电磁感应现象中的动量问题.
- 格式:ppt
- 大小:278.50 KB
- 文档页数:21
动量定理及动量守恒定律在电磁感应中的应用摘要:《普通高中物理课程标准》指出,高中物理课程旨在进一步提高学生的科学素养,落实“立德树人”的根本任务。
基于学科核心素养教学实施策略和方法,要落实到教育教学的全过程,本文重点介绍动量定理、动量守恒定律在电磁感应解题的运用。
关键词:动量动量守恒电磁感应应用一、动量定理:物体所受合外力的冲量等于物体的动量变化.表达式:I=Δp或Ft=mv2-mv1.二、动量守恒定律:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′.三、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B LΔt=mv2-mv1, q= t.(2)求时间:Ft-I冲=mv2-mv1, I冲=BILΔt=BL .(3)求位移:-BILΔt=- =0-mv0,即 - s=m(0-v).四、在电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题。
例1.如图所示,在水平面上有两条导电导轨MN,PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1,2间隔一定的距离摆开放在导轨上,且与导轨垂直.它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计.杆1以初速度v滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1解析:杆2固定:对回路 q1= = .对杆1:-B d·Δt=0-mv0,q1=·Δt 联立解得s1= .杆2不固定: 对回路 q2=对杆2:B d·Δt=mv2-0 全程动量守恒:mv=mv1+mv2末态两棒速度相同,v1=v2,q2=·Δt 联立解得s2= . s1∶s2=2∶1,则C选项正确.例2.如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场.一根质量为m的金属杆a 置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a,b 未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a,b杆的电阻分别为R1,R2,其余部分电阻不计.在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大;(2)自b释放到a到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少;(3)a刚到达右端半圆轨道最低点时b的速度是多大.解析:(1)由机械能守恒定律得 M =Mgr1解得vb1=b刚滑到水平轨道时加速度最大,E=BLvb1, I= ,由牛顿第二定律有F安=BIL=Ma 解得a= .(2)由动量定理有-B Lt=Mvb2-Mvb1, 即-BLq=Mvb2-Mvb1解得vb2= -根据牛顿第三定律得:a在最高点受支持力N=N′=mg, mg+N=m解得va1=由能量守恒定律得Mgr1= M + m +mg2r2+Q 解得Q=BLq -3mgr2-.(3)由能量守恒定律有2mgr2= m - m解得va2=由动量守恒定律得Mvb1=Mvb3+mva2解得vb3= - .答案:(1)(2)BLq -3mgr2-(3) -例3.如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨.P1P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;( 2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡BdImcosθ=mgsinθ此时杆CD切割磁感线产生的感应电动势为E=Bdvmcosθ由欧姆定律可得Im = , 解得vm= .(2)在杆CD沿倾斜导轨下滑的过程中,动量定理有mgsinθ·Δt1-Bdcosθ·Δt1=mvm-0= = =解得Δt1= +在杆CD沿水平导轨运动的过程中,根据动量定理有 -B d·Δt2=0-mvm该过程中通过R的电荷量为 q2=Δt2,得q2=杆CD沿水平导轨运动的过程中,通过的平均电流为 = =得q2=Δt2=解得s= .答案:(1)(2) +3。
第18练电磁感应中的动量问题电磁感应规律的综合应用1.(多选)(2019·全国卷Ⅲ·19)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,这时两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上,选运动,水平方向上不受外力作用,由动量守恒定律有m v0=m v1+m v2,解得v1=v2=v02项A、C正确,B、D错误.2.(多选)(2022·全国甲卷·20)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C的电容器和阻值为R的电阻.质量为m、阻值也为R的导体棒MN静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中.开始时,电容器所带的电荷量为Q,合上开关S后()A .通过导体棒MN 电流的最大值为Q RCB .导体棒MN 向右先加速、后匀速运动C .导体棒MN 速度最大时所受的安培力也最大D .电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热答案 AD解析 开始时电容器两极板间的电压U =Q C ,合上开关瞬间,通过导体棒的电流I =U R =Q CR,随着电容器放电,通过电阻、导体棒的电流不断减小,所以在开关闭合瞬间,导体棒所受安培力最大,此时速度为零,A 项正确,C 项错误;由于回路中有电阻与导体棒,最终电能完全转化为焦耳热,故导体棒最终必定静止,B 项错误;由于导体棒切割磁感线,产生感应电动势,所以通过导体棒的电流始终小于通过电阻的电流,由焦耳定律可知,电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热,D 项正确.3.(多选)(2022·湖南卷·10)如图,间距L =1 m 的U 形金属导轨,一端接有0.1 Ω的定值电阻R ,固定在高h =0.8 m 的绝缘水平桌面上.质量均为0.1 kg 的匀质导体棒a 和b 静止在导轨上,两导体棒与导轨接触良好且始终与导轨垂直,接入电路的阻值均为0.1 Ω,与导轨间的动摩擦因数均为0.1(设最大静摩擦力等于滑动摩擦力),导体棒a 距离导轨最右端1.74 m .整个空间存在竖直向下的匀强磁场(图中未画出),磁感应强度大小为0.1 T .用F =0.5 N 沿导轨水平向右的恒力拉导体棒a ,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,撤去F ,导体棒a 离开导轨后落到水平地面上.重力加速度取10 m/s 2,不计空气阻力,不计其他电阻,下列说法正确的是( )A .导体棒a 离开导轨至落地过程中,水平位移为0.6 mB .导体棒a 离开导轨至落地前,其感应电动势不变C .导体棒a 在导轨上运动的过程中,导体棒b 有向右运动的趋势D .导体棒a 在导轨上运动的过程中,通过电阻R 的电荷量为0.58 C答案 BD解析 导体棒a 在导轨上向右运动,产生的感应电流方向向里,流过导体棒b 的电流方向向里,由左手定则可知安培力向左,则导体棒b 有向左运动的趋势,故C 错误;导体棒b 与电阻R 并联,有I =BL v 0.15 Ω,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,有B ·I 2·L =μmg ,联立解得导体棒a 的速度为v =3 m/s ,导体棒a 离开导轨至落地前做平抛运动,有x=v t ,h =12gt 2,联立解得导体棒a 离开导轨至落地过程中水平位移为x =1.2 m ,故A 错误;导体棒a 离开导轨至落地前做平抛运动,水平速度切割磁感线,则产生的感应电动势不变,故B 正确;导体棒a 在导轨上运动的过程中,通过电路的电荷量为q =I ·Δt =BL ·Δx 0.15 Ω=0.1×1×1.740.15 C =1.16 C ,导体棒b 与电阻R 并联,则通过电阻R 的电荷量为q R =q 2=0.58 C ,故D 正确.4.(2022·辽宁卷·15)如图所示,两平行光滑长直金属导轨水平放置,间距为L .abcd 区域有匀强磁场,磁感应强度大小为B ,方向竖直向上.初始时刻,磁场外的细金属杆M 以初速度v 0向右运动,磁场内的细金属杆N 处于静止状态.两金属杆与导轨接触良好且运动过程中始终与导轨垂直.两杆的质量均为m ,在导轨间的电阻均为R ,感应电流产生的磁场及导轨的电阻忽略不计.(1)求M 刚进入磁场时受到的安培力F 的大小和方向;(2)若两杆在磁场内未相撞且N 出磁场时的速度为v 03,求:①N 在磁场内运动过程中通过回路的电荷量q ;②初始时刻N 到ab 的最小距离x ;(3)初始时刻,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),求M 出磁场后不与N 相撞条件下k 的取值范围.答案 (1)B 2L 2v 02R 方向水平向左 (2)①m v 03BL ②2m v 0R 3B 2L2 (3)2≤k <3 解析 (1)细金属杆M 以初速度v 0向右运动,刚进入磁场时,产生的电动势为E =BL v 0电流为I =E 2R则所受的安培力大小为F =BIL =B 2L 2v 02R由左手定则可知安培力的方向水平向左;(2)①金属杆N 在磁场内运动的过程中,取水平向右为正方向,由动量定理有B I L ·Δt =m ·v 03-0 且q =I ·Δt联立解得通过回路的电荷量q =m v 03BL②设杆M 在磁场中运动的位移大小为x 1,杆N 在磁场中运动的位移大小为x 2,则有Δx =x 1-x 2,有 I =E2R ,E =BL ·Δx Δt 整理可得q =BL ·Δx 2R联立可得Δx =2m v 0R 3B 2L 2 若两杆在磁场内刚好相撞,N 到ab 的最小距离为x =Δx =2m v 0R 3B 2L 2 (3)两杆出磁场后在平行光滑长直金属导轨上运动,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),则N 到cd 边的速度大小恒为v 03,取水平向右为正方向,根据动量守恒定律可知m v 0=m v 1+m ·v 03解得N 出磁场时,M 的速度大小为v 1=23v 0 由题意可知,此时M 到cd 边的距离为s =(k -1)x若要保证M 出磁场后不与N 相撞,则有两种临界情况:①M 减速到v 03时出磁场,速度刚好等于N 的速度,一定不与N 相撞,对M 根据动量定理有 -B I 1L ·Δt 1=m ·v 03-m ·23v 0 q 1=I 1·Δt 1=BL ·(k -1)x 2R联立解得k =2②M 运动到cd 边时,恰好减速到零,则对M 由动量定理有-B I 2L ·Δt 2=0-m ·23v 0 同理解得k =3综上所述,M 出磁场后不与N 相撞条件下k 的取值范围为2≤k <3.1.(多选)足够长的平行光滑金属导轨ab 、cd 水平放置于竖直向上的匀强磁场中,ac 之间连接阻值为R 的电阻,导轨间距为L ,导体棒ef 垂直导轨放置且与导轨接触良好,导体棒质量为m 、电阻为r .t =0时刻对导体棒施加一个水平向右的力F (图中未画出),导体棒在F 的作用下开始做初速度为零的匀加速直线运动,当导体棒运动x 距离时撤去外力F ,此时导体棒的速度大小为v 0.若不计导轨电阻,则下列说法正确的是( )A .外力F 的大小与时间的关系式为F =ma +B 2L 2at R +rB .t =0时刻外力F 的大小为m v 022xC .从撤去外力F 到导体棒停止运动,电阻R 上产生的焦耳热为12m v 02 D .从撤去外力F 到导体棒停止运动,导体棒运动的位移大小为m v 0(R +r )B 2L 2答案 ABD 解析 由题知导体棒在F 的作用下开始做初速度为零的匀加速直线运动,根据牛顿第二定律有F -B 2L 2v R +r =ma ,v =at ,整理有F =B 2L 2at R +r+ma ,A 正确;由v 02=2ax ,解得在t =0时刻F =ma =m v 022x ,B 正确;从撤去外力F 到导体棒停止运动,根据动能定理有Q =12m v 02,则R 上产生的焦耳热为Q R =R R +r Q =Rm v 022(R +r ),C 错误;从撤去外力F 到导体棒停止运动,根据动量定理有-B I Lt =0-m v 0,I ·t =BL vR +r ·t =BLx R +r ,联立解得x =m v 0(R +r )B 2L 2,D 正确. 2.(多选)(2022·湖南衡阳市二模)如图,光滑平行导轨上端接一电阻R ,导轨弯曲部分与水平部分平滑连接,导轨间距为l ,导轨水平部分左端有一竖直向上的匀强磁场,磁感应强度大小为B ,现将金属棒PQ 从导轨弯曲部分的上端由静止释放,金属棒刚进入磁场时的速度大小为v 1,离开磁场时的速度大小为v 2,改变金属棒释放的高度,使其释放高度变为原来的12,金属棒仍然可以通过磁场区域,导轨和金属棒的电阻不计,则( ) A .金属棒通过磁场区域时金属棒中的电流方向为由P 到QB .金属棒第二次离开磁场时的速度大小为v 2-(1-22)v 1C .金属棒在两次通过磁场区域的过程中电阻R 上产生的热量相等D .金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等答案 BD解析 金属棒通过磁场区域时,由右手定则可知,金属棒中的电流方向为由Q 到P ,故A 错误;金属棒第二次释放的高度变为原来的12,由动能定理可知,进入匀强磁场时的速度大小为v 3=2v 12,金属棒通过磁场区域的过程中,根据动量定理有-B I lt =Δp ,又因为I =E R,E =ΔΦt ,所以-Bl ΔΦR=Δp ,则可知金属棒两次通过匀强磁场区域的过程中动量变化量相同,速度变化量也相同,则v 2-v 1=v 4-v 3,故金属棒第二次离开磁场时的速度大小为v 4=v 2-(1-22)v 1,故B 正确;金属棒第二次通过磁场区域的过程中所用时间长且减少的动能少,则电阻R 上产生的热量少,故C 错误;由电荷量q =ΔΦR,可知金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等,故D 正确.3.(多选)如图所示,足够长的水平光滑金属导轨所在空间中,分布着垂直于导轨平面方向竖直向上的匀强磁场,磁感应强度大小为B .两导体棒a 、b 均垂直于导轨静止放置.已知导体棒a 质量为2m ,导体棒b 质量为m ,长度均为l ,接入电路的电阻均为r ,其余部分电阻不计.现使导体棒a 获得瞬时平行于导轨水平向右的初速度v 0.除磁场作用外,两棒沿导轨方向无其他外力作用,在两导体棒运动过程中,下列说法正确的是( )A .任何一段时间内,导体棒b 的动能增加量跟导体棒a 的动能减少量在数值上总是相等的B .任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反C .全过程中,通过导体棒b 的电荷量为2m v 03BlD .全过程中,导体棒b 共产生的焦耳热为m v 026答案 BCD解析 根据题意可知,两棒组成闭合回路,电流相同,故所受安培力的合力为零,动量守恒,故任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反,根据能量守恒定律可知,a 的动能减少量在数值上等于b 的动能增加量与产热之和,故A 错误,B 正确;两棒最终共速,根据动量守恒定律,有2m v 0=(2m +m )v ,对b 棒m v -0=B I l ·t =Blq ,联立解得q =2m v 03Bl,故C 正确;根据能量守恒定律,可知两棒共产生的焦耳热为Q =12×2m v 02-12()2m +m v 2=m v 023,而由于两棒的电阻大小相等,因此b 棒产生的焦耳热为Q b =12Q =m v 026,故D 正确. 4.(2022·山东烟台市、德州市一模)有一边长为L 、质量为m 、总电阻为R 的正方形导线框自磁场上方某处自由下落,如图所示.匀强磁场区域Ⅰ、Ⅱ的磁感应强度大小均为B ,二者宽度分别为L 、H ,且H >L .导线框恰好匀速进入区域Ⅰ,一段时间后又恰好匀速离开区域Ⅱ,重力加速度为g ,下列说法正确的是( )A .导线框离开区域Ⅱ的速度大于mgRB 2L2 B .导线框刚进入区域Ⅱ时的加速度大小为g ,方向竖直向上C .导线框进入区域Ⅱ的过程产生的焦耳热为mgHD .导线框自开始进入区域Ⅰ至刚完全离开区域Ⅱ的时间为6B 2L 3mgR答案 C解析 由题意知,导线框恰好匀速离开区域Ⅱ,则有mg =BIL =B 2L 2v R ,解得v =mgR B 2L2,A 错误;导线框进入区域Ⅰ到刚要进入区域Ⅱ过程一直做匀速运动,有v =mgR B 2L2,导线框下边刚进入磁场区域Ⅱ时,上、下边都切割磁感线,由法拉第电磁感应定律可知E 2=BL v +BL v =2BL v ,又I 2=E 2R ,联立解得I 2=2BL v R,导线框所受安培力F 2=2BI 2L ,由牛顿第二定律有F 2-mg =ma ,解得a =3g ,方向竖直向上,B 错误;开始进入区域Ⅱ时与开始离开区域Ⅱ时,速度大小相等,则导线框产生的焦耳热等于重力势能的减少量,有Q =mgH ,C 正确;导线框自开始进入区域Ⅰ至开始进入区域Ⅱ的过程中,t 1=L v =B 2L 3mgR,导线框自开始进入区域Ⅱ至开始离开区域Ⅱ过程中,由动量定理得mgt 2-F 安2Δt =m v -m v ,即mgt 2-BL 2BL 2R =0,解得t 2=2B 2L 3mgR ,导线框自开始离开区域Ⅱ至刚完全离开区域Ⅱ过程中,t 3=L v =B 2L 3mgR,故t =t 1+t 2+t 3=4B 2L 3mgR,D 错误. 5.(多选)(2022·河北省模拟)如图所示,两根相距L 且电阻不计的足够长光滑金属导轨,导轨左端为弧形,右端水平,且水平部分处于方向竖直向下、磁感应强度大小为B 的匀强磁场中.铜棒a 、b 电阻均为R 、质量均为m ,均与导轨垂直且与导轨接触良好,铜棒b 静止在导轨水平部分,铜棒a 在弧形导轨上从距离水平部分高度为h =0.5L 处由静止释放,重力加速度为g ,关于此后的过程,下列说法正确的是( )A .回路中的最大电流为gLBL RB .铜棒b 的最大加速度为gLB 2L 22mRC .铜棒b 获得的最大速度为gLD .回路中产生的总焦耳热为mgL 4答案 BD解析 铜棒a 沿弧形导轨下滑,刚进入磁场区域时,由机械能守恒定律有mgh =12m v 2,且h =0.5 L ,解得v =gL ,回路中的最大感应电动势E =BL v ,回路中的最大电流I =E 2R,联立解得I =BL gL 2R,故A 错误;铜棒b 受到的最大安培力F 安=BIL ,由牛顿第二定律有F 安=ma ,解得铜棒b 的最大加速度a =B 2L 2gL 2mR,故B 正确;铜棒a 、b 在匀强磁场中做切割磁感线运动的过程中,整体所受合外力为零,动量守恒,最终铜棒a 、b 速度相等,由动量守恒定律得m v =2m v ′,解得铜棒b 获得的最大速度为v ′=gL 2,故C 错误;由能量守恒定律得,回路中产生的总焦耳热为Q =12m v 2-12×2m v ′2=mgL 4,故D 正确. 6.(多选)(2022·广东韶关市二模)某高中科研兴趣小组利用课余时间进行研究电磁阻尼效果的研究性学习,实验示意图如图甲所示,虚线MN 右侧有垂直于水平面向下的匀强磁场,边长为1 m 、质量为0.1 kg 、电阻为0.2 Ω的正方形金属线框在光滑绝缘水平面上以大小v 0=2 m/s 的速度向右滑动并进入磁场,磁场边界MN 与线框的右边框平行.从线框刚进入磁场开始计时,线框的速度v 随滑行的距离x 变化的规律如图乙所示,下列说法正确的是( )A .图乙中x 0=1 mB .线框进入磁场的过程中,线框的加速度先不变再突然减为零C .线框进入磁场的过程中,线框中产生的焦耳热为0.1 JD .线框进入磁场的过程中,通过线框某横截面的电荷量为22C 答案 AD 解析 穿过线框的磁通量变化导致线框中产生感应电流,使线框受到安培力的作用,从而使速度改变;当线框完全进入磁场时,磁通量不变,速度不变,则由题图乙可知x 0=1 m ,A正确;线框进入磁场的过程中,安培力F =BIL ,其中I =E R =BL v R,由题图乙可知,速度减小,则安培力减小,由牛顿第二定律可知,线框的加速度减小,因此线框做变减速运动,B 错误;根据能量守恒定律可知,减少的动能全部转化为焦耳热,则有Q =ΔE k =12m v 02-12m v 2,代入数据可得Q =0.15 J ,C 错误; 线框进入磁场的过程中,取水平向右为正方向,根据动量定理可得-B 2L 2v R t =m v -m v 0,整理得v =v 0-B 2L 2x mR,结合题图乙可知,当x =1 m 时,v =1 m/s ,代入解得B =150 T ,通过线框某横截面的电荷量为q =I t =Bx 02R ,解得q =22 C ,D 正确. 7.(多选)(2022·宁夏吴忠中学三模)如图所示,两段均足够长、不等宽的光滑平行导轨固定在水平面上,较窄导轨的间距L 1=1 m ,较宽导轨的间距L 2=1.5 m .整个装置处于磁感应强度大小为B =0.5 T 、方向竖直向上的匀强磁场中,导体棒MN 、PQ 的质量分别为m 1=0.4 kg 、m 2=1.2 kg ,长度分别为1 m 、1.5 m ,电阻分别为R 1=0.3 Ω、R 2=0.9 Ω,两导体棒静止在水平导轨上.t =0时刻,导体棒MN 获得v 0=7 m/s 、水平向右的初速度.导轨电阻忽略不计,导体棒MN 、PQ 始终与导轨垂直且接触良好,导体棒MN 始终在较窄导轨上运动,取g =10 m/s 2则( )A .t =0时刻,回路中的电流为3512A B .导体棒MN 最终做匀速直线运动,速度大小为3 m/sC .通过导体棒MN 的电荷量最大值为3.4 CD .导体棒PQ 中产生的焦耳热最大值为4.2 J答案 ABD解析 t =0时刻,回路中的电流为I 0=E R =BL 1v 0R 1+R 2=3512A ,故A 正确;导体棒MN 与PQ 切割磁感线产生的电动势相互削弱,当两导体棒产生的电动势相等时,感应电流为零,所受安培力为零,故两导体棒最终做匀速直线运动,此时有BL 1v MN =BL 2v PQ ,设从导体棒MN 开始运动至导体棒MN 、PQ 做匀速运动所用的时间为Δt ,取水平向右为正方向,对导体棒MN 分析,由动量定理得-BL 1I ·Δt =m 1v MN -m 1v 0,对导体棒PQ 分析,由动量定理得BL 2I ·Δt =m 2v PQ ,又因为q =I ·Δt ,联立解得v MN =3 m/s ,v PQ =2 m/s ,q =3.2 C ,故B 正确,C 错误;由能量守恒定律得12m 1v 02=12m 1v MN 2+12m 2v PQ 2+Q 总,Q PQ =R 2R 1+R 2Q 总,代入数据联立解得Q PQ =4.2 J ,故D 正确.8.(多选)如图所示,竖直放置的两根足够长的光滑金属导轨相距L ,导轨的两端分别与电源(串联一滑动变阻器R )、定值电阻R 0、电容器(电容为C ,原来不带电)和开关S 相连.整个空间充满了磁感应强度大小为B 、方向垂直于导轨平面向外的匀强磁场.一质量为m 、电阻不计的金属棒ab 横跨在导轨上.已知电源电动势为E 、内阻为r ,不计导轨的电阻.当S 接1,滑动变阻器R 接入电路一定阻值时,金属棒ab 在磁场中恰好保持静止.当S 接2后,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度.重力加速度为g ,则下列说法正确的是( )A .当S 接1时,滑动变阻器接入电路的阻值R =EBLmgB .若将ab 棒由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CBL vC .当S 接2时,金属棒ab 从静止开始到刚好达到稳定速度所经历的时间t =B 2L 2h +m 2gR 02mgR 0B 2L 2D .若将ab 棒由静止释放的同时,将S 接到3,则金属棒ab 将做匀加速直线运动,加速度大小a =mgm +CB 2L 2答案 BD解析 当S 接1时,有I =E R +r ,由平衡条件得mg =BIL ,联立解得R =EBLmg -r ,故A 错误;当S 接2,速度稳定时有mg =B 2L 2v R 0,解得v =mgR 0B 2L 2,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度,根据动量定理可得mgt -B I Lt =m v ,即mgt -B 2L 2vR 0·t =m v ,其中vt =h ,联立解得t =B 4L 4h +m 2gR 02mgR 0B 2L 2,故C 错误;若将棒ab 由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CU =CBL v ,根据动量定理可得mg Δt -B I ′L Δt =m Δv ,即mg Δt -BL ·ΔQ =m Δv ,将ΔQ =CBL Δv 代入解得mg Δt -CB 2L 2Δv =m Δv ,所以a =Δv Δt =mgm +CB 2L 2,金属棒ab 将做匀加速直线运动,故B 、D 正确.9.如图所示,两电阻不计的光滑平行金属导轨固定在竖直平面内,两导轨间的距离为L ,导轨顶端连接定值电阻R ,导轨上有一质量为m 、长度为L 、电阻不计的金属杆,杆始终与导轨接触良好.整个装置处于磁感应强度大小为B 的匀强磁场中,磁场的方向垂直导轨平面向里.现使杆从M 点以v 0的速度竖直向上运动,经历时间t ,到达最高点N ,重力加速度大小为g .求t 时间内:(1)流过电阻的电荷量q ; (2)电阻上产生的焦耳热Q . 答案 (1)m v 0-mgtBL(2)12m v 02-m 2gR (v 0-gt )B 2L 2解析 (1)杆竖直向上运动的过程中,取v 0方向为正方向,根据动量定理,有-mgt -F t =0-m v 0 F =BL I q =I t联立解得q =m v 0-mgt BL(2)设杆上升的高度为h ,取v 0方向为正方向,由动量定理得-mgt -B 2L 2vR t =0-m v 0又h =v t联立解得h =mR (v 0-gt )B 2L 2杆上升过程中由能量守恒定律可知,电阻上产生的焦耳热Q =12m v 02-mgh联立解得Q =12m v 02-m 2gR (v 0-gt )B 2L 2.10.(2022·天津市一模)如图,间距为L 的两平行金属导轨右端接有电阻R ,固定在离地高为H 的平面上,空间存在着方向竖直向下、磁感应强度大小为B 的匀强磁场.质量为m 的金属杆ab 垂直导轨放置,杆获得一个大小为v 0的水平初速度后向左运动并离开导轨,其落地点距导轨左端的水平距离为s .已知重力加速度为g ,忽略一切摩擦和阻力,杆和导轨电阻不计.求:(1)杆即将离开导轨时的加速度大小a ;(2)杆穿过匀强磁场的过程中,克服安培力做的功W ; (3)杆ab 在水平导轨上运动的位移大小x .答案 (1)B 2L 2s 2mRH 2gH (2)12m (v 02-gs 22H ) (3)mR B 2L 2(v 0-s 2H2gH ) 解析 (1)杆离开导轨后做平抛运动,则有H =12gt 2,s =v t ,联立解得杆离开导轨时的速度大小为v =sg 2H杆离开导轨时,产生的感应电动势为E =BL v 感应电流大小为I =ER杆受到的安培力大小为F =BIL 根据牛顿第二定律可得F =ma联立解得杆即将离开导轨时的加速度大小为a =B 2L 2s2mRH 2gH(2)根据动能定理,可得-W =12m v 2-12m v 02则杆穿过匀强磁场的过程中,克服安培力做的功为 W =12m (v 02-gs 22H)(3)根据动量定理,可得-B I Lt =m v -m v 0 q =I t =BLxR联立解得x =mR B 2L 2(v 0-s2H2gH ).11.两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d =1 m ,在左端弧形轨道部分高h =1.25 m 处放置一金属杆a ,弧形轨道与平直轨道的连接处平滑无摩擦,在平直轨道右端放置另一金属杆b ,杆a 、b 接入电路的电阻分别为R a =2 Ω、R b =5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度大小为B =2 T .现杆b 以初速度大小v 0=5 m/s 开始向左滑动,同时由静止释放杆a ,杆a 由静止滑到水平轨道的过程中,通过杆b 的平均电流为0.3 A ;从a 下滑到水平轨道时开始计时,a 、b 运动的速度-时间图像如图乙所示(以a 运动的方向为正方向),其中m a =2 kg ,m b =1 kg ,g 取10 m/s 2,求:(1)杆a 在弧形轨道上运动的时间;(2)杆a 在水平轨道上运动过程中通过其截面的电荷量; (3)在整个运动过程中杆b 产生的焦耳热. 答案 (1)5 s (2)73 C (3)1156J解析 (1)设杆a 由静止滑至弧形轨道与平直轨道连接处时杆b 的速度大小为v b 0,对杆b 运用动量定理,有Bd I ·Δt =m b (v 0-v b 0) 由题图乙可知,v b 0=2 m/s 代入数据解得Δt =5 s.(2)对杆a 由静止下滑到平直导轨上的过程中,由机械能守恒定律有m a gh =12m a v a 2解得v a =2gh =5 m/s设最后a 、b 两杆共同的速度大小为v ′,由动量守恒定律得m a v a -m b v b 0=(m a +m b )v ′ 代入数据解得v ′=83m/s杆a 动量的变化量等于它所受安培力的冲量,设杆a 的速度从v a 到v ′的运动时间为Δt ′,则由动量定理可得-Bd I ′·Δt ′=m a (v ′-v a ),而q =I ′·Δt ′ 代入数据解得q =73C.(3)由能量守恒定律可知杆a 、b 中产生的总焦耳热为Q =m a gh +12m b v 02-12(m b +m a )v ′2=1616 J则b 杆中产生的焦耳热为Q ′=R b R a +R bQ =1156 J.错题统计(题号)对应考点错因分析动量定理在电磁感应中的应用动量守恒定律在电磁感应中的应用电磁感应中的综合问题一、动量定理、动量守恒定律在电磁感应中的应用导体棒在磁场中做变速运动,所受安培力是变力,可用动量定理求速度、位移、电荷量、时间等.对于双杆问题,若双杆所受外力为零,可用动量守恒定律分析.1.单杆运动问题已知量(其中B、L、m已知)待求量关系式(以棒减速为例)v1、v2q -B I LΔt=m v2-m v1,q=IΔtv1、v2、R总x -B2L2vΔtR总=m v2-m v1,x=vΔtF其他为恒力,v1、v2、q Δt-B I LΔt+F其他Δt=m v2-m v1,q=IΔtF其他为恒力,v1、v2、R总、x(或Δt)Δt(或x)-B2L2vΔtR总+F其他·Δt=m v2-m v1,x =vΔt2.双杆运动问题(1)等间距轨道上的双杆问题①双杆所受外力的合力为零时,若只需求末速度,可用动量守恒定律分析.②若需求电荷量、位移、时间等,则需要利用动量定理分析.(2)不等距导轨上的双杆问题由于合外力不为零,不等距导轨上的双杆问题需用动量定理分析.常见的双杆模型:题型一(等距、初速度、光滑、平行)题型二(不等距、初速度、光滑、平行)题型三(等距、恒力、光滑、平行)示意图导体棒长度L1=L2导体棒长度L1=2L2,两棒只在各自的轨道上运动导体棒长度L1=L2图像观点力学观点棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒以相等的速度匀速运动棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒的加速度均为零,速度之比为1∶2开始时,两棒做变加速运动;稳定时,两棒以相同的加速度做匀加速运动动量观点两棒组成的系统动量守恒两棒组成的系统动量不守恒对单棒可以用动量定理两棒组成的系统动量不守恒对单棒可以用动量定理能量观点系统动能的减少量等于产生的焦耳热系统动能的减少量等于产生的焦耳热拉力做的功一部分转化为双棒的动能,一部分转化为内能(焦耳热):W=Q+E k1+E k23.杆+电容器模型基本模型规律无外力,电容器充电(电阻阻值为R,导体棒电阻不计,电容器电容为C)无外力,电容器放电(电源电动势为E,内阻不计,导体棒电阻不计,电容器电容为C)电路特点导体棒相当于电源,电容器被充电电容器放电,相当于电源;导体棒受安培力而运动电流的特点安培力为阻力,棒减速,E减小,有I=BL v-U CR,电容器被充电,U C变大,当BL v=U C时,I=0,F安=0,棒做匀电容器放电时,导体棒在安培力作用下开始运动,同时阻碍放电,导致电流减小,直至电流为零,此时U C=BL v。
电磁感应问题中动量定理应用归类电磁感应是物理学中非常重要的一个分支,与动量定理的关系也
非常密切。
动量定理是物理学中的基本定律之一,它表明了物体的动
量会随时间的推移而改变,这种变化与物体所受的力的大小和方向有关。
在电磁感应问题中,动量定理可以应用于以下几个方面。
1. 电动势的产生
电动势是指电路中电势差的改变所导致的电场力,即带电体感应
产生的电势差。
当外界场改变时,导体中的电子会受到作用力,从而
导致电子动量改变,从而产生电动势。
此时,根据动量定理,受到该
作用力的物质越多,电势差的变化就越大。
2. 磁场的产生
在电磁感应问题中,动量定理还可以应用于磁场的产生。
因为磁
场实际上是由运动电荷产生的,因此当电流流过导体时,会导致电子
的运动并产生动量。
根据动量定理,当电流越大时,电子运动就越快,从而导致的磁场也就越强。
3. 电磁波的传播
电磁波是由振动电场和磁场相互作用产生的,它们通过相互作用
来传播。
在电磁波传播过程中,电磁波会将电子推动,并导致其产生
动量变化。
根据动量定理,越多的电子受到作用力,电磁波的能量就
越大,传播的速度也就越快。
总之,动量定理是应用于电磁感应问题的一个非常重要的定律,它可以帮助我们更好地理解电磁现象的产生和传播。
在物理学的学习和应用中,我们要充分利用这一定律,将其应用到实际问题中,为科学技术的发展做出贡献。
12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。
一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。
金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。
求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。
二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。
导轨顶端连接一个阻值为1 Ω的电阻。
在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。
质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。
金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。
(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。
三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。
电磁感应中动量定理公式
动量定理是电磁感应中一项非常重要的物理定律,它描述了电磁场与运动电荷之间的相互作用关系。
根据动量定理,当电荷在电磁场中运动时,它将受到电磁力的作用,从而产生动量变化。
在电磁感应中,电磁场可以通过电场和磁场来描述。
当电荷在电磁场中运动时,电磁力将作用于电荷,改变其运动状态。
根据牛顿第二定律,电磁力等于电荷所受的加速度乘以电荷的质量。
因此,电磁力可以改变电荷的动量。
动量定理告诉我们,电磁力的作用会导致电荷的动量发生变化。
当电荷在电磁场中受到力的作用时,它将获得一个动量变化。
这个动量变化是由电荷所受的力和作用时间的乘积决定的。
如果力的方向与电荷运动方向一致,电荷的动量将增加;如果力的方向与电荷运动方向相反,电荷的动量将减小。
动量定理的公式可以表示为:动量变化等于力与时间的乘积。
这个公式可以用数学语言表示为Δp = F * Δt,其中Δp表示动量变化,F表示力,Δt表示作用时间。
根据这个公式,我们可以计算电荷在电磁场中受到的力的大小和方向,从而了解电荷的动量变化情况。
动量定理在电磁感应中具有广泛的应用。
例如,在电动机中,电流通过线圈时会产生磁场,这个磁场与电动机中的磁场相互作用,产
生力矩使电动机转动。
根据动量定理,我们可以计算出电动机所受的力矩,从而了解电动机的运动情况。
总结一下,动量定理是电磁感应中非常重要的物理定律,它描述了电磁场与运动电荷之间的相互作用关系。
根据动量定理,电磁力会改变电荷的动量,产生动量变化。
通过动量定理,我们可以计算出电荷所受的力和动量变化情况,从而更好地理解电磁感应现象。
2022-2023高考物理二轮复习(新高考)08讲动量与动量守恒定律在电磁感应中的应用●动量与动量守恒定律在电磁感应中的应用的思维导图●重难点突破一.动量定理在电磁感应现象中的应用:导体棒在感应电流所引起的安培力作用下运动时,当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.二.动量守恒定律在电磁感应中的应用:在双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们不受摩擦力,且受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律解题比较方便.●考点应用,质量为m,电阻不计,匀强1.水平放置的平行光滑导轨,间距为L,左侧接有电阻R,导体棒初速度为v磁场的磁感应强度为B,导轨足够长且电阻不计,从开始运动至停下来导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,常用的计算:-B I L Δt =0-mv 0,q =I Δt ,q =mv 0BL -B 2L 2v R Δt =0-mv 0,x =v Δt =mv 0R B 2L2例1:如图所示,固定在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上、磁感应强度大小为B 的匀强磁场中。
一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ。
现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。
设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g ,则此过程错误的是()A .杆的速度最大值为22()F mg RB d μ-B .流过电阻R 的电荷量为BdLR r+C .从静止到速度恰好达到最大经历的时间2222()()()m R r B d L t B d F mg R r μ+=+-+D .恒力F 做的功与安培力做的功之和大于杆动能的变化量【答案】A【详解】A .当杆的速度达到最大时,安培力为22=B d v F R r +安此时杆受力平衡,则有F-μmg-F 安=0解得22()()F mg R r v B d μ-+=A 错误,符合题意;B .流过电阻R 的电荷量为BdLq It R r R r∆Φ===++B 正确,不符合题意;C .根据动量定理有()F mg t BIt mv μ--=,q It=结合上述解得2222()()()mg R r B d L t B d F mg R r μ+=+-+C 正确,不符合题意;D .对于杆从静止到速度达到最大的过程,根据动能定理,恒力F 、安培力、摩擦力做功的代数和等于杆动能的变化量,由于摩擦力做负功,所以恒力F 、安培力做功的代数和大于杆动能的变化量,D 正确,不符合题意。
补充作业(11) 电磁感应中的动量与能量问题[方法点拨] 电磁感应中的有些题目可以从动量角度着手,运用动量定理或动量守恒定律解决:①应用动量定理可以由动量变化来求解变力的冲量.如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题.②在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒,解决此类问题往往要应用动量守恒定律.1.如图1所示,光滑平行金属导轨PQ 、MN 倾斜固定放置,导轨所在平面与水平面的夹角θ=30°,导轨底端连接有阻值为R 的电阻,导轨间距为L .方向垂直于导轨平面向下的有界匀强磁场的边界ab 、cd 垂直于导轨,磁场的磁感应强度大小为B ,边界ab 、cd 间距为s .将一长度为L 、质量为m 、阻值也为R 的金属棒垂直放置在导轨上,金属棒开始的位置离ab 的距离为12s ,现将金属棒由静止释放,金属棒沿导轨向下做加速运动,到达cd 位置时金属棒的加速度刚好为零,金属棒运动过程中始终垂直于导轨并与导轨接触良好,不计导轨及其他电阻,重力加速度为g ,求:图1(1)金属棒从释放到到达cd 位置的过程中,通过电阻R 的电荷量;(2)金属棒从ab 运动到cd 的时间.2.如图2甲所示,平行粗糙导轨固定在绝缘水平桌面上,间距L =0.2 m ,导轨左端接有R =1 Ω的电阻,质量为m =0.1 kg 的粗糙导体棒ab 垂直静置于导轨上,导体棒及导轨的电阻忽略不计.整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直导轨向下.现用与导轨平行的外力F 作用在导体棒ab 上使之一开始做匀加速运动,且外力F 随时间变化关系如图乙所示,重力加速度g =10 m/s 2,求:图2(1)比较导体棒a、b两点电势的高低;(2)前10 s导体棒ab的加速度大小;(3)若整个过程中通过R的电荷量为65 C,则导体棒ab运动的总时间是多少?3.如图3所示,足够长的水平轨道左侧部分b1b2-c1c2轨道间距为2L,右侧部分c1c2-d1d2的轨道间距为L,圆弧轨道与水平轨道相切于b1b2,所有轨道均光滑且电阻不计.在水平轨道内有斜向下与竖直方向夹角θ=37°的匀强磁场,磁感应强度大小为B=0.1 T.质量为M=0.2 kg的金属棒C垂直于轨道静止放置在右侧窄轨道上,质量为m=0.1 kg的导体棒A自圆弧轨道上a1a2处由静止释放,两金属棒在运动过程中始终相互平行且与轨道保持良好接触,A 棒总在宽轨上运动,C棒总在窄轨上运动.已知:两金属棒接入电路的有效电阻均为R=0.2 Ω,h=0.2 m,L=0.2 m,sin 37°=0.6,cos 37°=0.8,g取10 m/s2,求:图3(1)金属棒A滑到b1b2处时的速度大小;(2)金属棒C匀速运动的速度大小;(3)在两棒整个的运动过程中通过金属棒A某截面的电荷量;(4)在两棒整个的运动过程中金属棒A、B在水平轨道间扫过的面积之差.4.某小组同学在研究图4甲所示的电磁枪原理时,绘制了图乙所示的简图(为俯视图),图中两平行金属导轨间距为L固定在水平面上,整个装置处在竖直向下、磁感应强度为B的匀强磁场中,平行导轨左端电路如图所示,电源的电动势为E(内阻不计),电容器的电容为C.一质量为m、长度也为L的金属导体棒垂直于轨道平放在导轨上,忽略摩擦阻力和导轨、导线的电阻,假设平行金属导轨足够长.图4(1)将开关S接a,电源对电容器充电.a.求电容器充电结束时所带的电荷量Q;b.请在图丙中画出充电过程中电容器两极板间的电压u随电容器所带电荷量q变化的图象;借助u-q图象求出稳定后电容器储存的能量E0.(2)电容器充电结束后,将开关接b,电容器放电,导体棒由静止开始运动,不计放电电流引起的磁场影响.a.已知自由电子的电荷量为e,请你分析推导当导体棒获得最大速度之后,导体棒中某一自由电子所受的电场力与导体棒最大速度之间的关系式;b.导体棒由静止到获得最大速度的过程中,由于存在能量损失ΔE损,电容器释放的能量没有全部转化为导体棒的动能,求ΔE损.。