2019-2020年九年级数学第二次月考卷及答案
- 格式:doc
- 大小:438.81 KB
- 文档页数:14
2019-2020学年九年级(上)第二次月考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号涂在相应的答题卡上.1.﹣的倒数是()A.B.C.﹣D.﹣2.下列方程中,是一元二次方程的为()A.3x2﹣6xy+2=0B.x2﹣5=﹣2xC.x2+3x﹣1=x2D.x2+=03.近似数3.0×102精确到()A.十分位B.个位C.十位D.百位4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°5.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.6.一元二次方程x2﹣3x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定7.小张的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是()A.B.C.D.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若菱形边长为4,则反比例函数解析式为()A.y=B.y=﹣C.y=﹣D.y=9.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC 于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE 10.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)二、填空题:(本大题共8个小题,每小题4分,共32分)11.9的算术平方根是.12.若方程x2﹣5x+3=0两根为x1,x2,则x1x2=.13.设点P(x,y)在第二象限,且|x|=2,|y|=1,则点P的坐标为.14.函数的自变量x的取值范围是.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=.16.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.17.在△ABC中,∠A=30°,∠B=45°,AC=,则BC=.18.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为.三、解答题:(本题共4个小题,第19,20,21、22题每题10分,共40分)19.(1)计算:()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°.(2)用公式法解方程:3x2+2x﹣1=0.20.先化简,(﹣)×,再从1,2,3中选取一个适当的数代入求值.21.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.22.某商店商品每件成本20元,按30元销售时,每天可销售100件,根据市场调查:若销售单价每上涨1元,该商品每天销售量就减少5件.若该商店计划该商品每天获利1125元,求该商品的售价?四、(本题满分12分)23.如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C 在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.五、(本题满分12分)24.小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588 cos15°≈0.9659 tan≈.0.2677 )六.(本题满分14分)25.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,当EG宽为多少mm时,矩形有最大面积,最大面积是多少?参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A 、B 、C 、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号涂在相应的答题卡上.1.﹣的倒数是( )A .B .C .﹣D .﹣【分析】乘积是1的两数互为倒数,结合选项进行判断即可.【解答】解:﹣的倒数为﹣.故选:D .【点评】本题考查了倒数的定义,属于基础题,注意掌握乘积是1的两数互为倒数. 2.下列方程中,是一元二次方程的为( )A .3x 2﹣6xy +2=0B .x 2﹣5=﹣2xC .x 2+3x ﹣1=x 2D .x 2+=0 【分析】根据判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”进行分析即可.【解答】解:A 、不是一元二次方程,故此选项错误;B 、是一元二次方程,故此选项正确;C 、不是一元二次方程,故此选项错误;D 、不是一元二次方程,故此选项错误;故选:B .【点评】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.近似数3.0×102精确到( )A .十分位B .个位C .十位D .百位【分析】要判断科学记数法表示的数精确到哪一位,应当看最后一个数字在什么位,即精确到了什么位.【解答】解:近似数3.0×102精确到十位,故选:C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°【分析】根据两直线平行,同位角相等求出∠2的同位角,再根据三角形的外角性质求解即可.【解答】解:如图,∵∠2=50°,并且是直尺,∴∠4=∠2=50°(两直线平行,同位角相等),∵∠1=30°,∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:D.【点评】本题主要考查了两直线平行,同位角相等的性质以及三角形的外角性质,熟练掌握性质定理是解题的关键.5.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.一元二次方程x2﹣3x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】先计算出判别式的值,然后利用判别式的意义判断方程根的情况.【解答】解:∵△=(﹣3)2﹣4×(﹣2)=17>0,∴方程有两个不相等的两个实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.7.小张的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是()A.B.C.D.【分析】由爷爷锻炼身体的行程,可得出距离的变化是先增加、中间有段不变后减少,再根据跑步的速度快于漫步的速度,对照选项即可得出结论.【解答】解:∵爷爷跑步去公园,漫步回家,且在公园停留打了一会儿太极拳,∴距离的变化是先增加、中间有段不变后减少,且增加的快,减少的慢.故选:D.【点评】本题考查了函数的图象,根据爷爷锻炼身体的行程找出爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象是解题的关键.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若菱形边长为4,则反比例函数解析式为()A.y=B.y=﹣C.y=﹣D.y=【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为4,∴OC=4,∠COB=60°,∴点C的坐标为(﹣2,2),∵顶点C在反比例函数y=的图象上,∴2=,得k=﹣4,即y=﹣,故选:C.【点评】本题考查待定系数法求反比例函数解析式、菱形的性质,解答本题的关键是明确题意,求出点C的坐标,利用反比例函数的性质解答.9.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC 于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE【分析】根据相似三角形的判定,采用排除法,逐项分析判断.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故C正确.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正确.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正确.而不能证明△BDF∽△BEC,故A错误.故选:A.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.10.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)【分析】作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(﹣4,5),得到A′(4,5),B(﹣4,0),D(﹣2,0),求出直线DA′的解析式为y=x+,即可得到结论.【解答】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,∵四边形ABOC是矩形,∴AC∥OB,AC=OB,∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0),∵D是OB的中点,∴D(﹣2,0),设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为y=x+,当x=0时,y=,∴E(0,),故选:B.【点评】此题主要考查轴对称﹣﹣最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.二、填空题:(本大题共8个小题,每小题4分,共32分)11.9的算术平方根是3.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.12.若方程x2﹣5x+3=0两根为x1,x2,则x1x2=3.【分析】直接由方程根与系数的关系可求得答案.【解答】解:∵方程x2﹣5x+3=0两根为x1,x2,∴x1x2=3,故答案为:3.【点评】本题主要考查根与系数的关系,掌握一元二次方程两根之和等于﹣、两根之积等于是解题的关键.13.设点P(x,y)在第二象限,且|x|=2,|y|=1,则点P的坐标为(﹣2,1).【分析】根据第二象限内点的横坐标是负数,纵坐标是正数结合绝对值的性质求出x、y 的值,然后写出即可.【解答】解:∵点P(x,y)在第二象限,且|x|=2,|y|=1,∴x=﹣2,y=1,∴点P的坐标为(﹣2,1).故答案为:(﹣2,1).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.函数的自变量x的取值范围是x≥2.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=15°.【分析】由四边形ABCD为正方形,三角形ADE为等比三角形,可得出正方形的四条边相等,三角形的三边相等,进而得到AB=AE,且得到∠BAD为直角,∠DAE为60°,由∠BAD+∠DAE求出∠BAE的度数,进而利用等腰三角形的性质及三角形的内角和定理即可求出∠AEB的度数.【解答】解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠AEB==15°.故答案为:15°.【点评】此题考查了正方形的性质,以及等边三角形的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.16.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯2+2米.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.17.在△ABC中,∠A=30°,∠B=45°,AC=,则BC=1.【分析】作CD⊥AB,由AC=、∠A=30°知CD=,由∠B=45°知CD=BD=,最后由勾股定理可得答案.【解答】解:如图,过点C作CD⊥AB于点D,在Rt△ACD中,∵AC=,∠A=30°,∴CD=AC=,∵在Rt△BCD中,∠B=45°,∴CD=BD=,则BC==1,故答案为1;【点评】本题主要考查勾股定理、直角三角形的性质,熟练掌握直角三角形的性质和勾股定理是解题的关键.18.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为199.【分析】根据条件第二个比第一个大2,第三个比第二个大3,第四个比第三个大4,依此类推,可以得到:第n个比第n﹣1个大n.则第100个三角形数与第99个三角形数的差100,第99个三角形数与第98个三角形数的差99,∴第100个三角形数与第98个三角形数的差为100+99=199.【解答】解:第100个三角形数与第98个三角形数的差为199.【点评】这是一个探索性问题,是一个经常出现的问题.三、解答题:(本题共4个小题,第19,20,21、22题每题10分,共40分)19.(1)计算:()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°. (2)用公式法解方程:3x 2+2x ﹣1=0.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出b 24ac 的值,再代入公式求出即可.【解答】解:(1)()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°=2+1﹣(2﹣)﹣2× =1;(2)3x 2+2x ﹣1=0,a=3,b=2,c=﹣1,∵b 2﹣4ac=22﹣4×3×(﹣1)=16>0,∴x=,∴x 1=,x 2=﹣1.【点评】本题考查了解一元二次方程,零指数幂,负整数指数幂,特殊角的三角函数值等知识点,能求出每一部分的值是解(1)的关键,能选择适当的方法解一元二次方程是解(2)的关键.20.先化简,(﹣)×,再从1,2,3中选取一个适当的数代入求值.【分析】根据分式的减法和乘法可以化简题目中的式子,在从1,2,3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(﹣)×===,当x=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.【分析】证出∠ADE=∠CBF,AD=CB,由AAS证△ADE≌△CBF即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS).【点评】此题考查了平行四边形的性质、全等三角形的判定.熟练掌握平行四边形的性质是解决问题的关键.22.某商店商品每件成本20元,按30元销售时,每天可销售100件,根据市场调查:若销售单价每上涨1元,该商品每天销售量就减少5件.若该商店计划该商品每天获利1125元,求该商品的售价?【分析】设商品售价为每件(30+x)元,则每天销售(100﹣5x)件,根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,将其代入30+x中即可求出该商品的售价.【解答】解:设商品售价为每件(30+x)元,则每天销售(100﹣5x)件,根据题意得:(30+x﹣20)×(100﹣5x)=1125,整理得:x2﹣10x+25=0,解得:x1=x2=5,∴x+30=35.答:该商品的售价为35元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.四、(本题满分12分)23.如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C 在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.【分析】(1)过点A作AD垂直于OC,由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;(2)根据函数图象,找出满足题意x的范围即可.【解答】解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,=S△ACD=6,∴S△ADO∴k=﹣12;(2)联立得:,解得:或,即A(﹣2,6),B(2,﹣6),根据图象得:当y1>y2时,x的范围为x<﹣2或0<x<2.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握各函数的性质是解本题的关键.五、(本题满分12分)24.小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588 cos15°≈0.9659 tan≈.0.2677 )【分析】(1)利用在Rt△BCD中,∠CBD=15°,BD=20,得出CD=BD•sin15°求得答案即可;(2)由图可知:AB=AF+DE+CD,利用直角三角形的性质和锐角三角函数的意义,求得AF即可.【解答】解:(1)在Rt△BCD中,∵∠CBD=15°,BD=20,∴CD=BD•sin15°,∴CD≈5.2m;答:小明与地面的垂直距离CD的值是5.2m;(2)在Rt△AFE中,∵∠AEF=45°,∴AF=EF=BC,由(1)知,BC=BD•cos15°≈19.3(m),∴AB=AF+DE+CD=19.3+1.6+5.2=26.1(m).答:楼房AB的高度是26.1m.【点评】本题考查了解直角三角形的应用,题目中涉及到了仰角和坡角的问题,解题的关键是构造直角三角形.六.(本题满分14分)25.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,当EG宽为多少mm时,矩形有最大面积,最大面积是多少?【分析】(1)根据矩形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,根据EF∥BC,得到△AEF ∽△ABC,根据相似三角形的性质得到比例式,解方程即可得到结果;(3)根据矩形面积公式得到关于a的二次函数,根据二次函数求出矩形的最大值.【解答】解:(1)∵正方形EGHF∴EF∥BC∴△AEF∽△ABC(2)设EG=EF=x∵△AEF∽△ABC∴∴∴x=48∴正方形零件的边长为48mm,(3)设EG=a∵矩形EGHF∴EF∥BC∴△AEF∽△ABC∴∴∴EF=120﹣a∴矩形面积S=a(120﹣a)=﹣a2+120a=﹣(a﹣40)2+2400当a=40时,此时矩形面积最大,最大面积是2400mm2,即:当EG=40时,此时矩形面积最大,最大面积是2400mm2.【点评】此题是相似形综合题,主要考查了正方形的性质,矩形的性质,相似三角形的判定和性质,解本题的关键是判断出△AEF∽△ABC.。
2019-2020年九年级第二次质量检测数学试题提示:二次函数的顶点坐标为一、选择题(下列各题给出的四个选项中,只有一个是正确的.每小题3分,满分24分)1. 5的绝对值是A.5 B.-5 C. D.2. 实数a、b在数轴上的位置如图所示,则a与b的大小关系是A.a > b B.a < b C.a = b D.不能判断3.一组数据4,5,6,7,7,8的中位数和众数分别是A.7,7 B.7,6.5 C.5.5,7 D.6.5,74.如图所示是由几个小正方体组成的一个几何体,这个几何体的左视图是5.在实数,,0.101001,中,无理数的个数是A.0个 B.1个 C.2个 D.3个6.如图,△ABC是等边三角形,AC=6,以点A为圆心,AB长为半径画弧DE,若∠1=∠2,则弧DE的长为A. 1 B. 1.5 C.2 D.37.若关于的一元二次方程无实数根,则一次函数的图象不经过A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如图,直线y=x+1分别与x轴、y轴相交于点A、B,以点A为圆心,AB长为半径画弧交x轴于点A1,再过点A1作x轴的垂线交直线于点 B1,以点A为圆心,AB1长为半径画弧交x轴于点A2,……,按此做法进行下去,则点A8的坐标是A.(15,0)B.(16,0) C.(8,0) D.(,0)二、填空题(每小题3分,共24分)9.若式子有意义,则实数的取值范围是▲.10.我省因环境污染造成的巨大经济损失每年高达5680000000元,5680000000用科学记数法表示为▲.(第8题)A BCDE12(第6题)ABCO(第13题)11.分解因式:= ▲ .12.不等式组的整数解 ▲ . 13.如图,在中,,则 ▲ 度.14.如图,已知a∥b ,CB ⊥AB ,∠2=54°,则∠1= ▲ 度15.如图,一块直角边分别为6cm 和8cm 的三角木板,绕6cm 的边旋转一周,则斜边扫过的面积是 ▲ (结果用含的式子表示).16.如图,点A 在反比例函数的图像上,点B 在反比例函数的图像上,且∠AOB =90°,则tan ∠OAB 的值为 ▲ .三、解答题:(本大题共有11小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算: 18.(本题满分6分)先化简,再求值:,其中.19.(本题满分6分)解方程20.(本题满分8分)某商店在四个月的试销期内,只销售A 、B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图1和图2.(1)第四个月销量占总销量的百分比是______▲_____; (2)B 品牌电视机第三个月销量是_______▲____台;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B 品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,补全表示B 品牌电视机月销量的折线,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.电视机月销量扇形统计图第一个月 15% 第二个月30% 第三个月 25%第四个月图1时间/月10 20 30 50 40 60 图2 销量/台第一 第二 第三 第四 电视机月销量折线统计A 品牌B 品牌80 70 (第20题)1231212702-—)—(—+⎪⎭⎫ ⎝⎛21A BCab (第14题) (第15题) (第16题)21.(本题满分8分)某中学准备随机选出七、八、九三个年级各1名学生担任学校国旗升旗手.现已知这三个年级每个年级分别选送一男、一女共6名学生作为备选人. (1)请你利用树状图或表格列出所有可能的选法; (2)求选出“一男两女”三名国旗升旗手的概率.22.(本题满分10分)如图,AB =AC ,AD =AE ,DE =BC ,且∠BAD =∠CAE . 求证:(1)求证:△ABE ≌△ACD ; (2)求证:四边形BCDE 是矩形.23.(本题满分10分)xx “两相和”杯群星演唱会在我市体育馆进行,市文化局、广电局在策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x (张),总费用为y (元).方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)方案二:直接购买门票方式如图所示. 解答下列问题:(1)方案一中,y 与x 的函数关系式为 ▲;方案二中,当0≤x ≤100时,y 与x 的函数关系式为 ▲ ,当x >100时,y 与x 的函数关系式为 ▲ ;(2)甲、乙两单位分别采用方案一、方案二购买本场演唱会门票共700张,花去总费用计56000元,求甲、乙两单位各购买门票多少张?24.(本题满分10分)2015年4月25日14时11分尼泊尔发生了8.1级大地震.山坡上有一棵与水平面垂直的大树,大地震过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好800010000 100 120 O x (张) y(元) (第22题)接触到坡面(如图所示).已知山坡的坡角∠AEF =23°,量得树干的倾斜角为∠BAC =38°,大树被折断部分和坡面所成的角∠ADC =60°,AD =4米. (1)求∠DAC 的度数;(2)求这棵大树原来的高度是多少米?(结果精确到个位,参考数据:,,)25.(本题满分12分)图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为4cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2). 思考:(1) 求直角三角尺边框的宽;(2) 求BB′C ′+CC′B′的度数;(3) 求边B′C ′的长.26.(本题满分12分)如图1,抛物线(),与轴的交于A 、B 两点(点 A 在点B 的右侧),与轴的正半轴交于点C ,顶点为D . (1)求顶点D 的坐标(用含的代数式表示); (2)若以AD 为直径的圆经过点C . ① 求抛物线的解析式;② 如图2,点E 是y 轴负半轴上的一点,连结BE ,将△OBE 绕平面内某一点旋转180°,得到△PMN (点P 、M 、N 分别和点O 、B 、E 对应),并且点M 、N 都在抛物线上,作MF ⊥x 轴于点F ,若线段MF :BF =1:2,求点M 、N 的坐标;③ 点Q 在抛物线的对称轴上,以Q 为圆心的圆过A 、B 两点,并且和直线CD 相(第24题) C 60°38°BDE 23° AFAB CA'B'C'O图2O宽宽宽C'B'C BA图1(第25题)切,如图3,求点Q 的坐标.27.(本题满分14分)如图,∠C =90°,点A 、B 在∠C 的两边上,CA =30,CB =20,连结AB .点P 从点B 出发,以每秒4个单位长度的速度沿BC 方向运动,到点C 停止.当点P与B 、C 两点不重合时,作PD ⊥BC 交AB 于D ,作DE ⊥AC 于E .F 为射线CB 上一点, 且∠CEF =∠ABC .设点P 的运动时间为x (秒). (1)用含有x 的代数式表示CE 的长; (2)求点F 与点B 重合时x 的值;(3)当点F 在线段CB 上时,设四边形DECP 与四边形DEFB 重叠部分图形的面积为y(平方单位).求y 与x 之间的函数关系式;(4)当x 为某个值时,沿PD 将以D 、E 、F 、B 为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述 条件的x 值.九年级数学二模试题参考答案一、ABDC BCCA(第27题)(第26题)二、9. 10.5.68×10911. 12.1,2 13. 80 14.36 15. 80 16.三、解答题17.………………………4分(每化简对一个得1分)………………6分 18.……………2分…………………………………4分……………………………………… 6分19.解:原方程可化为…………………………2分两边同乘以(),得…………………………4分解之得…………………………5分经检验:是原方程的解.……6分方程两边同乘,得…………………2分解之得 ………………… 4分 将代入≠0,所以是原方程的解……6分20.(1)30% …………………2分(2)50 …………………4分 (3) …………………6分(4)选择B 品牌, B 品牌 呈上升的的趋势(在平均水平相同的基础上)。
九年级数学上学期第二次月考试题一.选择题(每小题3分,共45分)1.抛物线y=(x-2)2+3的顶点坐标是( )A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)2.抛物线y=3(x-1)2+2的对称轴是( )A.x=1 B.x=-1 C.x=2 D.x=-23.在Rt△ABC中,∠C=90°,a=1,c=4,则sinA的值是( )A. B. C. D.4.在Rt△ABC中,∠C=90°,已知a和A,则下列关系中正确的是( )A.c=asinA B.c= C.c=acosA D.c=5.如果反比例函数在每个象限内,y随x的增大而减小,那么它的图象分布在( )A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限6.已知反比例函数y=的图象在第二、四象限,则a的取值范围是( )A.a≤2 B.a≥2 C.a<2 D.a>27.sin45°+cos45°的值等于( )A. B. C. D.18.在Rt△ABC中,∠C=90°,tanA=3,AC=10,则S△ABC等于( )A.3 B.300 C. D.1509.把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-3x+5,则( )A.b=3,c=7 B.b=6,c=3 C.b=-9,c=-5 D.b=-9,c=2110.小敏在某次投篮中,球的运动线路是抛物线y=-x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离l是( )A.3.5m B.4m C.4.5m D.4.6m11.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( )A. B. C. D.12.反比例函数y=(k≠0)的图象经过点(2,5),若点(1,n)在反比例函数的图象上,则n等于( )A.10 B.5 C.2 D.113.某反比例函数的图象经过点(-2,3),则此函数图象也经过点( )A.(2,-3) B.(-3,-3) C.(2,3) D.(-4,6)14.在正方形网格中,△ABC的位置如图所示,则cosB的值为( )A. B. C. D.15.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是( )A. B. C. D.二、填空题(每小题3分,共18分)16.在Rt△ABC中,∠C=90°,a=2,b=3,则cosA=__________,sinB=__________,tanB=__________.17.某坡面的坡度为1:,则坡角α是__________度.18.如图所示的抛物线是二次函数y=ax2-3x+a2-1的图象,那么a的值是__________.19.已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为__________.20.双曲线y=与y=在第一象限内的图象如图,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为__________.21.抛物线y=-(x-L)(x-3-k)+L与抛物线y=(x-3)2+4关于原点对称,则L+k=__________.三、解答题(共57分)22.计算:(1)tan30°sin60°+cos230°-sin245°tan45°;(2).23.(1)已知抛物线经过A(-2,4)、B(1,4)、C(-4,-6)三点,求抛物线的解析式.(2)二次函数的图象过点(3,0),(2,-3)两点,对称轴为x=1,求这个二次函数解析式.24.如图,正比例函数与反比例函数的图象相交于A、B两点,过B作BC⊥x轴,垂足为C,且△BOC的面积等于4.(1)求k的值;(2)求A、B两点的坐标;(3)在x轴的正半轴上是否存在一点P,使得△POA为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.25.用一根长40m的篱笆围成一个矩形场地,长和宽分别为多少时,面积最大?26.如图,在旧城改造中,要拆除一建筑物AB,在地面上事先划定以B为圆心,半径与AB 等长的圆形危险区.现在从离点B 24m远的建筑物CD的顶端C测得点A的仰角为45°,点B 的俯角为30°,问离点B 35m处的一保护文物是否在危险区内?27.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量t(件),与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204(1)写出商场卖这种服装每天的销售利润y(元)与每件的销售价x(元)之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);(2)通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?28.已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴交于点C,点D(-2,-3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.20xx-20xx学年山东省济南实验中学九年级(上)第二次月考数学试卷一.选择题(每小题3分,共45分)1.抛物线y=(x-2)2+3的顶点坐标是( )A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)【考点】二次函数的性质.【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【解答】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:C.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.2.抛物线y=3(x-1)2+2的对称轴是( )A.x=1 B.x=-1 C.x=2 D.x=-2【考点】二次函数的性质.【分析】此题直接根据抛物线的顶点式的特殊形式即可得对称轴方程.【解答】解:∵y=3(x-1)2+2,∴对称轴为x=1.故选A.【点评】此题主要考查了求抛物线对称轴的方法.3.在Rt△ABC中,∠C=90°,a=1,c=4,则sinA的值是( )A. B. C. D.【考点】锐角三角函数的定义.【专题】计算题.【分析】由三角函数的定义,在直角三角形中,正弦等于对边比斜边易得答案.【解答】解:根据题意,由三角函数的定义可得sinA=,则sinA=;故选B.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.4.在Rt△ABC中,∠C=90°,已知a和A,则下列关系中正确的是( )A.c=asinA B.c= C.c=acosA D.c=【考点】解直角三角形.【专题】计算题.【分析】正确计算sinA、cosA即可求得a、c的关系,即可解题.【解答】解:直角三角形中,sinA=,cosA=,∴可以求得c=,故B选项正确,故选 B.【点评】本题考查了直角三角形中三角函数值的计算,正确计算∠A的正弦值是解题的关键.5.如果反比例函数在每个象限内,y随x的增大而减小,那么它的图象分布在( )A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限【考点】反比例函数的图象.【分析】此题应根据反比例函数的图象并结合其增减性进行解答.【解答】解:根据反比例函数的性质,如果反比例函数在每个象限内,y随x的增大而减小,则其在第一、三象限.故选B.【点评】本题考查反比例函数的图形性质:当k>0时,在每个象限内y随x的增大而减小.6.已知反比例函数y=的图象在第二、四象限,则a的取值范围是( )A.a≤2 B.a≥2 C.a<2 D.a>2【考点】反比例函数的性质;解一元一次不等式.【专题】计算题.【分析】本题考查反比例函数的图象和性质,此图象位于二、四象限,则根据k<0求解.【解答】解:反比例函数y=的图象在第二、四象限,根据反比例函数的图象和性质,a-2<0,则a<2.故选C.【点评】本题考查了反比例函数的性质:①、当k>0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x 的增大而增大.7.sin45°+cos45°的值等于( )A. B. C. D.1【考点】特殊角的三角函数值.【分析】根据sin45°=,cos45°=计算.【解答】解:∵sin45°=,cos45°=,∴sin45°+cos45°=+=.故选A.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.8.在Rt△ABC中,∠C=90°,tanA=3,AC=10,则S△ABC等于( )A.3 B.300 C. D.150【考点】解直角三角形.【专题】计算题.【分析】tanA==3,已知AC,即可求得BC的长从而求出面积.【解答】解:∵tanA==3,∴BC=ACotanA=10×3=30,∴S△ABC=ACoBC=×10×30=150,故选:D.【点评】本题主要考查了解直角三角形,关键是三角函数的应用,已知直角三角形的一个锐角,及其中一条直角边,就可以求出另外的直角边.。
2019-2020年广东省华南师大中山附中九年级(下)月考数学试卷(3月份)一、选择题(共10小题,每题3分,满分30分)1.(3分)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.2.(3分)去年汕头市经济发展成绩斐然,全市投资总额首次突破200000000000元,其中200000000000用科学记数法表示为()A.2×1012B.0.2×1012C.2×1011D.20×10113.(3分)下列计算正确的是()A.x6÷x2=x3B.1﹣(x﹣1)=﹣x+2C.(a﹣b)2=a2﹣b2D.(3x)2=6x24.(3分)下列根式中与是同类二次根式的是()A.B.C.D.5.(3分)在△ABC中,∠C=90°,BC=2,sin A=,则边AC的长是()A.B.3C.D.6.(3分)已知点A(5,﹣2)关于y轴的对称点A′在反比例函数y=(k≠0)的图象上,则实数k的值为()A.10B.﹣10C.D.﹣7.(3分)如图所示,△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若∠DEF=55°,则∠A的度数是()A.35°B.55°C.70°D.125°8.(3分)如图1是由大小相同的小正方体搭成的几何体,将它左侧的小正方体移动后得到图2.关于移动前后的几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同9.(3分)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE上,G、H 两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE 与△FGH的面积比为何?()A.2:1B.3:2C.5:2D.9:410.(3分)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为()A.3B.2C.1.5D.1二、填空题:(共7小题,每题4分,满分28分)11.(4分)比较大小:25(填“>,<,=”).12.(4分)若2m+n=3,则代数式6﹣2m﹣n的值为.13.(4分)分解因式:4a2﹣4a+1=.14.(4分)已知tan(α+15°)=,则tanα的值为.15.(4分)如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为.16.(4分)如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC,AB于点D,E.如果BC=18,tan A=,那么CD=.17.(4分)如图,若△ABC内一点P满足∠P AC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PB=3,则P A+PC=.三、解答题(一):(共3小题,每题6分,满分18分)18.(6分)计算:+(﹣)﹣3tan30°﹣(π﹣)0.19.(6分)先化简,再求值:(1﹣)÷,其中a=﹣1.20.(6分)在△ABC中,AB=8,BC=6,∠B为锐角且cos B=.(1)求△ABC的面积.(2)求tan C.四.解答题(二):(共3小题,每题8分,满分24分)21.(8分)如图所示,小红想利用竹竿来测量旗杆AB的高度,在某一时刻测得1米长的竹竿竖直放置时影长2米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),另一部分落在斜坡上(CD),他测得落在地面上的影长为10米,落在斜坡上的影长为4米,∠DCE=45°,求旗杆AB的高度?22.(8分)如图,在正方形ABCD中,在BC边上取中点E,连接DE,过点E做EF⊥ED 交AB于点G、交AD延长线于点F.(1)求证:△ECD∽△DEF;(2)若CD=4,求AF的长.23.(8分)已知:如图所示,一次函数y=﹣2x的图象与反比例函数y=的图象分别交于点A和点B,过点B作BC⊥y轴于点C,点E是x轴的正半轴上的一点,且S△BCE=2,∠AEB=90°.(1)求m的值及点E的坐标;(2)连接AC,求△ACE的面积.五、解答题(共2小题,每小题10分,满分20分)24.(10分)如图,在⊙O中,直线CD垂直直径AB于E,直线GF为⊙O的切线,切点为H,GF与直线CD相交于点F,与AB延长线交于点G,AH交CD于M,其中MH2=MD•MF.(1)连接OH,求证:△FMH为等腰三角形;(2)求证:AC∥FG;(3)若cos F=,AM=2,求线段GH的长.25.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+(k﹣1)x+k(k>0)交x轴的负半轴于点A,交x轴的正半轴于点B,交y轴的正半轴于点C,且AB=4.(1)如图1,求k的值;(2)如图2,点D在第一象限的抛物线上,点E在线段BC上,DE∥y轴,若DE=BE,求点D的坐标;(3)如图3,在(2)的条件下,F为抛物线顶点,点P在第四象限的抛物线上,FP交直线DE于点Q,点G与点D关于y轴对称,若GQ=DP,求点P的坐标.2019-2020年广东省华南师大中山附中九年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题(共10小题,每题3分,满分30分)1.(3分)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,但不是中心对称图形,故此选项正确;B、是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.2.(3分)去年汕头市经济发展成绩斐然,全市投资总额首次突破200000000000元,其中200000000000用科学记数法表示为()A.2×1012B.0.2×1012C.2×1011D.20×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:200000000000用科学记数法表示为2×1011,故选:C.3.(3分)下列计算正确的是()A.x6÷x2=x3B.1﹣(x﹣1)=﹣x+2C.(a﹣b)2=a2﹣b2D.(3x)2=6x2【分析】根据同底数幂的除法、完全平方公式,积的乘方以及整式的加减,逐项进行计算可得出判断.【解答】解:x6÷x2=x6﹣2=x4,因此选项A不正确;1﹣(x﹣1)=1﹣x+1=﹣x+2,因此选项B正确;(a﹣b)2=a2﹣2ab+b2,因此选项C不正确;(3x)2=9x2,因此选项D不正确,故选:B.4.(3分)下列根式中与是同类二次根式的是()A.B.C.D.【分析】原式各项化简得到最简二次根式,找出与已知同类二次根式即可.【解答】解:与是同类二次根式的是=3,故选:D.5.(3分)在△ABC中,∠C=90°,BC=2,sin A=,则边AC的长是()A.B.3C.D.【分析】先根据BC=2,sin A=求出AB的长度,再利用勾股定理即可求解.【解答】解:∵sin A==,BC=2,∴AB=3.∴AC===.故选:A.6.(3分)已知点A(5,﹣2)关于y轴的对称点A′在反比例函数y=(k≠0)的图象上,则实数k的值为()A.10B.﹣10C.D.﹣【分析】根据对称性求出点A′的坐标,把点A′的坐标代入反比例函数y=可求出k 的值.【解答】解:∵点A′与点A(5,﹣2)关于y轴的对称,∴点A′(﹣5,﹣2),又∵点A′(﹣5,﹣2)在反比例函数y=(k≠0)的图象上,∴k=(﹣5)×(﹣2)=10,故选:A.7.(3分)如图所示,△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若∠DEF=55°,则∠A的度数是()A.35°B.55°C.70°D.125°【分析】根据三角形的内切圆与圆心和圆周角定理即可求解.【解答】解:连接OD,OF,OA,如下图所示,∵△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,∵∠DEF=55°,∴∠DOF=2∠DEF=2×55°=110°(圆心角是圆周角的2倍),∵在三角形AOD与三角形AOF中,∵∠A+∠ADO+∠AFO+∠DOF=360°,∵AD,AF是圆的切线,∴∠ADO=∠AFO=90°,∴∠A=360°﹣90°﹣90°﹣110°=70°,故选:C.8.(3分)如图1是由大小相同的小正方体搭成的几何体,将它左侧的小正方体移动后得到图2.关于移动前后的几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【分析】根据三视图画法分别解答即可.【解答】解:利用图1的三视图,图2的三视图可得左视图相同.故选:B.9.(3分)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE上,G、H 两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE 与△FGH的面积比为何?()A.2:1B.3:2C.5:2D.9:4【分析】只要证明△ADE∽△FGH,可得=()2,由此即可解决问题;【解答】解:∵BG:GH:HC=4:6:5,可以假设BG=4k,GH=6k,HC=5k,∵DE∥BC,FG∥AB,FH∥AC,∴四边形BGFD是平行四边形,四边形EFHC是平行四边形,∴DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,∠FGH=∠B=∠ADE,∠FHG=∠C=∠AED,∴△ADE∽△FGH,∴=()2=()2=.故选:D.10.(3分)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为()A.3B.2C.1.5D.1【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△CAB,再根据反比例函数的比例系数k的几何意义得到S△OAB=|k|,便可求得结果.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=2,∴S△CAB=2,故选:B.二、填空题:(共7小题,每题4分,满分28分)11.(4分)比较大小:2>5(填“>,<,=”).【分析】首先分别求出两个数的平方各是多少;然后判断出两个数的平方的大小关系,即可判断出两个数的大小关系.【解答】解:,52=25,因为28>25,所以2>5.故答案为:>.12.(4分)若2m+n=3,则代数式6﹣2m﹣n的值为3.【分析】将6﹣2m﹣n化成6﹣(2m+n)代值即可得出结论.【解答】解:∵2m+n=3,∴6﹣2m﹣n=6﹣(2m+n)=6﹣3=3,故答案为:3.13.(4分)分解因式:4a2﹣4a+1=(2a﹣1)2.【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【解答】解:4a2﹣4a+1=(2a﹣1)2.故答案为:(2a﹣1)2.14.(4分)已知tan(α+15°)=,则tanα的值为1.【分析】首先确定α的度数,然后再利用三角函数值求答案.【解答】解:∵tan60°=,∴α+15°=60°,解得:α=45°,∴tanα=1,故答案为:1.15.(4分)如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为135°.【分析】根据相似三角形的对应角相等即可得出.【解答】解:∵△ABC∽△EDF,∴∠BAC=∠DEF,又∠DEF=90°+45°=135°,∴∠BAC=135°.故答案是:135°.16.(4分)如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC,AB于点D,E.如果BC=18,tan A=,那么CD=5.【分析】解直角三角形求出AC,AB,再在Rt△BDE中求出BD即可解决问题.【解答】解:∵在Rt△ABC中,∠C=90°,BC=18,tan A=,∴AC===12,∴AB===6,cos B===,∵边AB的垂直平分线交边AB于点E,∴BE=AB=3.∵在Rt△BDE中,∠BED=90°,∴cos B==∴BD=13,∴CD=BC﹣BD=18﹣13=6故答案为5.17.(4分)如图,若△ABC内一点P满足∠P AC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PB=3,则P A+PC=4.【分析】作CH⊥AB于H,则AH=BH,∠ACH=∠BCH=60°,∠CAB=∠CBA=30°,得出AB=2BH=2•BC•cos30°=BC,证明△P AB∽△PBC,得出===,求出P A、PC,即可得出结果.【解答】解:作CH⊥AB于H,如图所示:∵CA=CB,CH⊥AB,∠ACB=120°,∴AH=BH,∠ACH=∠BCH=60°,∠CAB=∠CBA=30°,∴AB=2BH=2•BC•cos30°=BC,∵∠P AC=∠PCB=∠PBA,∴∠P AB=∠PBC,∴△P AB∽△PBC,∴===,∴P A=PB=3,PC===,∴P A+PC=3+=4,故答案为:4.三、解答题(一):(共3小题,每题6分,满分18分)18.(6分)计算:+(﹣)﹣3tan30°﹣(π﹣)0.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、立方根的性质分别化简得出答案.【解答】解:原式=3﹣﹣3×﹣1=3﹣﹣﹣1=﹣.19.(6分)先化简,再求值:(1﹣)÷,其中a=﹣1.【分析】根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:(1﹣)÷=×=,当a=﹣1时,原式==.20.(6分)在△ABC中,AB=8,BC=6,∠B为锐角且cos B=.(1)求△ABC的面积.(2)求tan C.【分析】(1)如图,过点A作AH⊥BC于H.解直角三角形求出AH即可解决问题.(2)解直角三角形求出AH,CH即可解决问题.【解答】解:(1)如图,过点A作AH⊥BC于H.∵cos B=,∴∠B=60°,∴BH=AB•cos B=4,AH=AB•sin B=4,∴S△ABC=•BC•AH=×6×4=12.(2)在Rt△ACH中,∵∠AHC=90°,AH=4,CH=BC﹣BH=7﹣4=2,∴tan C===2.四.解答题(二):(共3小题,每题8分,满分24分)21.(8分)如图所示,小红想利用竹竿来测量旗杆AB的高度,在某一时刻测得1米长的竹竿竖直放置时影长2米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),另一部分落在斜坡上(CD),他测得落在地面上的影长为10米,落在斜坡上的影长为4米,∠DCE=45°,求旗杆AB的高度?【分析】延长AD交BC的延长线于点F,过点D作DE⊥BC于点E,根据勾股定理求出ED的长,再由同一时刻物高与影长成正比得出EF的长,根据DE∥AB可知△EDF∽△ABF,由相似三角形的对应边成比例即可得出AB的长.【解答】解:延长AD交BC的延长线于点F,过点D作DE⊥BC于点E,∵CD=4米,∠DCE=45°,∴DE=CE=4,∵同一时刻物高与影长成正比,∴,解得EF=2DE=8,∴BF=10+4+8=22,∵DE⊥BC,AB⊥BC,∴△EDF∽△BAF,∴=,即∴AB=11米.答:旗杆的高度约为11米.22.(8分)如图,在正方形ABCD中,在BC边上取中点E,连接DE,过点E做EF⊥ED 交AB于点G、交AD延长线于点F.(1)求证:△ECD∽△DEF;(2)若CD=4,求AF的长.【分析】(1)根据正方形的性质得出∠FED=∠C=90°,BC∥AD,根据平行线的性质得出∠CED=∠FDE,再根据相似三角形的判定得出即可;(2)根据正方形的性质得出∠C=90°,AD=BC=CD=4,求出CE,根据勾股定理求出DE,根据相似得出比例式,代入求出即可.【解答】(1)证明:∵四边形ABCD是正方形,EF⊥ED,∴∠FED=∠C=90°,BC∥AD,∴∠CED=∠FDE,∴△ECD∽△DEF;(2)解:∵四边形ABCD是正方形,∴∠C=90°,AD=BC=CD=4,∵E为BC的中点,∴CE=BC=2,在Rt△DCE中,由勾股定理得:DE===2,∵△ECD∽△DEF,∴,∴=,解得:DF=5,∵AD=4,∴AF=DF﹣AD=5﹣4=1.23.(8分)已知:如图所示,一次函数y=﹣2x的图象与反比例函数y=的图象分别交于点A和点B,过点B作BC⊥y轴于点C,点E是x轴的正半轴上的一点,且S△BCE=2,∠AEB=90°.(1)求m的值及点E的坐标;(2)连接AC,求△ACE的面积.【分析】(1)由题意得:S△BCE=2=S△BCO=|m|,求出m=﹣4,再证明∠NBE=∠AEM,则tan∠NBE=tan∠AEM,即,则,即可求解;(2)由题意得:△ACE的面积=S△ACO+S△AOE+S△OEC,求解即可.【解答】解:(1)∵BC∥x轴,故△BCE和△BCO高相等,故二者底均为BC,则S△BCE=2=S△BCO=|m|,解得m=﹣4(正值已舍去),故反比例函数表达式为y=﹣,联立一次函数和反比例函数表达式并整理得:x2=2,解得x=,故点A、B的坐标分别为(﹣,2)、(2,﹣2),设点E(s,0)(s>0),分别过点A、B作x轴的垂线,垂足分别为M、N,∵∠AEB=90°,∴∠BEN+∠AEM=90°,∵∠BEN+∠NBE=90°,∴∠NBE=∠AEM,∴tan∠NBE=tan∠AEM,即,则,解得s=(负值已舍去),故点E(,0);(2)由题意得:△ACE的面积=S△ACO+S△AOE+S△OEC=×2×+××2××2=2+4.五、解答题(共2小题,每小题10分,满分20分)24.(10分)如图,在⊙O中,直线CD垂直直径AB于E,直线GF为⊙O的切线,切点为H,GF与直线CD相交于点F,与AB延长线交于点G,AH交CD于M,其中MH2=MD•MF.(1)连接OH,求证:△FMH为等腰三角形;(2)求证:AC∥FG;(3)若cos F=,AM=2,求线段GH的长.【分析】(1)由切线的性质得出∠OHA+∠MHF=90°,得出∠OAH+∠AME=90°,则∠MHF=∠AME,证得∠MHF=∠HMF,则结论得出;(2)证明△HMF∽△DMH,由相似三角形的性质得出∠HDM=∠MHF,得出∠MHF=∠CAH,则可得出结论;(3)证出∠CMA=∠CAM,得出AC=CM,设CE=3x,AC=4x,则AE=x,EM=x,根据AM=2,求出x=,得出CE=3,AE=,连接OC,可求出半径OC 的长,证明△CEA∽△OHG,由相似三角形的性质得出,则可求出答案【解答】(1)证明:∵直线GF为⊙O的切线,∴OH⊥GF,∴∠OHA+∠MHF=90°,又∵OA=OB,∴∠OHA=∠OAH,∵CD⊥AB,∴∠AEM=90°,∴∠OAH+∠AME=90°,∴∠MHF=∠AME,又∠AME=∠HMF,∴∠MHF=∠HMF,∴HF=MF,∴△FNH为等腰三角形;(2)证明:∵MH2=MD•MF.∴,又∵∠HMD=∠FMH,∴△HMF∽△DMH,∴∠HDM=∠MHF,∵∠HDM=∠CAH,∴∠MHF=∠CAH,∴AC∥GF;(3)解:∵AC∥GF,∴∠C=∠F,∴cos C=cos F=,∵∠FHM=∠HMF,∠CAM=∠MHF,∠HMF=∠CMA,∴∠CMA=∠CAM,∴AC=CM,设CE=3x,AC=4x,∴AE=x,EM=x,∴AM==2,解得x=,∴CE=3,AE=,连接OC,在Rt△OCE中,OC2=OE2+CE2,设OC=OA=a,∴,解得a=,∵AC∥GF,∴∠G=∠CAE,又∵∠OHG=∠CEA=90°,∴△CEA∽△OHG,∴,∴,∴GH=.25.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+(k﹣1)x+k(k>0)交x轴的负半轴于点A,交x轴的正半轴于点B,交y轴的正半轴于点C,且AB=4.(1)如图1,求k的值;(2)如图2,点D在第一象限的抛物线上,点E在线段BC上,DE∥y轴,若DE=BE,求点D的坐标;(3)如图3,在(2)的条件下,F为抛物线顶点,点P在第四象限的抛物线上,FP交直线DE于点Q,点G与点D关于y轴对称,若GQ=DP,求点P的坐标.【分析】(1)令y=0,求得A、B两点的坐标,根据AB=4列出k的方程,便可求得k 的值;(2)用待定系数法求出直线BC的解析式,再设D点的横坐标为m,用m表示DE与BE,再由DE=BE,列出m的方程,便可求得结果;(3)由点F、P的坐标得,直线PF的表达式为y=(1﹣m)x+m+3,求出点Q(2,5﹣m),由GQ=DP,列出m的方程,即可求解.【解答】解:(1)令y=0,得y=﹣x2+(k﹣1)x+k=0,解得,x=﹣1,或x=k,∴A(﹣1,0),B(k,0),∵AB=4,∴k+1=4,∴k=3;(2)由(1)知,抛物线的解析式为:y=﹣x2+2x+3,B(3,0),令x=0,得y=﹣x2+2x+3=3,∴C(0,3),设直线BC的解析式为y=kx+b(k≠0),则,解得,,∴直线BC的解析式为y=﹣x+3,设D点的坐标为(m,﹣m2+2m+3),则E(m,﹣m+3),∴DE=﹣m2+3m,BE=,∵DE=BE,∴﹣m2+3m=2(3﹣m),解得,m=2或m=3(舍),∴D(2,3);(3)点G与点D关于y轴对称,则点G(﹣2,3),由抛物线的表达式知,点F(1,4),设点P(m,﹣m2+2m+3),由点F、P的坐标得,直线PF的表达式为y=(1﹣m)x+m+3,当x=2时,y=(1﹣m)×2+m+3=5﹣m,故点Q(2,5﹣m),则DP2=(m﹣2)2+(﹣m2+2m+3﹣3)2,GD2=(2+2)2+(5﹣m﹣3)2,∵GQ=DP,∴(m﹣2)2+(﹣m2+2m+3﹣3)2=(2+2)2+(5﹣m﹣3)2,解得m=1(舍去负值),故点P(1+,﹣1).。
北京十二中2019~2020学年第二学期月考试题初三数学说明:本试卷共4页,共2道大题,25道小题,满分100分,考试时间为40分钟一、选择题(每题均有四个选项,符合题意的选项只有一个,每题4分,共52分)1.北京大兴国际机场直线距天安门约46公里,占地1400000平方米,相当于63个天安门广场!被英国《卫报》等媒体评为“新世界七大奇迹”榜首。
其中数据1400000用科学记数法应表示为()A. 8⨯ D. 514101.410⨯⨯ B. 7⨯ C. 60.14101.410【答案】C【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】科学记数法表示:1400 000=1.4×106故选:C.【点睛】此题考查科学记数法,解题关键在于掌握科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a <10,n 为正整数.)2.若a为非零实数,则下列各式的运算结果一定比a大的是()a+ B. 2a C. a D. 2aA. 1【答案】A【解析】【分析】根据实数的运算法则进行计算即可.【详解】A.a+1>a,选项正确;B.当a<0时2a<a,选项错误;C.当a>0时|a|=a,选项错误;D.当a<0时2a<a,选项错误;故选:A.【点睛】此题考查实数的大小比较,解题关键在于掌握一个数加1,减1,乘1,除以1,值的大小变化规律.基础题.3.下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念逐一进行判断即可得.【详解】A 、是轴对称图形,故不符合题意;B 、是轴对称图形,故不符合题意;C 、是轴对称图形,故不符合题意;D 、不是轴对称图形,故符合题意,故选D .【点睛】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.4.在数轴上,点A 、B 在原点O 的两侧,分别表示数a ,2,将点A 向左平移1个单位长度,得到点C .若CO BO =,则a 的值为( )A. 3-B. 2-C. 1-D. 1【答案】C【解析】【分析】根据CO=BO 可得点C 表示的数为-2,据此可得a 的值.【详解】解:∵点A 、B 在原点O两侧,分别表示数a ,2, ∴点A 在原点的左侧,∵将点A 向左平移1个单位长度,得到点C ,∴点C 在原点的左侧,∵CO=BO , ∴点C 表示的数为-2,∴a=-2+1=-1.故选:C .【点睛】本题考查的是数轴,相反数的几何意义,熟知相反数的几何意义是解答此题的关键.在数轴上,表示互为相反数的两个点,分别位于原点的两旁,并且到原点的距离相等.5.已知正多边形的一个内角为144°,则该正多边形的边数为()A. 12B. 10C. 8D. 6【答案】B【解析】【分析】根据正多边形的一个内角是144°,则知该正多边形的一个外角为36°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是144°,∴该正多边形的一个外角为180°-144°=36°,∵多边形的外角之和为360°,∴边数=360=10 36,∴这个正多边形的边数是10,故选:B.【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是知道多边形的外角之和为360°,此题难度不大.6.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A. ﹣2B. ﹣12C. 0D.12【答案】A【解析】【分析】反例中的n满足n<1,使n2-1≥0,从而对各选项进行判断.【详解】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选A.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.箱子内装有53颗白球及2颗红球,小芬打算从箱子内抽球,以每次抽出一球后将球再放回的方式抽53次球.若箱子内每颗球被抽到的机会相等,且前52次中抽到白球51次及红球1次,则第53次抽球时,小芬抽到红球的机率为何?()A. 12B. 13C. 253D. 255【答案】D【解析】【分析】红球的个数除以球的总数即为所求的概率.【详解】解:∵一个盒子内装有大小、形状相同的53255+=个球,其中红球2个,白球53个, ∴小芬抽到红球的概率是:2253255=+. 故选D .【点睛】本题考查了概率公式,熟练掌握概率的概念是解题的关键.8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A. 平均分不变,方差变大B. 平均分不变,方差变小C. 平均分和方差都不变D. 平均分和方差都改变 【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41, ∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.9.当5b c +=时,关于x 的一元二次方程230x bx c +-=的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定【答案】A【解析】【分析】首先将已知等式转换形式,然后代入判别式,判断其正负,即可得解.【详解】由已知,得()224312b c b c =-⨯⨯-=+△∵5b c +=∴5b c =-∴()()()222243125121240b c b c c c c =-⨯⨯-=+=-+=++△> ∴方程有两个不相等的实数根故答案为A .【点睛】此题主要考查根据参数的值判定一元二次方程根的情况,熟练掌握,即可解题.10.如图的ABC ∆中,AB AC BC >>,且D 为BC 上一点.今打算在AB 上找一点P ,在AC 上找一点Q ,使得APQ ∆与PDQ ∆全等,以下是甲、乙两人的作法:(甲)连接AD ,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求(乙)过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求对于甲、乙两人作法,下列判断何者正确?( )A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确【答案】A【解析】【分析】 如图1,根据线段垂直平分线的性质得到PA PD =,QA QD =,则根据“SSS ”可判断APQ DPQ ∆∆≌,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形APDQ 为平行四边形,则根据平行四边形的性质得到PA DQ =,PD AQ =,则根据“SSS ”可判断APQ DQP ∆∆≌,则可对乙进行判断.【详解】解:如图1,PQ ∵垂直平分AD ,PA PD ∴=,QA QD =,而PQ PQ =,()APQ DPQ SSS ∴∆∆≌,所以甲正确;如图2,//PD AQ ,//DQ AP ,∴四边形APDQ 为平行四边形,PA DQ ∴=,PD AQ =,而PQ QP =,()APQ DQP SSS ∴∆∆≌,所以乙正确.故选A .【点睛】本题考查作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.11.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( )A. aB. bC. cD. d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.12.如图,坐标平面上有一顶点为A 的抛物线,此抛物线与方程式2y =的图形交于B 、C 两点,ABC ∆为正三角形.若A 点坐标为()3,0-,则此抛物线与Y 轴的交点坐标为何?( )A. 90,2⎛⎫ ⎪⎝⎭ B. 270,2⎛⎫ ⎪⎝⎭ C. ()0,9 D. ()0,19【答案】B【解析】【分析】设()3,2B m --,()3,2C m -+,()0m >,可知2BC m =,再由等边三角形的性质可知233,23C ⎛⎫-+ ⎪⎝⎭,设抛物线解析式()23y a x =+,将点C 代入解析式即可求a ,进而求解.【详解】解:设()3,2B m --,()3,2C m -+,()0m > A 点坐标为()3,0-,2BC m ∴=,ABC ∆为正三角形,2AC m ∴=,C 60AO ∠=︒ ,233m ∴= 233,23C ⎛⎫∴-+ ⎪⎝⎭设抛物线解析式()23y a x =+, 2233323a ⎛⎫-++= ⎪ ⎪⎝⎭, 32a ∴=, ()2332y x ∴=+, 当0x =时,272y =; 故选B .【点睛】本题考查二次函数的图象及性质,等边三角形的性质;结合函数图象将等边三角形的边长转化为点的坐标是解题的关键.13.随着时代的进步,人们对 2.5PM (空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中2.5PM 的值1y (3/ug m )随时间t (h )的变化如图所示,设2y 表示0时到t 时 2.5PM 的值的极差(即0时到t 时 2.5PM 的最大值与最小值的差),则2y 与t 的函数关系大致是( )A. B. C. D.【答案】B【解析】【分析】根据极差的定义,分别从0t =、010t <≤、1020t <≤及2024t <≤时,极差2y 随t 的变化而变化的情况,从而得出答案.【详解】当0t =时,极差285850y =-=,当010t <≤时,极差2y 随t 的增大而增大,最大值为43;当1020t <≤时,极差2y 随t 的增大保持43不变;当2024t <≤时,极差2y 随t 的增大而增大,最大值为98;故选B .【点睛】本题主要考查极差,解题的关键是掌握极差的定义及函数图象定义与画法.二、填空题(每题4分,共48分)14.若分式1x x -的值为0,则x 的值为__________. 【答案】0【解析】【分析】根据分式的值为零的条件可以求出x 的值. 【详解】∵分式1x x -的值为0, ∴x=0,x-1≠0,故答案为:0.【点睛】此题考查分式值为零的条件,解题关键在于掌握若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.在平面直角坐标系中,点()4,2P 到x 轴的距离是__________. 【答案】2【解析】【分析】 根据点的坐标的意义求解.【详解】点P (4,2)到x 轴的距离为2.故答案为2.【点睛】此题考查点的坐标,解题关键在于掌握把有顺序的两个数a 和b 组成的数对,叫做有序数对,记作(a ,b ).建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限;坐标平面内的点与有序实数对是一一对应的关系.16.不等式组x 12x 74⎧-⎪⎨⎪-+>⎩的解集是_____.【答案】2x -≤【解析】 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式12x ≤-,得:2x -≤, 解不等式+7>4x -,得:x<3,则不等式组的解集为2x -≤,故答案为2x -≤.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(2013tan 602π-⎛⎫--︒+= ⎪⎝⎭__________.【答案】5【解析】【分析】根据二次根式的性质,负整数指数幂,特殊角的三角函数值,零指数幂,进行计算即可.【详解】原式=33+4-33+1⨯=5,故答案为:5.【点睛】此题考查二次根式的性质,负整数指数幂,特殊角的三角函数值,零指数幂,解题关键在于掌握运算法则.18.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.这四种矿泉水某天的销售量如图所示,则这天销售的矿泉水的平均单价是__________元.【答案】2.25【解析】【分析】根据加权平均数的定义列式计算可得.【详解】这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故答案为:2.25.【点睛】此题考查加权平均数,解题的关键是掌握加权平均数的定义.19.当99x =时,代数式2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭的值为__________. 【答案】1100【解析】 【分析】先根据分式的混合运算化简原式,再把x=99,代入即可解答. 【详解】2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭=()()()21-11111x x x x x x x +⎛⎫-÷ ⎪--+-⎝⎭=()()()211-1111x x x x x x x +-⎛⎫- ⎪--⎝⎭+ =1-11+1x x x - =1+1x 把99x =代入可得:11=99+1100, 故答案为:1100. 【点睛】此题考查分式化简求值,解题关键在于掌握运算法则.20.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式为2y ax bx =+,小强骑自行车从拱梁一端O 匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶到10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需__________秒.【答案】36【解析】【分析】10秒时和26秒时拱梁的高度相同,则A ,B 一定是关于对称轴对称的点,据此即可确定对称轴,则O 到对称轴的时间可以求得,进而即可求得OC 之间的时间.【详解】如图所示:设在10秒时到达A 点,在26秒时到达B ,∵10秒时和26秒时拱梁的高度相同,∴A ,B 关于对称轴对称.则从A 到B 需要16秒,则从A 到D 需要8秒.∴从O 到D 需要10+8=18秒.∴从O 到C 需要2×18=36秒.故答案为:36.【点睛】此题考查二次函数的应用,注意到A 、B 关于对称轴对称是解题的关键.21.如图,直线()0y kx b k =+<经过点()3,1A ,当13kx b x +<时,x 的取值范围为__________.【答案】3x >【解析】【分析】根据题意结合图象首先可得13y x =的图象过点A ,因此便可得13kx b x +<的解集. 【详解】解:∵正比例函数13y x =也经过点A , ∴13kx b x +<的解集为3x >, 故答案为3x >.【点睛】本题主要考查函数的不等式的解,关键在于根据图象来判断,这是最简便的解题方法.22.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)【答案】π-1【解析】【分析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=14×(S 圆O −S 正方形ABCD )=14×(4π−4)=π−1, 故答案为π−1.【点睛】本题考查了圆中阴影部分面积的计算,正方形的性质,正确的识别图形是解题的关键. 23.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD x ∥轴,反比例函数()0,0k y k x x=>>的图象经过矩形对角线的交点E ,若点20A (,),04D (,),则k 的值为__________.【答案】20【解析】【分析】根据平行于x 轴的直线上任意两点纵坐标相同,可设B (x ,4).利用矩形的性质得出E 为BD 中点,∠DAB=90°.根据线段中点坐标公式得出E (12x ,4).由勾股定理得出AD 2+AB 2=BD 2,列出方程22+42+(x-2)2+42=x 2,求出x ,得到E 点坐标,代入y=k x ,利用待定系数法求出k . 【详解】∵BD ∥x 轴,D (0,4), ∴B 、D 两点纵坐标相同,都为4,∴可设B (x ,4).∵矩形ABCD 的对角线的交点为E ,∴E 为BD 中点,∠DAB=90°.∴E (12x ,4). ∵∠DAB=90°,∴AD 2+AB 2=BD 2,∵A (2,0),D (0,4),B (x ,4),∴22+42+(x-2)2+42=x 2,解得x=10,∴E (5,4).∵反比例函数y=k x(k >0,x >0)的图象经过点E , ∴k=5×4=20. 故答案为20.【点睛】此题考查矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E 点坐标是解题的关键.24.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用,已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车,若他们缆车费用的总花费为4100元,则此旅行团共有__________人.【答案】16【解析】【分析】设此旅行团有x 人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y 人,根据题意列出二元一次方程,求出其解.【详解】设此旅行团有x 人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y 人,根据题意得, 2003004100(15)(10)x y y y x +⎧⎨-+-⎩== , 解得79x y ⎧⎨⎩==, 则总人数为7+9=16(人)故答案为16.【点睛】此题考查二元一次方程组的应用,解题关键是读懂题意,找出等量关系,列出方程组. 25.如图,正方形ABCD 和Rt AEF ,10AB =,8AE AF ==,连接BF ,DE .若AEF 绕点A 旋转,当ABF ∠最大时,ADE S =__________.【答案】24【解析】【分析】作DH ⊥AE 于H ,如图,由于AF=8,则△AEF 绕点A 旋转时,点F 在以A 为圆心,8为半径的圆上,当BF 为此圆的切线时,∠ABF 最大,即BF ⊥AF ,利用勾股定理计算出BF=6,接着证明△ADH ≌△ABF 得到DH=BF=6,然后根据三角形面积公式求解.【详解】作DH ⊥AE 于H ,如图,∵AF=8,当△AEF 绕点A 旋转时,点F 在以A 为圆心,8为半径的圆上,∴当BF 为此圆的切线时,∠ABF 最大,即BF ⊥AF ,在Rt △ABF 中,22108-=6,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF ,在△ADH 和△ABF 中AHD AFB DAH BAF AD AB ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△ADH ≌△ABF (AAS ),∴DH=BF=6,∴S △ADE =12AE•DH=12×6×8=24. 故答案为24.【点睛】此题考查旋转的性质,正方形的性质,解题关键在于掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.。
2019—2020学年度(上)学期教学质量检测九年级数学试卷(二)参考答案考试时间:120分钟 试卷满分:150分一、选择题(每小题3分,共30分)1.A2.B3.A4.D5.D6.C7.B8.C9.B 10.C二、填空题(每小题3分,共24分)11.26 12.67° 13.154 14.1,221=-=x x 15.c <4且c ≠0 16.8 17.1 18.)31,0(1010-三、解答题(第19题10分,第20题12分,共22分)19.解:(1)如图所示,△A ′B ′C 即为所求;-------------------------------------------------------------------------4(2)①;------------------------------------------------------------------------------8②(﹣1,3),---------------------------------------------------------------------10 20.解:(1)60;------------------------------------------------------------------------------------------3(2)画树状图得:-------------------------------------------------------------------------------------------------------------------8∵所有可能出现的结果共有9,这些结果出现的可能性相等,该顾客所获得购物券的金额不低于40元的有6种情况,-----------------------------------------------------------------------------------------------------------10∴该顾客所获得购物券的金额不低于40元的概率为.---------------------------12四、(每题12分,共24分)21(1)证明:连接O C.------------------------------------------------------------------------------1∵CD是⊙O的切线,∴∠OCD=90°,-----------------------------------------------------------------------------------------2∵∠AEC=90°,∴∠OCD=∠AEC,-----------------------------------------------------------------------------------3∴AE∥OC,-----------------------------------------------------------------------------------------------4∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,-------------------------------------------------------------------------------------5∴AC平分∠DAE.---------------------------------------------------------------------------------------6(2)作CF⊥AB于F.-------------------------------------------------------------------------------7在Rt△OCD中,∵OC=3,OD=5,∴CD==4,--------------------------------------------------------------------------------8∵•OC•CD=•OD•CF,------------------------------------------------------------------------9∴CF=,--------------------------------------------------------------------------------------------10∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.------------------------------------------------------------------------------------1221.解:(1)如图所示:----------------------------------------------------------------------------------------------------------------------6 共有12种结果,每种结果出现的可能性相同,至少有一个红球的结果有10种------------------------------------------------------------------------9所以“取出至少一个红球”的概率为=.-----------------------------------------------------12 五、(本题12分)23.(1)证明:连接OA ,OE ,OC-------------------------------------------------------------------1∵△ABC 是等边三角形∴∠B=∠ACB =60°-------------------------------------------------------------------------------2 ∴∠AOC =2∠B=120°---------------------------------------------------------------------------3 又OA=OC∴∠OAC =∠ACO =︒=︒-︒302120180----------------------------------------------------4 又AD ∥BC∴∠DAC =∠ACB=60°-------------------------------------------------------------------------5 ∴∠OAD =∠DAC+∠OAC=60°+30°=90°∴AD 是⊙O 的切线----------------------------------------------------------------------------6(2)作EH ⊥OA ,垂足为H----------------------------------------------------------------------7∴∠EHA =∠OAD=∠ADC =90°∴ 四边形ADEH 为矩形∴AH=DE=2-----------------------------------------------------------------------------------8 ∵∠ACD=90°-∠ADC=90°-60°=30°∴∠AOE =2⨯30°=60°-----------------------------------------------------------------------9 ∴∠OEH =30°∴OH=21OE=21(OH+2) ∴OH=2,OE=4,HE=322422=---------------------------------------------------10S 阴影部分=3831836046032)42(212ππ-=⨯-⨯+------------------------------------12 六、(本题12分)24.解:(1)请根据以上信息完善下表:---------------------------------------------------------------------------------------------------------------4(2)y =18×20x +12(30﹣x )(20+x )=﹣12x 2+480x +7 200;-------------------------------7(3)y =﹣12x 2+480x +7 200=﹣12(x ﹣20)2+12 000,---------------------------------------9∵=-12<0,抛物线开口向下,∴当x =20时,y 取得最大值,最大值为12 000,---------------------------------------------11 答:分配20个人生产甲玩具,10人生产乙玩具时,可以获得最大利润12 000元.----12七、解答题:(12分)25.证明:(1)作AF ⊥AC ,AF 交BC 于F--------------------------------------1 ∴∠FAC=90°∴∠FAD=∠CAE=90°-∠DAC ,∴∠AFC=90°-∠ACB=90°-45°=45°=∠ACB ∴AF=AC-------------------------------------------------------------------------------------------2 又AD=AE∴△DAF ≌△EAC (SAS )-----------------------------------------------------------------------------3 ∴∠AFD=∠ACE---------------------------------------------------------------------------------4 ∴∠BCE=∠ACB+∠ACE=∠ACB+∠AFD=90°----------------------------------------5 ∴CE ⊥BC -----------------------------------------------------------6(2)①-------------------------------------7连接NC ,NA 第25题图a∵∠DAE=∠DCE=90°,N 为DE 的中点∴NA=NC=DE----------------------------------------------------------------------------------8 又M 为AC 的中点∴NM ⊥AC-------------------------------------------------------------------------------------------9 ∴222CN CM MN =+ ∴222DE 21AC 21MN )()(=+ ∴222MN 4AC -DE =------------------------------------------------10 ②当BD =2时,M ,E 两点之间的距离最小,最小值是1.---------------------------12八、(本题14分) 26.(1)设抛物线的解析式为k x a y +-=2)1(-----------------------------1∵抛物线经过A (-1,0),B (2,-3)两点. ∴⎩⎨⎧-=+=+304k a k a --------------------------------------------------------------------------3 解得⎩⎨⎧-==41k a ----------------------------------------------------------------------------4 ∴抛物线的解析式为324)1(22--=--=x x x y ------------------5(2)如图,作PM ∥OA 交AB 于M∴∠QAO=∠QPM ,∠QOA=∠QPM又OQ=PQ∴△AQO ≌△MQP (AAS )∴PM=OA=1设P 点坐标为(x,y ),则M (x+1,y )---------------------------------------6 设AB 解析式为b kx y +=则⎩⎨⎧-=+=+-320b k b k 解得⎩⎨⎧-=-=11b k ∴1--=x y -----------------------------------------------------------------------------------------7 ∴1)1(322-+-=--x x x --------------------------------------------------------------------8 解得251,25121-=+=x x ----------------------------------------------------------------92552251,255225121+-=---=--=-+-=y y ∴点P 的坐标是-------------------------10 (3)------------------------------------------14。
2019-2020学年重庆市九龙坡区九年级(上)第二次月考数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(4分)如图是由6个大小相同的正方体组成的几何体,它的左视图是()A.B.C.D.3.(4分)已知反比例函数y=﹣的图象上有两点A(x1,y1),B(x2,y2),且x1<x2<0,则y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.无法确定4.(4分)在函数y=中自变量x的取值范围在数轴上表示正确的为()A.B.C.D.5.(4分)如果两个相似三角形的面积比是1:2,那么它们的周长比是()A.1:2B.1:4C.1:D.2:16.(4分)一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字都是奇数的概率为()A.B.C.D.7.(4分)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系的位置如图所示,则下列结论中:(1)a>0;(2)b>0;(3)a﹣b+c>0;(4)2a+b=0,正确的有()A.1个B.2个C.3个D.4个8.(4分)如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长()A.B.C.D.9.(4分)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()A.51B.70C.76D.8110.(4分)已知y=ax2+bx+c(a≠0)的图象如图所示,则ax2+bx+c=n(a≠0,0<n<2)的方程的两实根x1,x2,则满足()A.1<x1<x2<3B.1<x1<3<x2C.x1<1<x2<3D.0<x1<1,且x2>311.(4分)如图为一座抛物线型的拱桥,AB、CD分别表示两个不同位置的水面宽度,O为拱桥顶部,水面AB宽为10米,AB距桥顶O的高度为12.5米,水面上升2.5米到达警戒水位CD位置时,水面宽为()米.A.5B.2C.4D.812.(4分)如图,A、B是双曲线y=(k≠0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S=3.则k的值为()△AOCA.2B.﹣2C.3D.﹣二、填空题(本大题共6小题,每小题4分,满分24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.(4分)分式的值为1,则m=.14.(4分)在Rt△ABC中,∠C=90°,若AB=5,sin A=,则AC=.15.(4分)育才中学体育文化节中,10个评委对该校初三年级入场式表演的打分情况如下:则初三年级入场式表演得分的中位数为.16.(4分)如图,E是▱ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,=,则CF的长为.17.(4分)有四张正面分别标有﹣1,0,1,2的不透明的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中取出一张,将卡片上的数字记为a,不放回,再取出一张,将卡片上的数字记为b,能使得方程ax2﹣x+=0有解,且直线y=x﹣(a+b)不经过第四象限的概率是.18.(4分)如图,矩形ABCD的边AB=4,BC=7,E为BC上一点,BE=3,连接AE,将矩形ABCD沿AE翻折,翻折后点B与点B′对应,点A与A′对应,再将所得△A′B′E绕着点E 旋转,线段A′B′与线段AE交于点P,当PA′=时,△B′AP为等腰三角形.三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程做在答题卷上.19.(14分)(1)计算:+(﹣2)2﹣(π﹣2015)0×|﹣6|﹣tan60°(2)解方程组:.20.(6分)如图,在△ABC中,AD⊥BC于D,tan∠BAD=,∠ACD=45°,AB=5,求AC的长.21.(10分)先化简,再求值:+÷(2﹣a﹣),其中a是不等式﹣>1的最大整数解.22.(6分)如图,Rt△ABO的顶点A是双曲线y=(k≠0)与直线y=﹣x﹣(k+1)在第二象限=.的交点,AB⊥x轴于B,点C是双曲线与直线的另一个交点,且S△ABO(1)求这两个函数的解析式;(2)直接写出使一次函数的值大于反比例函数的值的x的取值范围.23.(8分)西宁市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率.24.(10分)某商场经销一种销售成本为每千克40元的化工商品,据市场分析,若每千克50元销售,每月能售出500千克,销售单价每涨1元,月销售量就减少10千克,设销售单价是为每千克x元,月销售利润为y元.(1)求y与x的函数关系式?(不必写出x的取值范围)(2)商场想在月销售成本不超过9000元的情况下,使得月销售利润达到8000元,那么销售单价应定为多少?(3)该商场希望月销售利润达到最大,则销售单价应定为多少?此时最大月销售利润为多少?25.(12分)如图1,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E,点D是AB的中点,连接ED.(1)求证:△ACF≌△CBE;(2)求证:AF=BE+DE;(3)如图2,将直线l旋转到△ABC的外部,其他条件不变,(2)中的结论是否仍然成立,如果成立请说明理由,如果不成立AF、BE、DE又满足怎样的关系?并说明理由.26.(12分)如图,抛物线y=x2+x﹣2与x轴交于A、B两点,(A点在B点左边),与y轴交于点C,连接AC、BC.(1)求点A、B、C的坐标;(2)M为该抛物线对称轴上一点,是否存在以AC为斜边的直角三角形MAC?若存在,求点M 的坐标,并求三角形MAC的面积;若不存在,请说明理由;(3)D为第三象限抛物线上一动点,直线DE∥y轴交线段AC于E点,过D点作DF∥CB交AC 于F点,求△DEF周长的最大值和此时点F的坐标.参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.解:根据相反数的定义,﹣2的相反数是2.故选:A.2.解:从物体左面看,是左边2个正方形,右边1个正方形.故选:A.3.解:∵反比例函数y=﹣的k=﹣2<0,可见函数位于二、四象限,∵x1<x2<0,可见A(x1,y1)、B(x2,y2)位于第二象限,由于在二四象限内,y随x的增大而增大,∴y1<y2.故选:A.4.解:函数y=中自变量x的取值范围x>1,故选:C.5.解:∵两个相似三角形的面积比是1:2,∴这两个相似三角形的相似比是1:,∴它们的周长比是1:.故选:C.6.解:列表如下:所有等可能的情况有12种,其中两个乒乓球都是奇数的情况有:(1,3),(3,1),则P==.故选:B.7.解:∵抛物线开口向下,∴a<0,故①错误;∵﹣>0,a<0,∴a与b异号,∴b>0,故②正确;∵抛物线与y轴交于负半轴,∴c<0,∴abc<0,故①正确;∵当x=﹣1时,y>0,∴a﹣b+c>0,故③正确;∵抛物线的对称轴x=﹣=2,∴b=﹣4a,∴2a+b=2a﹣4a=﹣2a,∵a<0,∴﹣2a>0,∴2a+b>0,故④错误.故选:B.8.解:第一次观察到的影子长为6×cot60°=2(米);第二次观察到的影子长为6×cot30°=6(米).两次观察到的影子长的差=6﹣2=4(米).故选:B.9.方法一:解:观察图形得到第①个图形中棋子的个数为1=1+5×0;第②个图形中棋子的个数为1+5=6;第③个图形中棋子的个数为1+5+10=1+5×3=16;…所以第n个图形中棋子的个数为1+5(1+2+…+n﹣1)=1+,当n=6时,1+=76故选C.方法二:n=1,s=1;n=2,s=12;n=3,s=20,设s=an2+bn+c,∴,∴a=,b=﹣,c=1,∴s=n2﹣n+1,把n=6代入,∴s=76.方法三:,,,,,∴a6=16+15+20+25=76.10.解:根据题意画出图形,如图所示:在图形中作出y=n(0<n<2),两交点的横坐标分别为x1,x2,则0<x1<1,且x2>3.故选:D.11.解:如图,建立如图所示的平面直角坐标系,∵水面AB宽为10米,AB距桥顶O的高度为12.5米,∴B(5,﹣12.5),设抛物线的解析式为:y =ax 2,把B (5,﹣12.5)代入y =ax 2得﹣12.5=25a , ∴a =﹣,∴抛物线的解析式为:y =﹣x 2, ∵水面上升2.5米到达警戒水位CD 位置,∴设D (m ,﹣10),代入y =﹣x 2得:﹣10=﹣x 2,∴x =±2,∴CD =4,∴水面宽为4米.故选:C .12.解:分别过点A 、B 作AF ⊥y 轴于点F ,AD ⊥x 轴于点D ,BG ⊥y 轴于点G ,BE ⊥x 轴于点E , ∵k >0,点A 是反比例函数图象上的点,∴S △AOD =S △AOF =,∵A 、B 两点的横坐标分别是a 、3a , ∴AD =3BE ,∴点B 是AC 的三等分点, ∴DE =2a ,CE =a ,∴S △AOC =S 梯形ACOF ﹣S △AOF =(OE +CE +AF )×OF ﹣=×5a ×﹣=3,解得k =(舍去)或k =﹣. 故选:D .二、填空题(本大题共6小题,每小题4分,满分24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.解:根据题意,可得:,解得:m=5,检验,当m=5时,最简公分母m﹣2≠0,∴m=5是原分式方程的解.故答案为:5.14.解:∵在Rt△ABC中,∠C=90°,AB=5,sin A=,sin A=,∴BC=3.∴AC=.故答案为:4.15.解:处于中间位置的两个数是10和9,那么由中位数的定义可知,这组数据的中位数是(10+9)÷2=9.5.故答案为:9.5.16.解:∵四边形ABCD是平行四边形,∴BC=AD=4,AB∥CD,∴△FEC∽△FAB,∴==,∴=,∴CF=BC=×4=2.故答案为:2.17.解:∵从四张正面分别标有﹣1,0,1,2的不透明的卡片中,取出一张,将卡片上的数字记为a,不放回,再取出一张,将卡片上的数字记为b,∴共有(﹣1,0),(﹣1,1),(﹣1,2),(0,1),(0,2),(1,2)种组合,∵方程ax 2﹣x +=0有解,∴1﹣2ab ≥0,解得:ab ≤,∵直线y =x ﹣(a +b )不经过第四象限,∴﹣(a +b )>0,∴a +b <0,∴满足条件的只有(﹣1,0)一种可能,∴能使得方程ax 2﹣x +=0有解,且直线y =x ﹣(a +b )不经过第四象限的概率是,故答案为:.18.解:∵AB =4,BE =3,∴AE =5,∵△B ′AP 为等腰三角形,∴PA =PB ′,设PA =PB ′=x ,则PA ′=4﹣x ,PE =5﹣x ,作PG ⊥A ′E 于G ,∵∠PA ′G =∠BAE ,∴cos ∠PA ′G =cos ∠BAE ,∴==,∴A ′G =(4﹣x ),∵A ′E =AE =5,∴GE =5﹣(4﹣x ),∵PA ′2﹣A ′G 2=PE 2﹣GE 2,∴(4﹣x )2﹣[(4﹣x )]2=(5﹣x )2﹣[5﹣(4﹣x )]2解得x =2.4,故当PA ′=2.4时,△B ′AP 为等腰三角形.故答案为2.4.三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程做在答题卷上.19.解:(1)原式=3+4﹣6﹣=2﹣2;(2),①+②×4得:9x=63,即x=7,把x=7代入①得:y=2,则方程组的解为.20.解:∵AD⊥BC于D,∴∠ADB=∠ADC=90°,∵tan∠BAD=,∴设BD=x,AD=2x,∴AB==x=5,∴x=,2x=2,∴AD=2,∵∠ACD=45°,∴AD=CD=2,∴AC==2.21.解:解不等式式﹣>1,去分母,得2(x﹣1)﹣(3x+2)>6,去括号,得2x﹣2﹣3x﹣2>6,移项,得2x﹣3x>6+2+2,合并同类项,得﹣x>10,系数化为1得x<﹣10.则a=﹣11.原式=+÷=+÷=﹣•=﹣==﹣.当a=﹣11时,原式=﹣=﹣.22.解:(1)∵反比例函数y=的图象在二、四象限,∴k<0,=|k|=,∵S△ABO∴k=﹣3,∴双曲线的解析式为:y=﹣,直线y=﹣x﹣(k+1)的解析式为:y=﹣x﹣(﹣3+1),即y=﹣x+2;(2)∵把一次函数与反比例函数的解析式组成方程组,得,解得,,∴A(﹣1,3),C(3,﹣1);∵一次函数的解析式为:y=﹣x+2,∴令y=0,则﹣x+2=0,即x=2,∴直线AC与x轴的交点D(2,0),∵A(﹣1,3),C(3,﹣1),∴当x<﹣1或0<x<3时,一次函数的值大于反比例函数的值.23.解:(1)(1+2)÷15%=20人;(2)C组人数为:20×25%=5人,所以,女生人数为5﹣3=2人,D组人数为:20×(1﹣15%﹣50%﹣25%)=20×10%=2人,所以,男生人数为2﹣1=1人,补全统计图如图;(3)画树状图如图:所有等可能结果:男男、男女、女男、女女、女男、女女,P(一男一女)==.24.解:(1)当销售单价定为每千克x元时,月销售量为:[500﹣(x﹣50)×10]千克.每千克的销售利润是:(x﹣40)元,所以月销售利润为:y=(x﹣40)[500﹣(x﹣50)×10]=(x﹣40)(1000﹣10x)=﹣10x2+1400x ﹣40000,∴y与x的函数解析式为:y=﹣10x2+1400x﹣40000;(2)设销售单价为x元,根据题意得:(x﹣40)[500﹣10(x﹣50)]=8000,即x2﹣140x+4800=0,解得x1=60,x2=80,当x=60时,月销售成本40×[500﹣(60﹣50)×10]=16000>9000元,∴x=60元不合题意,舍去;当x=80月销售成本40×[500﹣(80﹣50)×10]=8000元<9000元,∴销售单价应定为每千克80元;则月销售利润达到8000元,销售单价应定为80元;(3)由(1)的函数可知:y=﹣10(x﹣70)2+9000因此:当x=70时,y max=9000元,即:当售价是70元时,利润最大为9000元.25.证明:(1)∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠ACF,∵AF⊥l于点F,∴∠AFC=90°,在△BCE与△ACF中,,∴△ACF≌△CBE;(2)如图1,连接DF,CD,∵点D是AB的中点,∴CD=BD,∠CDB=90°,∵△ACF≌△CBE,∴BE=CF,CE=AF,∵∠EBD=∠DCF,在△BDE与△CDF中,,∴△BDE≌△CDF,∴∠EDB=∠FDC,DE=DF,∵∠CDF+∠FDB=90°,∠EDB+∠BDF=90°,∴∠EDF=90°,∴△EDF是等腰直角三角形,∴EF=DE,∴AF=CE=EF+CF=BE+DE;(3)不成立,BE+AF=DE,连接CD,DF,由(1)证得△BCE≌△ACF,∴BE=CF,CE=AF,由(2)证得△DEF是等腰直角三角形,∴EF=DE,∵EF=CE+CF=AF+BE=DE.即AF+BE=DE.26.解:(1)令y=0,则x2+x﹣2=0,解得x1=﹣4,x2=1.令x=0,则y=﹣2,所以A、B、C的坐标分别是A(﹣4,0)、B(1,0)、C(0,﹣2);(2)∵y=x2+x﹣2=(x+)2﹣,∴对称轴为x=﹣,设M(﹣,n),∵A(﹣4,0)、C(0,﹣2);∴MA2=(﹣+4)2+n2=+n2,MC2=(﹣)2+(n+2)2=n2+4n+,AC2=42+22=20,∵△MAC是以AC为斜边的直角三角形,∴MA2+MC2=AC2,即+n2+n2+4n+=20,解得n=﹣1±,∴M(﹣,﹣1+)或(﹣,﹣1﹣);由A(﹣4,0)、C(0,﹣2)可知直线AC的解析式为y=﹣x﹣2,把x=﹣代入得,y=﹣,∴直线AB与对称轴的交点为(﹣,﹣),当M(﹣,﹣1+)时,S=(﹣1++)×4=;△MAC当M(﹣,﹣1﹣)时,S=(﹣+1+)×4=;△MAC(3)∵直线AC的解析式为y=﹣x﹣2,设点D的横坐标为t,∴D(t,t2+t﹣2),E(t,﹣t﹣2),∴DE=(﹣t﹣2)﹣(t2+t﹣2)=﹣t2﹣2t,∵A(﹣4,0)、B(1,0)、C(0,﹣2);∴OA=4,OC=2,OB=1,∴AC=,BC=,AB=5,∵AC2+BC2=AB2=25,∴∠ACB=90°,∵DF∥CB,∴∠DFE=90°,∵DE∥y轴,∴∠ACO=∠DEF,∵∠DFE=∠AOC=90°,∴△DEF∽△ACO,∴==,∵△ACO的周长=OA+OC+AC=4+2+=6+2,∴△DEF的周长=(﹣t2﹣2t)=﹣(t+2)2+,∴当t=﹣2时,△DEF周长的最大值=,此时D(﹣2,﹣3),∵直线AC的解析式为y=﹣x﹣2,∴设直线DF的解析式为y=2x+b,把D(﹣2,﹣3)代入得,﹣3=﹣4+b,∴b=1,∴线DF的解析式为y=2x+1解得,∴F(﹣,﹣).。
2020年广东广州越秀区广州市铁一中学(本部校区)初三二模数学试卷(本大题共10小题,每小题3分,共30分)A.B.C.D.下列图形中,是中心对称但不是轴对称的图形是( ).1A.B.C.D.下列运算正确的是( ).{{a}^{3}}+{{a}^{3}}=2{{a}^{6}}{{a}^{6}}\div {{a}^{-3}}={{a}^{3}}{{a}^{3}}\cdot {{a}^{2}}={{a}^{6}}{{\left( -2{{a}^{2}} \right)}^{3}}=-8{{a}^{6}}2一、选择题A.B.C.D.在防治新型冠状病毒知识问答中,10名参赛选手得分情况如下表:人数1342分数80859095那么这10名选手所得分数的中位数( ).858790803A.B.C.D.如图:AB 是河堤横断面的迎水坡,坡高AC=1,水平距离BC=\sqrt{3},则斜坡AB的坡度为( ).\sqrt{3}\frac{\sqrt{3}}{3}30{}^\circ 60{}^\circ4A.B.C.如图,AB//CD ,EF\bot BD 垂足为F ,\angle 1=40{}^\circ 则\angle2的度数为( ).30{}^\circ 40{}^\circ 50{}^\circ5A.B.C.D.如图,在平行四边形ABCD中,点O 是对角线AC,BD 的交点,AC\bot BC,且AB=5,AD=3、则OB的长是( ).\sqrt{13}22 \sqrt{3}46A.B.C.D.已知抛物线y=-{{x}^{2}}+bx+4经过点\left( -3,m \right)和\left( 5,m \right)两点,则b 的值为( ).-2-1127A.B.C.D.如果一次函数y=kx+b (k ,b 是常数)的图象不经过第二象限,那么k ,b 应满足的条件是( ).k\geqslant 0且b\leqslant 0k>0且b\leqslant 0k\geqslant 0且b<{}0k>0且b<{}08如图,⊙O 分别切\angle BAC 的两边AB ,AC 于点E ,F ,点P 在优弧\left(\overset\frown{EDF} \right)上,若\angle BAC=66{}^\circ,则\angle EPF等于( ).9A.B.C.D.66{}^\circ 77{}^\circ 84{}^\circ 57{}^\circA.B.C.D.如图,矩形ABCD中,AB=3,BC=4,点P 从A 点出发.按A\to B\to C 的方向在AB和BC上移动.记PA=x,点D 到直线PA的距离为y,则y 关于x 的函数大致图象是( ).10(本大题共6小题,每小题3分,共18分)分解因式:m{{x}^{2}}-2mx+m=.11一个氢原子的直径约为0.00000000012\text{m},将0.00000000012这个数用科学记数法表示为 .12如图,圆锥底面半径为r\text{cm},母线长为5\text{cm},其侧面展开图是圆心角为216{}^\circ的扇形,则r 为 \text{cm}.13如图,某小区有一块长为30\text{m},宽为24\text{m}的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480{{\text{m}}^{2}},两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为 \text{m}.14已知半径为10的\odot O 中,AB=10\sqrt{2},弦AC=10,则\angleBAC的度数是为 .15二、填空题在平面直角坐标系xOy 中,直线y=kx (k 为常数)与抛物线y=\frac{1}{3}{{x}^{2}}-2交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0\ ,\ -4),连接PA,PB.有以下说法:①P{{O}^{2}}=PA\cdot PB ;②当k>0时,(PA+AO)(PB-BO)的值随k 的增大而增大;③当k=-\frac{\sqrt{3}}{3}时,B{{P}^{2}}=BO\cdot BA;④\triangle PAB面积的最小值为4\sqrt{6}.其中正确的是 .(写出所有正确说法的序号)(本大题共9小题,共102分)计算:\sqrt{27}+{{\left( -\frac{1}{2} \right)}^{-2}}-3\tan 60{}^\circ +{{\left( \pi -\sqrt{2} \right)}^{0}}.17如图,点B 、E 、C 、F 在一条直线上,AB=DE ,AB//DE ,\angle A=\angle D ,求证:BE=CF .18已知W= \frac{1}{x^{2}-1}\div \frac{x}{x^{2}-2x+1} - \frac{2}{x+1}.19化简W .(1)x 是一元二次方程y^{2} -2y=0的解,求W 的值.(2)2020年春,受疫情影响.同学们进行了3个多月的网课迎来了复学,为了解铁一中学九年级学生网课期间学习情况,学校在复学后进行了复学测试,杨老师让小利同学在九年级随机抽取了一部分学生的复学测试数学成绩为样本,分为A (100\sim 90分)、B (89\sim 80分)、C (79\sim60分)、D (59\sim 0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计20三、解答题图解答以下问题:类别人数男生女生本次调查中,杨老师一共调查了 名同学,其中C 类女生有 名,D 类男生有 名.(1)将上面的条形统计图补充完整.(2)为了共同进步,杨老师想从被调查的A 类和D 类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.(3)今年是脱贫攻坚最后一年,某镇拟修一条连通贫困山区村子的公路,现有甲、乙两个工程队,若甲、乙合作,36天可以完成,需用600万元;若甲单独做20天后,剩下的由乙做,还需40天才能完成,这样所需550万元.21求甲、乙两队单独完成此项工程各需多少天?(1)求甲、乙两队单独完成此项工程各需多少万元?(2)已知:如图,在平面直角坐标系中,一次函数y=ax+b(a\ne 0)的图像与反比例函数y=\frac{k}{x}(k\ne 0)的图象交于一、三象限内的A 、B 两点,与x 轴交于C 点,点A 的坐标为(2,m),点B 的坐标为(n,-2),\tan \angle BOC=\frac{2}{5}.22(1)求该反比例函数和一次函数的解析式.(2)在x轴上有一点E(O点除外),使得\triangle BCE与\triangle BCO的面积相等,求出点E的坐标.23在边长为12的正方形ABCD中,P为AD的中点,连结PC.(1)作出以BC为直径的⊙O,交PC于点Q(要求尺规作图,不要求写作法,保留作图痕迹).(2)连结AQ,证明:AQ为⊙O的切线.(3)求QC的长与\cos\angle DAQ的值.24在\triangle ABC中,\angle BAC=60{}^\circ ,AD平分\angle BAC交边BC于点D,分别过D作DE\text{//}AC交边AB于点E,DF\text{//}AB交边AC于点F.如图1,试判断四边形AEDF的形状,并说明理由.(1)图如图2,若AD=4\sqrt{3},点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于(2)点M,连接FH交EG于点N.图求EN\cdot EG的值.1将线段DM绕点D顺时针旋转60{}^\circ 得到线段D{{M}^{\prime }},求证:H,F,2{{M}^{\prime }}三点在同一条直线上.25如图,抛物线y=a{{x}^{2}}+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t\ ,0)(-3<t< 0),连接BD并延长与过O,A,B三点的⊙P相交于点C.图图(1)求点A的坐标.(2)过点C作⊙P的切线CE交x轴于点E.如图1,求证:CE=DE.1如图2,连接AC,BE,BO,当a=\frac{\sqrt{3}}{3},\angle CAE=\angle OBE时,2求\frac{1}{OD}-\frac{1}{OE}的值.1234567891011121314151617.18证明见解析.19.(1)(2).201:(1)2:3:(2)画图见解析.(3).21天,天.(1)(2)万元,万元.22反比例函数的解析式为,一次函数的解析式为.(1)(2)点坐标为.23画图见解析.(1)(2)证明见解析.(3),.24菱形,证明见解析.(1)(2).1证明见解析.225。
2019—2019—2020九年级数学第二次月考试题及答案一. 选择题(每题2分共16分)1、如图,已知菱形ABCD的边长为3,∠ABC=60°,则对角线AC的长是 ( )A.12 B.9 C.6 D.32、将一元二次方程5x2-1=4x化成一般形式后,二次项的系数和一次项系数分别是()A、5,-1B、5,4C、5,-4D、5,13、如图,转盘中四个扇形的面积都相等.小明随意转动转盘2次,当转盘停止转动时,二次指针所指向数字的积为偶数的概率为()A .B .C .D .1题 3题 4题 6题 8题4.如图,在△ABC中,若DE∥BC,AD=5,BD=10,DE=4,则BC的值为()A.8 B.9 C.10 D.125.如图所示几何体的左视图是()A .B .C .D .6、如图,反比例函数y =(k≠0)的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的解析式是()A. y= B. y= C. y= D. y=7、在Rt△ABC中,∠C=90°,sin A=35,BC=6,则AB= ( ) A.4 B.6 C.8 D.108、如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E,F同时由A,C两点出发,分别沿AB,CB方向向点B匀速移动(到点B 为止),点E 的速度为1cm/s,点F 的速度为2cm/s,经过t 秒△DEF 为等边三角形,则t 的值为 ( )A .1B .C .D .二、填空题(每题3分共24分)9.方程x 2﹣5x=0的解是 .10.方程2x ﹣4=0的解也是关于x 的方程x 2+mx+2=0的一个解,则m 的值为 .11.把一袋黑豆中放入100粒黄豆,搅匀后取出100粒豆子,其中有黄豆4粒,则该袋中约有黑豆 . 12.如图,AD 是△ABC 的中线,E 是AD 上的一点,且AE=AD,CE 交AB 于点F 。
2019-2020年初三数学二模试题及答案一、选择题(本题共30分,每小题3分)1.13的倒数是A .3B .3-C .13D .13-2.一根头发丝的直径约为0.00 006纳米,用科学记数法表示0.00 006,正确的是 A .6×10-6B . 6×10-5C . 6×10-4D . 0.6×10-43.下面的几何体中,主视图为三角形的是A B C D4.函数y=x 的取值范围是A .2x ≠ B . 2x > C . 2x ≥ D .2x ≤5.妈妈在端午节煮了10个粽子,其中5个火腿馅,3个红枣馅,2个豆沙馅(除馅料不同外,其它都相同).煮好后小明随意吃一个,吃到红枣馅粽子的概率是 A .110 B .15 C .310 D . 126. 下面的几何图形中,既是轴对称图形又是中心对称图形的是A B C D7.如图,A ,B 是函数2=y x的图象上关于原点对称的任意两点, BC ∥x 轴, AC ∥y 轴,如果△ABC 的面积记为S ,那么 A .4S = B .2S = C .24S << D .4S >菱形扇形平行四边形等边三角形A .甲B .乙C .丙D .丁9.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =AE =1.2米, 那么适合该地下车库的车辆限高标志牌为(参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)A B C D10.如图,点N 是以O 为圆心,AB 为直径的半圆上的动点,(不与点A ,B重合),AB =4,M 是OA 的中点,设线段MN 的长为x ,△MNO 的面积为y ,那么下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题(本题共18分,每小题3分) 11.分解因式:34a a -= .12.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E , 如果35AD DB =,AE =6,那么EC 的长为 .13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知AB 的长是_________m .FCBAE CA B EDAOBMN图3图1 图214.将二次函数245y x x =-+化为2()y x h k =-+的形式,那么=h k + . 15.在四边形ABCD 中,如果AB AD =,AB CD ∥,请你添加一个..条件,使得该四边形是菱形,那么这个条件可以是 . 16.如图,在平面直角坐标系xOy 中,直线l 的表达式是y=3x ,点A 1坐标为(0,1),过点A 1作y 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交y 轴于点A 2;再过点A 2作y 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交y 轴于点A 3,…,按此做法进行下去,点B 4的坐标为 ,2015OA = .三、解答题(本题共30分,每小题5分) 17.计算:20152cos45-+︒(-1).18.已知:如图,AB =AE ,∠1=∠2 ,∠B =∠E .求证:BC =ED .19.解不等式组:240,321 5.x x +⎧⎨-->⎩≤()20.已知3=y x ,求代数式22212y x y x xy y x ⎛⎫--⋅ ⎪-+⎝⎭的值. 21.已知关于x 的方程2(3)30(0)mx m x m -++=≠.(1)求证:方程总有两个实数根;(2)如果方程的两个实数根都是整数,且有一根大于1,求满足条件的整数m 的值.图1图221ABCED33x22.列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分)23.如图,在□ABCD 中,E 为BC 边上的一点,将△ABE 沿AE 翻折得到△AFE ,点F 恰好落在线段DE 上.(1)求证:∠FAD =∠CDE ;(2)当AB =5,AD =6,且tan 2ABC ∠=时,求线段EC 的长.24.某校九年级有200名学生参加《中小学生国家体质健康标准》测试赛活动.为了解本次测试的成绩分布情况,从中抽取了20名学生的成绩进行分组整理.现已完成前15个数据的整理,还有后5个数据尚未累计:62,83,76,87,70,学生测试成绩频数分布表 学生测试成绩频数分布直方图B FACE D(1)请将剩余的5个数据累计在“学生测试成绩频数分布表”中,填上各组的频数与频率,并补全“学生测试成绩频数分布直方图”;(2)这20个数据的中位数所在组的成绩范围是 ;(3)请估计这次该校九年级参加测试赛的学生中约有多少学生成绩不低于80分.25.如图,AB 是⊙O 的直径,以AB 为边作△ABC ,使得AC = AB ,BC 交⊙O 于点D ,联结OD ,过点D 作⊙O 的切线,交AB 延长线于点E ,交AC 于点F . 26.问题背景:在△ABC 中,AB ,BC ,AC 积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC 的高,借用网格就能计算出它的面积.CBA图1 图2 (1)请你直接写出△ABC 的面积________; 思维拓展:(2)如果△MNP,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP ,并直接写出△MNP 的面积.五、解答题(本题共22分,第27题7分,第28题7分,第2927.在平面直角坐标系xOy 中,抛物线21y ax bx =++经过(13)A ,,(21)B ,两点.(1)求抛物线及直线AB 的解析式;(2)点C 在抛物线上,且点C 的横坐标为3.将抛物线在 点A ,C 之间的部分(包含点A ,C )记为图象G ,如 果图象G 沿y 轴向上平移t (0t >)个单位后与直线 AB 只有一个公共点,求t 的取值范围.28. 已知△ABC 是锐角三角形,BA =BC ,点E 为AC 边的中点,点D 为AB 边上一点,且∠ABC =∠AED =α.(1)如图1,当α=40°时,∠ADE = °;(2) 如图2,取BC 边的中点F ,联结FD ,将∠AED 绕点E 顺时针旋转适当的角度β(β<α),得到∠MEN ,EM 与BA 的延长线交于点M , EN 与FD 的延长线交于点N .①依题意补全图形;②猜想线段EM 与EN 之间的数量关系,并证明你的结论.EC图1 图229.对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足y M ≤,那么称这个函数是有上界函数,在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,图中的函数是有上界函数,其上确界是2.(1)分别判断函数1y x=- (0x <)和23y x =-(2x <)是不是有上界函数?如果是有上界函数,求其上确界; (2)如果函数2y x =-+ (,a x b b a ≤≤>)的上确界是b ,且这个函数的最小值不超过21a +,求a 的取值范围; (3)如果函数222y x ax =-+(15x ≤≤)是以3为上确界的 有上界函数,求实数a 的值.丰台区2015年度初三统一练习(二)参考答案二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分)17.解:原式=12-+…4分=1....5分18.证明:∵∠1=∠2,∴∠1+∠BAD =∠2+∠BAD . 即∠BAC =∠E AD .......1分 ∵AB =AE ,∠B =∠E , (2)分∴ △ABC ≌△AED .……4分 ∴BC =ED .……5分19.解:240,321 5.x x +⎧⎨-->⎩≤(②)①由①得: 2.x -≤…1分分….4分∴ 2.x ≤-…….5分20. 解:原式=2222222x xy y y x yx xy y x-+--⋅-+…1分=2(2)()x x y x yx y x--⋅-……2分 =2x y x y--……3分 ∵3xy=,∴3x y =.……4分 ∴原式=321322y y y y y y -==-. …….5分21.(1)证明:2=343m m +-⨯⨯△(),……1分=26+9m m - =23m -()≥0. ∴方程总有两个实根. ……2分(2)解:x = . ……3分解得1231,.x x m==……4分 ∵方程的两个实数根都是整数,且有一根大于1,∴31,.m m为大于的整数且为整数∴=1.m …….5分22. 解:设小张用骑公共自行车方式上班平均每小时行驶x 千米,根据题意列方程得:…1分1010445x x =⨯+………3分 解得:15x = ………4分经检验15x =是原方程的解且符合实际意义. 答:小张用骑公共自行车方式上班平均每小时行驶15千米. ………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:∵四边形ABCD 是平行四边形,∴∠B =∠ADC . …….1分∵将△BAE 沿AE 翻折得到△FAE ,点F 恰好落在线段DE 上, ∴△ABE ≌△AFE .∴∠B =∠AFE . …….2分∴∠AFE =∠ADC .∵∠FAD =∠AFE -∠1,∠CDE =∠ADC -∠1, ∴∠FAD =∠CDE .…….3分(2)过点D 作DG ⊥BE 的延长线于点G .∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,CD =AB =5. ∴∠2=∠B ,∠3=∠EAD .由(1)可知,△ABE ≌△AFE,∴∠B =∠AFE , ∠3=∠4.∴∠4=∠EAD .∴ED =AD =6. 在Rt△CDG 中,∴tan∠2= tan∠ABC =2DGCG=.∴DG =2CG .…….4分 ∵222DG CG CD += ,∴()22225CG CG +=.∴CG DG 在Rt△EDG 中, ∵222EG DG DE += ,∴EG =4.∴EC =4-分 24.(1)如下表和图:…3分(2)80≤x <90;…4分(3)200×(0.30+0.25)=110.…5分 25.(1)证明:联结AD .∵AB 是⊙O 的直径,∴∠ADB =90°,AD ⊥BC . ∵AC = AB ,∴12∠=∠.…….1分 ∵OA OD =,∴13∠=∠. ∴23∠=∠,∴OD ∥AC .…….2分(2)∵AC = AB =10,0.20 321DF CE BA O4321GBFACED∴B C ∠=∠.∴cos C=cos ABC ∠=. 在Rt△ABD 中,∠ADB =90°,cos 5BD ABC AB ∠==, ∴BDCD = BD分∵EF 为⊙O 的切线,∴OD ⊥EF ,由∵OD ∥AC ,∴∠DFC =90°. …….4分 在Rt△CDF 中,cos C=5CF CD =,∴CF =2.∴AF =8. ∵OD ∥AC ,∴ODE ∆∽AFE ∆.∴OE OD AE AF =.∴OB BE OD AB BE AF+=+. ∵152OB OA OD AB ====,∴103BE =.…….5分 26. 解:(1)△ABC 的面积是4.5;…….2分(2)如右图: …….4分△MNP 的面积是7. …….5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题827 . 解:(1)∵抛物线21y ax bx =++过(13)A ,,(21)B ,两点.∴134211a b a b ++=⎧⎨++=⎩.…….1分 解得,24a b =-⎧⎨=⎩. ∴抛物线的表达式是224+1y x x =-+.…….2分设直线AB 的表达式是y mx n =+ ,∴321m n m n +=⎧⎨+=⎩ ,解得,25m n =-⎧⎨=⎩.…….3分 ∴直线AB 的表达式是25y x =-+.…….4分(2)∵点C 在抛物线上,且点C 的横坐标为3.∴C (3,-5).…….5分点C 平移后的对应点为点'(3,5)C t -代入直线表达式25y x =-+,解得4t =.…….6分结合图象可知,符合题意的t 的取值范围是04t <≤. …….7分28. 解:(1)°70ADE ∠=;…….1分(2)①见右图;…….2分②EM EN =.…….3分证明:∵ABC AED α∠=∠=,BAC BAC ∠=∠. ∴°902EDA ACB α∠=∠=-.∵BA BC =,∴ACB BAC ∠=∠,即EDA BAC ∠=∠.∴EA ED = . …….4分∵E 是AC 中点,∴EA EC =.∴EA EC ED ==.∴点,,A D C 在以AC 为直径的圆上.∴°90ADC ∠=.. …….5分 而°°°°180180(90)9022EAM EAD αα∠=-∠=--=+.∵点F 是BC 中点,∴FD FB =.∴FDB ABC α∠=∠=. ∴°°909022EDN EDA ADN EDA FDB ααα∠=∠+∠=∠+∠=-+=+.∴EAM EDN ∠=∠.…….6分∵ ∠AED 绕点E 顺时针旋转适当的角度,得到∠MEN ,∴ ∠AED=∠MEN ,∴∠AED - ∠AEN=∠MEN -∠AEN ,即 ∠MEA=∠NED .∴ ΔEAM ≌ΔEPN .∴ EM=EN .…….7分29. 解:(1)1y x=- (0x <)不是有上界函数;…….1分 23y x =- (2x <)是有上界函数,上确界是1. …….2分(2)∵在y =-x +2中,y 随x 的增大而减小,∴上确界为2a -,即2a b -=. 3分又b a >,所以2a a ->,解得1a <. …….4分∵函数的最小值是2b -,∴221b a -≤+,得21a a ≤+,解得1a ≥-. 综上所述:11a -≤<.…….5分(3)函数的对称轴为x a =.…….6分①当3a ≤时,函数的上确界是251022710a a -+=-.∴27103a -=,解得125a =,符合题意. …….7分 ②当3a >时,函数的上确界是12232a a -+=-.∴323a -=,解得0a =,不符合题意.综上所述:125a .…….8分。
2019-2020年九年级数学第二次月考卷及答案一、选择题(每题4分)1.如图,在正方形ABCD 中,点P 是AB 上一动点(不与A ,B 重合),对角线AC ,BD 相交于点O ,过点P 分别作AC ,BD 的垂线,分别交AC ,BD 于点E ,F ,交AD ,BC 于点M ,N .下列结论:①△APE ≌△AME ;②PM+PN=AC ;③PE 2+PF 2=PO 2;④△POF ∽△BNF ;⑤当△PMN ∽△AMP 时,点P 是AB 的中点.其中正确的结论有A .5个B .4个C .3个D .2个2.如图,直角梯形ABCD 中,AB ∥CD ,∠C=90°,∠BDA=90°,AB=a ,BD=b ,CD=c ,BC=d ,AD=e ,则下列等式成立的是A . b 2=acB .b 2=ce C .be=ac D .bd=ae3.如图1,在Rt △ABC 中,∠ACB=900,点P 以每秒1cm 的速度从点A 出发,沿折线AC-CB 运动,到点B 停止。
过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示。
当点P 运动5秒时,PD 的长是【 】A .1.5cmB .1.2cmC .1.8cmD .2cm4.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,D E F A B FS S 425∆∆=::,则DE :EC=【 】A .2:5B .2:3C .3:5D .3:25.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数1m y =x的图象经过点A,反比例函数2ny=x的图象经过点B,则下列关于m,n的关系正确的是A. m=﹣3nB. mC. m=D. m=6.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是A. ∠C=2∠AB. BD平分∠ABCC. S△BCD=S△BODD. 点D为线段AC的黄金分割点7.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,………按这样的规律进行下去,第2012个正方形的面积为A.2010352⎛⎫⋅ ⎪⎝⎭B.2010954⎛⎫⋅ ⎪⎝⎭C.2012954⎛⎫⋅ ⎪⎝⎭D.4022352⎛⎫⋅ ⎪⎝⎭8.如图,点G、E、A、B在一条直线上,Rt△EFG从如图所示是位置出发,沿直线AB 向右匀速运动,当点G与B重合时停止运动.设△EFG与矩形ABCD重合部分的面积为S,运动时间为t,则S与t的图象大致是A .B .C .D .9.如图,在▱ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 延长线于点F ,则△EDF 与△BCF 的周长之比是【 】A .1:2B .1:3C .1:4D .1:510. (2013年四川南充3分) 如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm ,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5cm ;②当0<t ≤5时,22y t 5=;③直线NH 的解析式为5y t 272=-+;④若△ABE 与△QBP 相似,则t=294秒。
其中正确的结论个数为【 】A. 4B. 3C. 2D. 1二、填空题(每题5分) 11.在平面直角坐标系xOy 中,已知第一象限内的点A 在反比例函数1y x =的图象上,第二象限内的点B 在反比例函数k y x =的图象上,连接OA 、OB ,若OA ⊥OB ,,则k= .12.如图,正方形ABCD 的边长为4,E 、F 分别是BC 、CD 上的两个动点,且AE ⊥EF 。
则AF 的最小值是 。
13.将一副三角尺如图所示叠放在一起,则B EE C的值是.14.如图,巳知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于_________(结果保留根号).四、解答题15.(8分)如图,∴P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长BP交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.16.(8分)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A 顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP ;(2)求证:AE=CP ;(3)当C P 3P E 2,BP ′=AB 的长. 17.(8分)如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB •AD ;(2)求证:CE ∥AD ;(3)若AD=4,AB=6,求 A C A F的值. 18.(8分)如图,在Rt △ABC 中,∠C=90°,翻折∠C ,使点C 落在斜边AB 上某一点D 处,折痕为EF (点E 、F 分别在边AC 、BC 上)(1)若△CEF 与△ABC 相似.①当AC=BC=2时,AD 的长为 ;②当AC=3,BC=4时,AD 的长为 ;(2)当点D 是AB 的中点时,△CEF 与△ABC 相似吗?请说明理由.19.(10分)如图,在等腰Rt △ABC 中,∠C=90°,正方形DEFG 的顶点D 地边AC 上,点E 、F 在边AB 上,点G 在边BC 上。
(1)求证:△ADE ≌△BGF ;(2)若正方形DEFG 的面积为16cm 2,求AC 的长。
20.(10分))如图,已知矩形OABC 中,OA=2,AB=4,双曲线k y x=(k >0)与矩形两边AB 、BC 分别交于E 、F .(1)若E 是AB 的中点,求F 点的坐标;(2)若将△BEF 沿直线EF 对折,B 点落在x 轴上的D 点,作EG ⊥OC ,垂足为G ,证明△EGD ∽△DCF ,并求k 的值.21.(12分)将矩形OABC 置于平面直角坐标系中,点A 的坐标为(0,4),点C 的坐标为(m ,0)(m >0),点D (m ,1)在BC 上,将矩形OABC 沿AD 折叠压平,使点B 落在坐标平面内,设点B 的对应点为点E .(1)当m=3时,点B 的坐标为 ,点E 的坐标为 ;(2)随着m 的变化,试探索:点E 能否恰好落在x 轴上?若能,请求出m 的值;若不能,请说明理由.(3)如图,若点E 的纵坐标为-1,抛物线2ya x x10=+(a ≠0且a 为常数)的顶点落在△ADE 的内部,求a 的取值范围.22.(12分)如图,在等腰梯形ABCD 中,DC ∥AB ,E 是DC 延长线上的点,连接AE ,交BC 于点F 。
(1)求证:△ABF ∽△ECF(2)如果AD =5cm ,AB =8cm ,CF =2cm ,求CE 的长。
23.(14分)如图,已知二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点,与y 轴交于点P,顶点为C(1,-2).(1)求此函数的关系式;(2)作点C关于x轴的对称点D,顺次连接A、C、B、D.若在抛物线上存在点E,使直线PE将四边形ABCD分成面积相等的两个四边形,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.参考答案1.B2.A3.B。
4.B。
5.A6.C7.D8.D9.A。
10.B。
11.1 2 -12.51314.15.解:(1)证明:∵四边形ABCD是菱形,∴AB=AD,AC平分∠DAB。
∠DAP=∠BAP。
∵在△APB和△APD中,AB ADBAP DAP AP AP=⎧⎪∠=∠⎨⎪=⎩,∴△APB≌△APD(SAS)。
(2)①∵四边形ABCD是菱形,∴AD∥BC,AD=BC。
∴△AFP∽△CBP。
∴AF FP BC BP=。
∵DF:FA=1:2,∴AF:BC=3:3。
∴F P2B P3=。
由(1)知,PB=PD=x,又∵PF=y,∴y2x3 =。
∴2y x3=,即y与x的函数关系式为2y x3=。
②当x=6时,2y643=⨯=,∴FB FP PB1=+=。
∵DG∥AB,∴△DFG∽△AFB。
∴FG FDFB FB=。
∴F G1F B2=。
∴1F G1052=⨯=,即线段FG的长为5。
16.解:(1)证明:∵AP′是AP旋转得到,∴AP=AP′。
∴∠APP′=∠AP′P。
∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°。
又∵∠BPC=∠APP′(对顶角相等)。
∴∠CBP=∠ABP。
(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP ,∠C=90°,∴CP=DP 。
∵P ′E ⊥AC ,∴∠EAP ′+∠AP ′E=90°。
又∵∠PAD+∠EAP ′=90°,∴∠PAD=∠AP ′E 。
在△APD 和△P ′AE 中,∵0PAD AP E ADP P EA 90AP AP ∠=∠'⎧⎪∠=∠'=⎨⎪='⎩,∴△APD ≌△P ′AE (AAS )。
∴AE=DP 。
∴AE=CP 。
(3)∵C P 3P E 2=,∴设CP=3k ,PE=2k ,则AE=CP=3k ,AP ′=AP=3k+2k=5k 。
在Rt △AEP ′中,P 4k '=, ∵∠C=90°,P ′E ⊥AC ,∴∠CBP+∠BPC=90°,∠EP ′P+∠P ′PE=90°。
∵∠BPC=∠EPP ′(对顶角相等),∴∠CBP=∠P ′PE 。
又∵∠BAP ′=∠P ′EP=90°,∴△ABP ′∽△EPP ′。
∴AB P A P E PE '='。