电磁感应中的双杆双动导轨滑轨能量动量问题大综合
- 格式:doc
- 大小:1.01 MB
- 文档页数:27
△t,杆乙移动距离v2△t,回路面积改变由法拉第电磁感应定律,回路中的感应电动势,回路中的电流,杆甲的运动方程。
由于作用于杆甲和杆乙的安培力总是大小相等,方向相反,所以两杆的动量时为0〕等于外力F的冲量。
联立以上各式解得,代入数据得点评:题中感应电动势的计算也可以直接利用导体切割磁感线时产生的感应电动势公式和右手定那么求解:设甲、乙速度分别为v1和v2,两杆切割磁感线产生的感应电动势分别为E1=Blv1 ,E2=Blv2 由右手定那么知两电动势方向相反,故总电动势为E=E2―E1=Bl〔v2-v1〕。
分析甲、乙两杆的运动,还可以求出甲、乙两杆的最大速度差:开始时,金属杆甲在恒力F作用下做加速运动,回路中产生感应电流,金属杆乙在安培力作用下也将做加速运动,但此时甲的加速度肯定大于乙的加速度,因此甲、乙的速度差将增大。
根据法拉第电磁感应定律,感应电流将增大,同时甲、乙两杆所受安培力增大,导致乙的加速度增大,甲的加速度减小。
但只要a甲>a乙,甲、乙的速度差就会继续增大,所以当甲、乙两杆的加速度相等时,速度差最大。
此后,甲、乙两杆做加速度相等的匀加速直线运动。
设金属杆甲、乙的共同加速度为a,回路中感应电流最大值Im。
对系统和乙杆分别应用牛顿第二定律有:F=2ma;BLIm=ma。
由闭合电路欧姆定律有E=2ImR,而由以上各式可解得4.“双杆〞在不等宽导轨上同向运动。
“双杆〞在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。
[例8]〔2004年全国理综卷〕图中a1b1c1d1和a2b2c2d2为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨所在平面〔纸面〕向里。
导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。
x1 y1与x2 y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。
高考物理专题电磁感应双杆模型及例题解析
电磁双杆模型
电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。
要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。
总结
电磁感应中“轨道”中的“双杆运动”问题,或者由于两杆的长度不同,或者由于两杆的速度不同,两杆产生的感应电动势往往不等。
两杆产生的感应电动势的方向是否相同,不是看空间方向(如力的方向),而是看回路中的方向,如相同,则相加,如相反,则相减,往往相反,则总电动势的方向为大者,感应电流的方向与总电动势方向相同。
两杆所受安培力的方向用左手定则分别判断。
运动中克服安培力做的功(功率)等于机械能转变为动能的功(功率),亦即等于焦耳热(焦耳热功率)。
电磁感应中的“双杆问题”教学目标:综合应用电磁感应等电学知识解决力、电综合问题; 学习重点:力、电综合的“双杆问题”问题解法学习难点:电磁感应等电学知识和力学知识的综合应用,主要有1.利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题 2.应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。
重点知识及方法点拨:1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。
2.“双杆”中两杆都做同方向上的加速运动。
“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
3.“双杆”在不等宽导轨上同向运动。
“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。
4.电磁感应中的一个重要推论——安培力的冲量公式RBLBLq t BLI t F ∆Φ==∆=∆ 感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI 。
在时间△t 内安培力的冲量RBL BLq t BLI t F ∆Φ==∆=∆,式中q 是通过导体截面的电量。
利用该公式解答问题十分简便。
电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。
练习题1.如图所示,光滑平行导轨仅其水平部分处于竖直向上的匀强磁场中,金属杆b 静止在导轨的水平部分上,金属杆a 沿导轨的弧形部分从离地h 处由静止开始下滑,运动中两杆始终与轨道垂直并接触良好且它们之间未发生碰撞,已知a 杆的质量m a =m 0,b 杆的质量m b =34m 0,且水平导轨足够长,求: (1)a 和b 的最终速度分别是多大?(2)整个过程中回路释放的电能是多少?(3)若已知a 、b 杆的电阻之比R a :R b =3:4,其余电阻不计,则整个过程中a 、b 上产生的热量分别是多少?2.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题一、基础知识1、模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题1=1的综合性强,物理情景变化空间人,是我们复习屮的难点.“导轨+杆” 模型乂分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变.2、常见模型二、练习解析 ⑴设卬在磁场区域"cd 内运动时间为d 乙从开始运动到〃位置的时间为/2, 则由运动学公式得1 21 八2 L =〒2gsin 〃・斤,L=㊁gsin 0・£解得旷pi 爲’/2=需£(i 分)因为“勺2,所以甲离开磁场时,乙还没有进入磁场.(1分)设乙进入磁场时的速度为可,乙屮产牛的感应电动势为E ],回路屮的电流为厶,贝IJ 如嶄=mgLsin 0(]分)E\=BdsQ 分) Zi=Ei/2R (l 分) mgsin O=BJ {d (\ 分)解得2鬱需9分)(2)从释放金属杆开始计时,设经过时间/,甲的速度为“,甲中产牛的感应电动势为E,回路中的电流为/,外力为F,则1、如图弄示,两根足够长、电阻• * • % I•• »«^ZW«I4 I ・♦ Jtf-rr-W •- V ,I与水平面夹角为趴导轨平面内的矩形区域血cd• • • • • • ••••■• • • •• ••• ••••・M • ••••••• • •••垂首干斜面向卜•血与cd ・间相原为・令爆杆• • • • • • ■ 9■•■•••• • • • •明确电路结构,挖掘隐含梅抿荐族状杰犒牢税图6・甲、乙的阻值相同,质址均为九甲杆锂雹场区域的上边界血处,乙杆上方与甲相更[处,甲、乙两杆都与导轨垂直II 接触KI 好•由静止样放两杆的同 时,在甲杆上施加一个垂直于杆平行丁•导轨的外力F,使甲杆在冇磁场的矩形区域 内向下做匀期速直线运动,加速度大小炉2gsin0,甲离开磁场时撤去化乙杆 进人磁场后恰好做匀速运动,然后离开磁场・(1)求毎根金属杆的电E/?fl 多大?(2)从释放金居杆开始计时,求外力F 随时间t 的变化关系式,并说明F 的方向.(3)若整个过程中,乙金届杆共产生热昴Q,求外力F 对甲金届杆做的功W 是多少?⑤岀于甲、乙秀杆串联,产生的史 只有甲杆在磁场中运动的过程,刑 功和重力做功使两杆的内能和甲*• • • • • • • • • • ■ • • • • ■■■增加.甲杆离开磁场后,乙杆;切 勞能转化为两杆的内能.②说明乙杆受力平衡「应远期断i 磁场时甲杆是否离开磁场.③先分析两杆在导轨上各自运动」时间,可輛用乙杆在磁场中的匀殳析求解电阻R. ④用牛顿第二定律、法拉第电磁总X.・• • •• ..合电路知识求解.①可如甲般外为卩平行寻編卸 变力.v=at(\分)E=Bdv(\分)I=E/2R(]分)F+wgsin O~BId=nia (\ 分) <7=2gsin 6联立以上各式解得方向垂直于杆平行于导轨向下.(1分)(3)甲在磁场运动过程中,乙没冇进入磁场,设甲离开磁场时速度为%,甲、乙产生的热量相同,均设为0,则vl=2aL(\ 分)W+〃?g 厶sin 0=2Q]+苏就(2 分)解得 W=20x+mgLsmO乙在磁场运动过程中,甲、乙产生相同的热量,均设为g ,贝IJ 2@=吨厶sin 0(2分) 根据题意有0=01+0(1分) 解得"=20(1分)gsin 0(2) F=〃7gsin&+〃gsin0、^^^2(OW/W 寸瓷 命 方向垂直于杆平行于导轨向下 (3) 202、如图甲所示,足够长的光滑平行金属导轨MM P0竖直放置,其宽度厶=1 m, 一匀强 磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为/?=0.40 Q 的电阻,质量 为加=0.01 kg 、电阻为厂=0.30 Q 的金属棒ah 紧贴在导轨上•现使金属林ab [Il 静止开 始下滑,下滑过程中弘始终保持水平,且与导轨接触良好,其下滑距离x 与时间/的 关系如图乙所示,图彖中的04段为曲线,M 段为直线,导轨电阻不计,g=10m/s 1 2 3(忽 略〃棒运动过程中对原磁场的影响),求:解析(1)金属棒在段匀速运动,山题中图象乙得:1 磁感应强度B 的大小;2 金属棒ab 在开始运动的1.5 s 内,通过电阻尺的电荷量;3 金属棒〃在开始运动的1.5 s 内,电阻上产牛的热量. 答案(1)0.1 T (2)0.67 C (3)0.26 JF=wgsin 0+加gsin 0怦.gw0=石=7 m/sBLumg=BIL解得3 = 0.1 T⑵q="F △/— A01 ={R+r)\t\S△°F解得:g = 0.67 C1 2 (3)Q=〃?gx_ 尹矿解得 2=0.455 J 从而0?=专屈=0.26 J3、如图所示,足够长的光滑平行金属导轨cd 和前水平放置,在其左端连接倾角为〃=37。
电磁感应的综合应用命题点一 电磁感应中的动量和能量的应用 (一)电磁感应中的能量问题 1.求解电能应分清两类情况(1)若回路中电流恒定,可以利用电路结构及UIt W =或t 2R I Q =直接进行计算. (2)若电流变化,则①利用安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则减少的机械能等于产生的电能. 2.电磁感应现象中的能量转化3.求解焦耳热Q 的三种方法(二)动量定理在电磁感应问题中的运用 研究对象:切割磁感线的单棒(或矩形框) 规律:动量定理、电流定义式(三)动量守恒定律在电磁感应问题中的运用研究对象:切割磁感线的双棒(等长)规律:(1)动量守恒定律(2)能量转化规律系统机械能的减小量等于内能的增加量. (类似于完全非弹性碰撞)等距双棒特点分析1.电路特点刚开始棒2相当于电源;棒1受安培力而加速起动,运动后产生反电动势.1 22.电流特点3.两棒的运动情况特点棒1做加速度减小的加速运动棒2做加速度减小的减速运动最终两棒具有共同速度(四)电磁感应中的“杆+导轨”模型常见类型单杆水平式(导轨光滑)设运动过程中某时刻棒的速度为v,加速度为a=Fm-22B L vmR,a,v同向,随v的增加,a减小,当a=0时,v最大,I=BLvR恒定单杆倾斜式(导轨光滑)杆释放后下滑,开始时a=gsin α,速度v↑→E=BLv↑→I=ER↑→F=BIL↑→a↓,当F=mgsin α时,a=0,v最大双杆切割式(导轨光滑)杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.对系统动量守恒,对其中某杆适用动量定理学科&网光滑不等距导轨杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,两杆以不同的速度做匀速运动含“源”水平光滑导轨(v0=0)S闭合,ab杆受安培力F=BLEr,此时a=BLEmr,速度v↑⇒E感=BLv↑⇒I↓⇒F=BIL↓⇒加速度a↓,当E感=E时,v最大,且v m=EBL含“容”水平光滑导轨(v0=0)拉力F恒定,开始时a=Fm,速度v↑⇒E=BLv↑,经过Δt速度为v+Δv,此时E′=BL(v+Δv),电容器增加的电荷量ΔQ=CΔU=C(E′-E)=CBLΔv,电流I=Qt∆∆=CBL vt∆∆=CBLa,安培力F安=BIL=CB2L2a,F-F安=ma,a=22Fm B L C+,所以杆做匀加速运动vvtOv注:在以上模型中,受到的外力F 可以是拉力或重力,也可以是它们的合力或分力,例如导体棒沿光滑平行倾斜导轨下滑,无重力之外的外力时,重力的下滑分力将成为合外力.电磁感应与动量结合问题高考真题1.(2018高考天津理综)真空管道超高速列车的动力系统是一种将电能直接转换成平动动能的装置。
电磁感应与动力学、能量、动量的综合应用(单轨、双轨、线框、圆盘、变磁场)60分钟电磁感应与动力学、能量、动量的综合应用(单轨、双轨、A.线框穿出磁场I的过程中和进入磁场II的过程中,线框中产生的感应电流方向反A.通过金属棒的电流不变B.感应电流方向为顺时针方向C.A、C两点的电势始终有D.整个过程中通过金属棒的电荷量为A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上往下看,圆盘顺时针转动,则电流沿C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D.若圆盘转动的角速度变为原来的【答案】AA .0~t 0时间内,回路中的感应电动势为200B L t B .0~t 0时间内,施加在N 杆上的拉力F 随时间t 变化的关系为0mg F t t =×C .重物下落的最大速度为2203mgR B L D .从t =0时刻到重物达到最大速度的过程中,回路产生的焦耳热为32mgx -A .重物的速度大小为24mgRB B .导体棒ab 受到的安培力大小为C .Oa 进出磁场一次,通过其某横截面的电荷量为D .图示时刻,导体棒上从重物重力势能转化为回路的电能,根据能量守恒,重力的功率等于回路电功率,有解得A.线框在磁场B.线框ab边刚穿出磁场C.线框ab边在磁场D.线框ab边在磁场【答案】BCA.导体棒上a、b两点的电压为A.金属线框从刚进入左磁场区域到最终停止的过程中一直做匀减速直线运动B.金属线框通过两个磁场区域过程中产生的焦耳热为C.金属线框进入左侧磁场区域过程中,通过金属线框的电荷量为A.金属棒的速度为0v时,金属棒的加速度大小为B.金属棒能获得的最大速度为C.弹射过程中,流过金属棒的电荷量为A.0t时导体棒1的速度大小为12m/s0t:时间内,导体棒1沿导轨下滑的距离为B.0A .金属棒刚进入磁场时的速度大小为02vB .匀强磁场的磁感应强度大小为032mv R LA.运动过程中导体棒a、b组成的系统动量守恒B.导体棒a、b运动稳定后的速度之比为C.从开始到运动稳定的过程中,通过导体棒A .导棒a 开始运动时的加速度大小为B .导棒a 刚要滑离宽导轨时速度大小为C .导棒b 最终的速度大小为019vA.导体棒和导轨之间的动摩擦因数为B.导体棒匀速运动阶段电阻R的发热功率为C.若将电阻R减小,其他保持不变,则导体棒可能以某个更大的速度匀速运动导体棒匀速运动时,回路的感应电流则电阻R的发热功率由平衡条件【答案】(1)4m/s;(2)7.6C;(3)0.4m【详解】(1)当金属棒ab所受合力为零时,棒的速度最大,对所以金属棒ab运动的最大速度v m【答案】(1)2g;(2)122B B ;(3)32244244mgx m g R B L -【详解】(1)a 刚开始运动时有最大加速度,即【答案】(1)22B L vg mR+【详解】(1)导体棒以初速度向上做减速运动,此时的安培力也是最大,故此时加速度最大,则有【答案】(1)4V ,电流由D 流向C ,电流由D 流向22rad /s w £;(3)1.5m /s【详解】(1)假设金属棒ab 静止,对金属棒CD ,由法拉第电磁感应定律有12E B =根据闭合电路欧姆定律,有E =解得。
电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型1、杆与电阻连接组成回路例1、如图所示,MN、PQ 是间距为L 的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x。
解析:(1)ab 运动切割磁感线产生感应电动势E,所以ab 相当于电源,与外电阻R 构成回路。
∴U ab =232R BLv BLvRR =+(2)若无外力作用则ab 在安培力作用下做减速运动,最终静止。
动能全部转化为电热,221mv Q =。
由动量定理得:mv Ft=即mv BILt =,It q =∴BLmv q =。
3322B L x m v q B L R R φ∆===,得2223L B mvR x =。
例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4m,上、下两端各有一个电阻R 0=1Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B=2T.ab 为金属杆,其长度为L=0.4m,质量m=0.8kg,电阻r=0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m/s2)求:(1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.解析:该题是一道考察电磁感应、安培力、闭合电路欧姆定律及力学有关知识的综合题,解题的关键是要正确分析金属杆的运动及受力的变化情况。
(1)杆ab 达到平衡时的速度即为最大速度v,220cos 02B L vmg R r θμθ--=+mgsin 解得022(sin cos )()2 2.5Rmg r m v s B Lθμθ-+==(2)22000(2)(2)22ab R ab Q I r I Q ===导线产生热量 克服安培力等于产生的总电能即,J Q Q Q W5.12200=+==,由动能定理:21sin cos 02mgs W mgs mv θμθ--=-得)cos (sin 212θμθ-+=mg W mv s 通过ab 的电荷量RBLs t I q =∆=,代入数据得q =2C关键:在于能量观,通过做功求位移。
电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。
要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。
下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。
[例5] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。
已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。
(1)求作用于每条金属细杆的拉力的大小。
(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。
解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。
由以上各式并代入数据得N(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得Q=1.28×10-2J。
2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。
[例6] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。
两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。
设两导体棒均可沿导轨无摩擦地滑行。
开始时,棒cd静止,棒ab有指向棒cd的初速度v0。
若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。
(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?解析:ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流。
ab棒受到与运动方向相反的安培力作用作减速运动,cd棒则在安培力作用下作加速运动。
在ab棒的速度大于cd棒的速度时,回路总有感应电流,ab棒继续减速,cd棒继续加速。
两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v作匀速运动。
(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有根据能量守恒,整个过程中产生的总热量(2)设ab棒的速度变为初速度的3/4时,cd棒的速度为v1,则由动量守恒可知:此时回路中的感应电动势和感应电流分别为:,此时棒所受的安培力:,所以棒的加速度为由以上各式,可得。
3. “双杆”中两杆都做同方向上的加速运动。
“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
[例7](2003年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
导轨间的距离l=0.20m。
两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。
在t=0时刻,两杆都处于静止状态。
现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。
经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?解析:设任一时刻t两金属杆甲、乙之间的距离为x,速度分别为v1和v2,经过很短的时间△t,杆甲移动距离v1△t,杆乙移动距离v2△t,回路面积改变由法拉第电磁感应定律,回路中的感应电动势,回路中的电流,杆甲的运动方程。
由于作用于杆甲和杆乙的安培力总是大小相等,方向相反,所以两杆的动量时为0)等于外力F的冲量。
联立以上各式解得,代入数据得点评:题中感应电动势的计算也可以直接利用导体切割磁感线时产生的感应电动势公式和右手定则求解:设甲、乙速度分别为v1和v2,两杆切割磁感线产生的感应电动势分别为E1=Blv1 ,E2=Blv2 由右手定则知两电动势方向相反,故总电动势为E=E2―E1=Bl(v2-v1)。
分析甲、乙两杆的运动,还可以求出甲、乙两杆的最大速度差:开始时,金属杆甲在恒力F作用下做加速运动,回路中产生感应电流,金属杆乙在安培力作用下也将做加速运动,但此时甲的加速度肯定大于乙的加速度,因此甲、乙的速度差将增大。
根据法拉第电磁感应定律,感应电流将增大,同时甲、乙两杆所受安培力增大,导致乙的加速度增大,甲的加速度减小。
但只要a甲>a乙,甲、乙的速度差就会继续增大,所以当甲、乙两杆的加速度相等时,速度差最大。
此后,甲、乙两杆做加速度相等的匀加速直线运动。
设金属杆甲、乙的共同加速度为a,回路中感应电流最大值Im。
对系统和乙杆分别应用牛顿第二定律有:F=2ma;BLIm=ma。
由闭合电路欧姆定律有E=2ImR,而由以上各式可解得4.“双杆”在不等宽导轨上同向运动。
“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。
[例8](2004年全国理综卷)图中a1b1c1d1和a2b2c2d2为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨所在平面(纸面)向里。
导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。
x1 y1与x2 y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。
两杆与导轨构成的回路的总电阻为R。
F为作用于金属杆x1y1上的竖直向上的恒力。
已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。
解析:设杆向上的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。
由法拉第电磁感应定律,回路中的感应电动势的大小①回路中的电流②电流沿顺时针方向。
两金属杆都要受到安培力作用,作用于杆x1y1的安培力为③方向向上,作用于杆x2y2的安培力为④方向向下,当杆作匀速运动时,根据牛顿第二定律有⑤解以上各式得⑥⑦作用于两杆的重力的功率的大小⑧电阻上的热功率⑨由⑥⑦⑧⑨式,可得⑩问题4:电磁感应中的一个重要推论——安培力的冲量公式感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI。
在时间△t内安培力的冲量,式中q是通过导体截面的电量。
利用该公式解答问题十分简便,下面举例说明这一点。
[例9] 如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,有一个边长为a(a<L)的正方形闭合线圈以初速v0垂直磁场边界滑过磁场后速度变为v(v<v0)那么()A. 完全进入磁场中时线圈的速度大于(v0+v)/2B. 安全进入磁场中时线圈的速度等于(v0+v)/2C. 完全进入磁场中时线圈的速度小于(v0+v)/2D. 以上情况A、B均有可能,而C解析:设线圈完全进入磁场中时的速度为vx。
线圈在穿过磁场的过程中所受合外力为安培力。
对于线圈进入磁场的过程,据动量定理可得:对于线圈穿出磁场的过程,据动量定理可得:由上述二式可得,即B选项正确。
[例10] 光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初速v0,使棒始终垂直框架并沿框架运动,如图所示。
求导体棒的最终速度。
解析:当金属棒ab做切割磁力线运动时,要产生感应电动势,这样,电容器C将被充电,ab棒中有充电电流存在,ab棒受到安培力的作用而减速,当ab棒以稳定速度v匀速运动时,有:BLv=UC=q/C而对导体棒ab利用动量定理可得:-BLq=mv-mv0由上述二式可求得:问题5:电磁感应中电流方向问题[例11](06广东物理卷)如图所示,用一根长为L质量不计的细杆与一个上弧长为,下弧长为的金属线框的中点联结并悬挂于O点,悬点正下方存在一个上弧长为、下弧长为的方向垂直纸面向里的匀强磁场,且<<先将线框拉开到如图所示位置,松手后让线框进入磁场,忽略空气阻力和摩擦。
下列说法正确的是()A. 金属线框进入磁场时感应电流的方向为:a→b→c→d→aB. 金属线框离开磁场时感应电流的方向为:a→d→c→b→aC. 金属线框dc边进入磁场与ab边离开磁场的速度大小总是相等D. 金属线框最终将在磁场内做简谐运动分析:金属线框进入磁场时,由于电磁感应,产生电流,根据楞次定律判断电流的方向为:a→d→c→b→a。
金属线框离开磁场时由于电磁感应,产生电流,根据楞次定律判断电流的方向为a→b→c→d→a 。
根据能量转化和守恒,可知,金属线框dc边进入磁场与ab边离开磁场的速度大小不相等。
如此往复摆动,最终金属线框在匀强磁场内摆动,由于<<,单摆做简谐运动的条件是摆角小于等于10度,故最终在磁场内做简谐运动。
答案为D。
小结:本题考查了感应电动势的产生条件,感应电流方向的判定,物体做简谐运动的条件,这些是高中学生必须掌握的基础知识。
感应电动势产生的条件只要穿过回路的磁通量发生变化,回路中就产生感应电动势,若电路闭合则有感应电流产生。
因此弄清引起磁通量的变化因素是关键,感应电流的方向判定可用楞次定律与右手定则,在应用楞次定律时要把握好步骤:先明确回路中原磁场的方向及磁通量的变化情况,再依楞次定律确定感应电流的磁场方向,然后根据安培定则确定感应电流的方向。
线圈在运动过程中的能量分析及线框最终的运动状态的确定为此题增大了难度。
练习:[06四川卷] 如图所示,接有灯泡L的平行金属导轨水平放置在匀强磁场中,一导体杆与两导轨良好接触并做往复运动,其运动情况与弹簧振子做简谐运动的情况相同。
图中O位置对应于弹簧振子的平衡位置,P、Q 两位置对应于弹簧振子的最大位移处。
若两导轨的电阻不计,则()A. 杆由O到P的过程中,电路中电流变大B. 杆由P到Q的过程中,电路中电流一直变大C. 杆通过O处时,电路中电流方向将发生改变D. 杆通过O处时,电路中电流最大解答:D问题6:电磁感应中的多级感应问题[例12] 如图所示,ab、cd金属棒均处于匀强磁场中,cd 原静止,当ab向右运动时,cd如何运动(导体电阻不计)()A. 若ab向右匀速运动,cd静止;B. 若ab向右匀加速运动,cd向右运动;C. 若ab向右匀减速运动,cd向左运动分析:这是多级电磁感应问题,ab相当于一个电源,右线圈相当于负载;左线圈相当于电源,cd相当于负载。