样确定切点?
2、已知L1、L2分别与圆相切于点A、B,怎样确定圆心O的位置?[学生小组讨论]:学生以固定的小组模式为单位,要求把各自作法先画在纸上,
然后组织校对交流,最后汇总,推举代表发言。
汇总后发现结果不谋而合,而两
结论恰好是切线性质1、3。
[再次提出问题]:“圆的切线垂直于半径”这句话对吗?如果正确,说出理由。
如果不正确,请将其改进。
[学生讨论]:归纳出切线性质2。
[师]:知识的呈现可采用不同的表达方式,作图、判断、讨论,以满足多样化的
学习需求。
师自评:通过三个问题的解决得出了切线三个性质,给了学生三个初步经验。
那么在后面三性质的应用的衔接可能会更自然些。
更利于学生在一些具体的问题中判断是切点尚未确定,或是圆心尚未确定,还是垂直关系尚未确定然后选择合适的性质去确定它。
总之,新知识的引入是否贴合主题,是否吸引学生是学生进一步学习的重要前提。
教师应注意把握开展探究教学。
这是适合于需求,新理念指导下的教学方式,有待于在教学实践中学生不断探索、完善。