代数式找规律
- 格式:doc
- 大小:2.63 MB
- 文档页数:4
找规律代数式教案设计。
一、课程背景找规律代数式课程通常是在初中数学九年级学生已经掌握代数式知识之后进行教学。
学生已经学习了基本的代数式的概念、四则运算、因式分解、等式与方程等基础知识,具备了一定的初步逻辑思维能力和操作能力。
本节课程将重点讲解如何通过观察事例、找规律来建立代数式,进一步深入理解代数式的意义和运用。
二、教学目标1.了解代数的概念并熟练掌握代数式的操作方法。
2.通过对具体事例的观察,掌握找规律和建立代数式的方法。
3.运用代数式解决实际问题,在实际问题中体会代数式的应用价值。
4.具有探究和创新意识,在解决实际问题中培养发散思维、探索精神和实践能力。
三、教学重点代数式的概念和操作方法;通过观察事例找规律建立代数式的方法。
四、教学难点如何建立代数式以及将代数式运用于实际问题。
五、教学方法本节课程采用讲授与实践相结合的教学方法,通过多种角度、多种形式呈现案例,给予学生充分的自由探究与检验的空间,让学生从实际中感受学习的快乐与意义。
1.讲授法通过讲解代数式相关的概念、知识点和操作方法让学生初步了解代数式的运用。
2.实践与探究在案例练习环节中,让学生通过自己的思考和探究将规律逐渐变为可以公式化的代数式。
同时加强学生的表达能力,提高逻辑思考能力。
3.反思方法通过综合性题目的思考和讨论,反思课程的教学效果,提高学生的学习态度和学习方法。
六、教学过程1.引入通过观察以下实例:1.+ 1 = 2, 2 + 2 = 4,3 + 3 = 6,...... ,100 + 100=?通过观察实例让学生自由探究和思考,相信有的学生能够找到其中的规律,进而推算出最终答案200。
2.推广通过对学生自主探究中所发现的规律,给予学生相关的知识点和方法推广,在实践中让学生体验和巩固知识点并将其运用到更加形式化的代数式中。
3.练习通过一系列典型的代数式练习题目,让学生加深对代数式的理解和运用能力,强化对知识点的掌握。
4.解答针对学生在练习过程中所遇到的问题进行分析和解决,并培养学生的灵活思维和创新意识,帮助学生掌握物理概念的运用,并在学生的思路和表达的过程中帮助学生更好地开拓思路。
一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法. 基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧. 二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减 1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1 B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1 (五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,… ?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律. 三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。
一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n 位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,,144,196,… (第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律(2)第二、三组分别跟第一组有什么关系(3)取每组的第7个数,求这三个数的和2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。
第1页数字类找规律(代数式)1.有一列数a 1,a 2,a 3,…,a n ,…满足a 1=3,a 2=,之后每一个数都是前一个数的差倒数,即a n +1=,则a 2020﹣a 2018=( )A .﹣B .C .﹣D .2.观察下列数字:第2题图第4题图在上述数字宝塔中,第4层的第二个数是17,则数字2517的位置为( ) A .第50层第17个数 B .第50层第18个数 C .第20层第17个数D .第2017层第500个数 3.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( ) A .9999B .10000C .10001D .100024.如图是含x 的代数式按规律排列的前4行,依此规律,若第10行第2项的值为1034,则此时x 的值为( )A .1 B .2 C .5 D .105.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a ,b ,c 的值分别为( )A .a=1,b=6,c=15 B .a=6,b=15,c=20C .a=15,b=20,c=15D .a=20,b=15,c=66.在一列数:a 1,a 2,a 3,…a n 中,a 1=3,a 2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2018个数是( ) A .1B .3C .7D .97.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a 的值为()A .75B .89C .103D .1398.下表中,填在各正方形中的四个数之间都有相同的规律,根据此规律,m的值是( )A .58B .66C .74D .112二.填空题(共9小题)9.观察下列有规律的数:1,﹣,,﹣,,…,则第n 个数表示为 .10.如图,下列图形中的三个数之间均有相同的规律.根据此规律,图形中n 的值是 .11.观察以下等式: 第1个等式:=1 第2个等式:=1 第3个等式:=1 第4个等式:=1…按照以下规律,写出你猜出的第n 个等式: (用含n 的等式表示). 12.我国古代数学的许多创新与发展都曾居世界前列,图中的“杨辉三角”就是一例,则第n 行各数的和为 .13.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数 ,2018应排在A ,B ,C ,D ,E 中的位置.14.已知从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前9个奇数相加(即当最后一个奇数是17时),它们的和是 .15.如图,为一列有规律的式子,则可猜想第n 个式子是 . 2×0+1=12 4×2+1=32 8×6+1=72 16×14+l=152 32×30+1=312 …16.根据下列各式的规律,在横线处填空:,,=,…,+﹣ =17.已知:a 1=,a 2=,a 3=,a 4=,a 5=,a 6=,……,则a 100= .图形类找规律(代数式)一.选择题(共6小题)1.如图,将一张正三角形纸片剪成四个第2页全等的正三角形,得到4个小正三角形,称为第一次操作;然后,将其中的一个正三角形再剪成四个小正三角形,共得到7个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到10个小正三角形,称为第三次操作;…,以上操作n 次后,共得到49个小正三角形,则n 的值为( )A .n=13B .n=14C .n=15D .n=162.通过观察下面每个图形中5个实数的关系,得出第四个图形中y 的值是( )A .8B .﹣8C .﹣12D .123.观察下列图形的构成规律,依照此规律,第10个图形中共有( )个“•”.A .90B .91C .110D .1114.如图,物体从A 点出发,按照A→B (第一步)→C (第二步)→D→A→E→F→G→A→B……的顺序循环运动,则第2018步到达( )A .A 点B .C 点C .E 点D .F 点5.观察下列图形,它是把一个三角形分别连接这个三角形的中点,构成4个小三角形,挖去中间的小三角形(如图①);对剩下的三角形再分别重复以上做法,并将它们分别标记为图②,图③……,则图⑤中挖去三角形的个数为( )A .121B .362C .364D .7296.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为( )A .11B .13C .15D .17二.填空题(共10小题)7.观察下列图案,它们都是由边长为lcm 的小正方形按一定规律拼接而成的,依此规律,则第18个图案中的小正方形有 个.8.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚.(用含n 的代数式表示)9.将火柴棒按如图所示的方式摆放,按照这个规律摆下去,第6个图形需要 根火柴棒.10.下面由火柴拼出的一列图形中,第n 个图形由n 个正方形组成通过观察、归纳可得出,第672个图形中的火柴棒根数为 根. 11.观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第2018个图形是 .(填图形的名称)12.如图,下列图案是由火柴棒按某种规律搭成的,第(1)个图案中有2个正方形,第(2)个图案中有5个正方形,第(3)个图案中有8个正方形……,则第(5)个图案中有 个正方形,第n 个图案中有 个正方形.13.如图是用火荣棒拼成的一组图形,第①个图形有3根火柴棒,第②个图形有5根火柴棒,第③个图形有7根火柴棒,第④个图形有9根火柴棒,…按此规律拼下去,则第2018个图形需 根火柴棒.14.观察下列一组由★排列的“星阵”,按图中规律,第n 个“星阵”中的★的个数是 .15.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有 个正方形.16.如图,是用大小相等的小正方形按一定规律拼成的,则第10个图形是 个小正方形,第n 个图形是 个小正方形.第3页数字类找规律(代数式)参考答案与试题解析一.选择题(共8小题)1.有一列数a 1,a 2,a 3,…,a n ,…满足a 1=3,a 2=,之后每一个数都是前一个数的差倒数,即a n +1=,则a 2020﹣a 2018=( )A .﹣B .C .﹣D .【分析】根据差倒数的定义分别求出前几个数,便不难发现,每3个数为一个循环组依次循环,再根据规律求出a 2020与a 2018,然后将它们相减即可得解.【解答】解:∵a 1=3, ∴a 2=,a 3==,a 4==3,a 5==﹣,…,所以这列数的周期为3,又2020÷3=673…1,2018÷3=672…2, ∴a 2020=3,a 2018=﹣,∴a 2020﹣a 2018=3﹣(﹣)=. 故选:D .【点评】本题考查了数字的变化规律,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.2.观察下列数字:…在上述数字宝塔中,第4层的第二个数是17,则数字2517的位置为( )A .第50层第17个数B .第50层第18个数C .第20层第17个数D .第2017层第500个数【分析】根据每层第一个数以及该层数的个数即可得出第n 层第一个数为n 2,共n +1个数,令n 2≤2517<(n +1)2结合n 为正整数即可求出n 的值,再用2517﹣n 2+1即可得出该数为第几个,此题得解.【解答】解:∵第1层第一个数为1,共2个数;第2层第一个数为4,共3个数;第3层第一个数为9,共4个数;第4层第一个数为16,共5个数;…,∴第n 层第一个数为n 2,共n +1个数. 令n 2≤2517<(n +1)2,n 为正整数, 解得:n=50, ∵2517﹣2500+1=18,∴2517为第50层第18个数. 故选:B .【点评】本题考查了规律型中数字的变化类,根据每层第一个数以及该层数的个数的变化找出变化规律是解题的关键.3.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( ) A .9999B .10000C .10001D .10002【分析】观察不难发现,第奇数是序数的平方加1,第偶数是序数的平方减1,据此规律得到正确答案即可. 【解答】解:∵第奇数个数2=12+1, 10=32+1, 26=52+1, …,第偶数个数3=22﹣1, 15=42﹣1,25=62﹣1, …,∴第100个数是1002﹣1=9999, 故选:A .【点评】本题是对数字变化规律的考查,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另外对平方数的熟练掌握也很关键.4.如图是含x 的代数式按规律排列的前4行,依此规律,若第10行第2项的值为1034,则此时x 的值为( )A .1B .2C .5【分析】先根据已知图片找出规律,根据规律得出方程,求出方程的解即可.【解答】解:根据题意得:29x +10=1034, 解得:x=2, 故选:B .【点评】本题考查了数字的变化类,能根据图片找出规律是解此题的关键.5.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a ,b ,c 的值分别为( )A .a=1,b=6,c=15B .a=6,b=15,C .a=15,b=20,c=15D .a=20,b=15【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a 、b 、c 的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和, ∴a=1+5=6,b=5=10=15,c=10+10=20, 故选:B .【点评】本题是一道找规律的题目,这第4页类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6.在一列数:a 1,a 2,a 3,…a n 中,a 1=3,a 2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2018个数是( ) A .1B .3C .7D .9【分析】本题可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2018代入求解即可.【解答】解:依题意得:a 1=3,a 2=7,a 3=1,a 4=7,a 5=7,a 6=9,a 7=3,a 8=7; 周期为6; 2018÷6=336…2, 所以a 2018=a 2=7. 故选:C .【点评】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.7.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a 的值为()A .75B .89C .103 D .139【分析】由1、3、5、…为连续的奇数可知,11所在“品”字形为第6个图形,由左下的数字为2、4、8、…可得出b=26=64,再由右下数字为上面数字加左下数字,即可求出a 值. 【解答】解:∵“品”字形中上面的数字为连续的奇数,左下的数字为2、4、8、…,∴11所在“品”字形为第6个图形, ∴b=26=64.又∵1+2=3,3+4=7,5+8=13,…,∴a=11+b=75. 故选:A .【点评】本题考查了规律型中数字的变化类,根据“品”字形中数字的变化,找出变化规律是解题的关键.8.下表中,填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( ) A .58B .66C .74D .112【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10,由此解决问题. 【解答】解:8×10﹣6=74. 故选:C .【点评】此题考查数字的变化规律,通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.二.填空题(共9小题)9.观察下列有规律的数:1,﹣,,﹣,,…,则第n 个数表示为.【分析】观察发现,分子是从1开始的连续奇数,分母是n 2的数,然后根据此规律写出即可.【解答】解:因为1,﹣,,﹣,,…, 所以,故答案为:,【点评】本题考查了数字变化规律,观察发现分子是从1开始的连续奇数,分母是n 2的数是解题的关键,本题同学们对数字的敏感性比较重要.10.如图,下列图形中的三个数之间均有相同的规律.根据此规律,图形中n 的值是 2499 .【分析】根据图形数字变化可知:m=49+1=50,右下角的数字=上方的数字×左下方的数字+上方的数字,从而求出n 的值即可.【解答】解:第一图形:3×4+3=15, 第二个图形:5×6+5=35, 第三个图形:7×8+7=63, 依此类推,由图可知:左下角的数字比上方的数字大1, 即m=49+1=50,右下角的数字=上方的数字×左下方的数字+上方的数字, n=49×50+49=2499, 故答案为:2499.【点评】本题考查数字的变化类,根据已知图形找到数字的规律是解题的关键.11.观察以下等式: 第1个等式:=1 第2个等式:=1 第3个等式:=1 第4个等式:=1… 按照以下规律,写出你猜出的第n 个等式:++×=1 (用含n的等式表示).【分析】观察前四个等式可得出第n 个等式的前两项为及,对比前四个等式即可写出第n 个等式,此题得解.【解答】解:观察前四个等式,可得出:第n 个等式的前两项为及,∵++×=+=+==1,∴第n 个等式为++×=1.故答案为:++×=1.【点评】本题考查了规律型中的数字的变化类,观察给定等式,找出第n的等式是解题的关键.12.我国古代数学的许多创新与发展都曾居世界前列,图中的“杨辉三角”就是一例,则第n 行各数的和为2n﹣1.【分析】根据每行各数的和为2的序数减一次幂可得.【解答】解:∵第一行各数的和为1=20,第二行各数的和为2=21,第三行各数的和为4=22,第四行各数的和为8=23,……∴第n行各数的和为2n﹣1,故答案为:2n﹣1.【点评】本题主要考查数字的变化规律,解题的关键是根据数列得出每行各数的和为2的序数减一次幂.13.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C的位置是有理数﹣29,2018应排在A,B,C,D,E中的B位置.【分析】由题意可知:每个峰排列5个数,求出5个峰排列的数的个数,再求出,“峰6”中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答,根据题目中图中的特点可知,每连续的五个数为一个循环A到E,从而可以解答本题.【解答】解:∵每个峰需要5个数,∴5×5=25,25+1+3=29,∴“峰6”中C位置的数的是﹣29,(2018﹣1)÷5=2016÷5=403…2,∴2017应排在A、B、C、D、E中B的位置,故答案为:﹣29;B.【点评】此题考查图形的变化规律,观察出每个峰有5个数是解题的关键,难点在于峰上的数的排列是从2开始.14.已知从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前9个奇数相加(即当最后一个奇数是17时),它们的和是81.【分析】从已知可以找出规律,前n个奇数的和是n的平方,那么前9个奇数的和就是9的平方.【解答】解:前一个奇数和是1的平方,前两个奇数和是2的平方,前三个奇数和是3的平方,以此类推可得,前9个奇数(即当最后一个基数是17时)相加,其和是9的平方,故答案为:81.【点评】此题主要考查学生对规律型题的掌握,做此类题要先对给出的数据进行观察分析从而发现规律,根据规律解题.15.如图,为一列有规律的式子,则可猜想第n个式子是2n(2n﹣2)+1=(2n﹣1)2.2×0+1=124×2+1=328×6+1=7216×14+l=15232×30+1=312…【分析】由第1个式子为21×(21﹣2)+1=(21﹣1)2,第2个式子22×(22﹣2)+1=(22﹣1)2,第3个式子23×(23﹣2)+1=(23﹣1)2,据此可得答案.【解答】解:∵第1个式子为21×(21﹣2)+1=(21﹣1)2,第2个式子22×(22﹣2)+1=(22﹣1)2,第3个式子23×(23﹣2)+1=(23﹣1)2,……∴第n个式子为2n(2n﹣2)+1=(2n﹣1)2,故答案为:2n(2n﹣2)+1=(2n﹣1)2.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.16.根据下列各式的规律,在横线处填空:,,=,…,+﹣=【分析】根据给定等式的变化,可找出变化规律“+﹣=(n为正整数)”,依此规律即可得出结论.第5页【解答】解:∵+﹣1=,+﹣=,+﹣=,+﹣=,…,∴+﹣=(n为正整数).∵2018=2×1009,∴+﹣=.故答案为:.【点评】本题考查了规律型中数字的变化类,根据等式的变化,找出变化规律“+﹣=(n为正整数)”是解题的关键.17.已知:a1=,a2=,a3=,a4=,a5=,a6=,……,则a100=.【分析】根据已知数列得出a n=,据此解答可得.【解答】解:由题意知a n =,当n=100时,a100==,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=.图形类找规律(代数式)参考答案与试题解析一.选择题(共6小题)1.如图,将一张正三角形纸片剪成四个全等的正三角形,得到4个小正三角形,称为第一次操作;然后,将其中的一个正三角形再剪成四个小正三角形,共得到7个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到10个小正三角形,称为第三次操作;…,以上操作n次后,共得到49个小正三角形,则n的值为()A.n=13B.n=14C.n=15D.n=16【分析】根据已知得出第n次操作后,正三角形的个数为3n+1,据此求解可得.【解答】解:∵第一次操作后得到4个小正三角形,第二次操作后得到7个小正三角形;第三次操作后得到10个小正三角形,∴第n次操作后,正三角形的个数为3n+1.则:49=3n+1,解得:n=16,故若要得到49个小正三角形,则需要操作的次数为16次.故选:D.【点评】此题主要考查了图形的变化类,根据已知得出第n次操作后,总的正三角形的个数为3n+1是解题关键.2.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8B.﹣8C.﹣12D.12【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【解答】解:∵2×5﹣1×(﹣2)=12,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=12.故选:D.【点评】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.3.观察下列图形的构成规律,依照此规律,第10个图形中共有()个“•”.A.90B.91C.110【分析】观察图形可知前4个图形中分别有:3,7,13,21个“•”,所以可得规律为:第n个图形中共有[n(n+1)+1]个“•”.再将n=10代入计算即可.【解答】解:由图形可知:n=1时,“•”的个数为:1×2+1=3,n=2时,“•”的个数为:2×3+1=7,n=3时,“•”的个数为:3×4+1=13,n=4时,“•”的个数为:4×5+1=21,所以n=n时,“•”的个数为:n(n+1)+1,n=10时,“•”的个数为:10×11+1=111.故选:D.【点评】本题主要考查了规律型:图形的变化类,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律,难度适中.4.如图,物体从A点出发,按照A→B(第一步)→C(第二步)→D→A→E→F→G→A→B……的顺序循环运动,则第2018步到达()A.A点B.C点C.E点【分析】先求出由A点开始按照A→B(第1步)→C(第2步)→D→A→E→F→G→A→B→…的顺序循环运动走一圈所走的步数,在用2018除以此步数即可.【解答】解:∵如图物体从点A出发,按照A→B(第1步)→C(第2步)→D→A→E→F→G→A→B→…的顺序循第6页第7页环运动,此时一个循环为8步, ∴2018÷8=252…2.∴当物体走到第252圈后再走2步正好到达C 点. 故选:B .【点评】本题考查的是图形的变化类这一知识点,解答此题的关键是根据题意得出物体走一个循环的步数,找出规律即可轻松作答.5.观察下列图形,它是把一个三角形分别连接这个三角形的中点,构成4个小三角形,挖去中间的小三角形(如图①);对剩下的三角形再分别重复以上做法,并将它们分别标记为图②,图③……,则图⑤中挖去三角形的个数为( )A .121B .362C .364D .729【分析】根据题意找出图形的变化规律,根据规律计算即可.【解答】解:图①挖去中间的1个小三角形,图②挖去中间的(1+3)个小三角形, 图③挖去中间的(1+3+32)个小三角形, …则图⑤挖去中间的(1+3+32+33+34)个小三角形,即图⑤挖去中间的121个小三角形, 故选:A .【点评】本题考查的是图形的变化,掌握图形的变化规律是解题的关键.6.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为( )A .11B .13C .15D .17【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知: 第一个图形有3个正方形, 第二个有5=3+2×1个, 第三个图形有7=3+2×2个, …故第⑥个图形有3+2×5=13(个), 故选:B .【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.二.填空题(共10小题)7.观察下列图案,它们都是由边长为lcm 的小正方形按一定规律拼接而成的,依此规律,则第18个图案中的小正方形有 171 个.【分析】从图中可看出小正方形的逐排个数是呈自然数列,可推出第n 个图形就有n (n +1)÷2,通过计算便可得出结果.【解答】解:第一个图形有1个小正方形,即1=1×(1+1)÷2;第二个图形有3个小正方形,即3=2×(2+1)÷2;第三个图形有6个小正方形,即6=3×(3+1)÷2; 依此规律,则第18个图案中的小正方形有18×19÷2=171个. 故答案为:171.【点评】本题考查了图形的变化规律,正确理解第n 个图案有n 层,从上到下分别有1,2,3…n 个正方形是关键.8.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 4n +2 枚.(用含n 的代数式表示)【分析】由已知图形知每增加一个矩形,棋子数增加4个,据此可得. 【解答】解:∵第一个图中棋子数6=4×1+2,第二个图中棋子数10=4×2+2, 第三个图中棋子数14=4×3+2, ……∴第n 个图中棋子数为4n +2, 故答案为:4n +2.【点评】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个矩形,棋子数增加4个.9.将火柴棒按如图所示的方式摆放,按照这个规律摆下去,第6个图形需要 31 根火柴棒.【分析】仔细观察发现每增加一个正六边形其火柴根数增加5根,将此规律用代数式表示出来即可. 【解答】解:由图可知:图形标号(1)的火柴棒根数为6; 图形标号(2)的火柴棒根数为11; 图形标号(3)的火柴棒根数为16; …由该搭建方式可得出规律:图形标号每增加1,火柴棒的个数增加5,所以可以得出规律:搭第n个图形需要火柴根数为:6+5(n﹣1)=5n+1,当n=6时,5n+1=31,即第6个图形需要31根火柴棒.故答案为:31.【点评】本题主要考查图形的变化规律,解题的关键在于通过题中图形的变化情况,通过归纳与总结找出普遍规律求解即可.10.下面由火柴拼出的一列图形中,第n个图形由n个正方形组成通过观察、归纳可得出,第672个图形中的火柴棒根数为2017根.【分析】拼1个正方形中火柴棒的根数是4,拼2个正方形中火柴棒的根数是(4×2﹣1),拼3个正方形中火柴棒的根数是(4×3﹣2),拼4个正方形中火柴棒的根数是(4×4﹣3)…拼n个正方形中火柴棒的根数是[4n﹣(n﹣1)],据此求解可得.【解答】解:∵第1个图形中火柴棒的根数是:4第2个图形中火柴棒的根数是:4×2﹣1=7第3个图形中火柴棒的根数是:4×3﹣2=10第4个图形中火柴棒的根数是:4×4﹣3=13.……∴第n个图形中火柴棒的根数是:4n﹣(n﹣1)=3n+1.当n=672时,3n+1=3×672+1=2017,故答案为:2017.【点评】本题主要考查图形的变化规律;得到火柴棒的根数是在4基础上增加几个3的关系是解决本题的关键.11.观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第2018个图形是正方形.(填图形的名称)【分析】观察图形可知,图形六个一循环,结合2018=336×6+2可找出第2018个图形和第2个图形相同,此题得解.【解答】解:观察图形,可知:图形六个一循环,∵2018=336×6+2,∴第2018个图形和第2个图形相同.故答案为:正方形.【点评】本题考查了规律型中图形的变化类,依照图形的排列找出变化规律是解题的关键.12.如图,下列图案是由火柴棒按某种规律搭成的,第(1)个图案中有2个正方形,第(2)个图案中有5个正方形,第(3)个图案中有8个正方形……,则第(5)个图案中有14个正方形,第n个图案中有3n﹣1个正方形.【分析】由题意知,正方形的个数为序数的3倍与1的差,据此可得.【解答】解:∵第(1)个图形中正方形的个数2=3×1﹣1,第(2)个图形中正方形的个数5=3×2﹣1,第(3)个图形中正方形的个数8=3×3﹣1,……∴第(5)个图形中正方形的个数为3×5﹣1=14个,第n个图形中正方形的个数(3n﹣1),故答案为:14、3n﹣1.【点评】本题主要考查图形的变化规律,根据题意得出正方形的个数为序数的3倍与1的差是解题的关键.13.如图是用火荣棒拼成的一组图形,第①个图形有3根火柴棒,第②个图形有5根火柴棒,第③个图形有7根火柴棒,第④个图形有9根火柴棒,…按此规律拼下去,则第2018个图形需4037根火柴棒.【分析】按照图中火柴的个数填表即可当三角形的个数为:1、2、3、4时,火柴棒的根数分别为:3、5、7、9,由此可以看出当三角形的个数为n时,三角形个数增加(n﹣1)个,那么此时火柴棒的根数应该为:3+2(n﹣1)进而得出答案.【解答】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;…由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.当n=2018时,2n+1=2×2018+1=4037,故答案为:4037.【点评】此题主要考查了图形变化类,解题关键根据第一问的结果总结规律是得到规律:三角形的个数每增加一个,火柴棒的根数增加2根,然后由此规律解答.14.观察下列一组由★排列的“星阵”,按图中规律,第n个“星阵”中的★的个数是n2+n+2.第8页【分析】排列组成的图形都是三角形.第一个图形中有2+1×2=4个★,第二个图形中有2+2×3=8个★,第三个图形中有2+3×4=14个★,…,继而可求出第n个图形中★的个数.【解答】解:∵第一个图形有2+1×2=4个,第二个图形有2+2×3=8个,第三个图形有2+3×4=14个,第四个图形有2+4×5=22个,…∴第n个图形共有:2+n×(n+1)=n2+n+2.故答案为:n2+n+2.【点评】本题考查规律型中的图形变化问题,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.15.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有30个正方形.【分析】观察图形发现:第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…由此得出第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1)从而得到答案.【解答】解:∵第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…∴第n幅图中有12+22+32+42+…+n2=n (n+1)(2n+1),∴第4幅图中有12+22+32+42=30个正方形.故答案为30.【点评】此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题.16.如图,是用大小相等的小正方形按一定规律拼成的,则第10个图形是120个小正方形,第n个图形是(n2+2n)个小正方形.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,再将n=10代入求得第10个图形中小正方形的个数.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n,第10个图形中小正方形的个数是:102+2×10=120;故答案为120,(n2+2n).【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.第9页。
“找规律”是从特殊到一般的归纳性思维训练。
初一代数式找规律的问题,通常有根据所给数字找规律和根据所给单项式找规律。
解答这种问题主要技巧是把数字和对应的序号n联系在一起,从第1个、第2个、.....逐渐到第n个,找出序号n与数字的对应关系,规律就找到了。
一、根据所给数字找规律,列出代数式:(例1):1 ,3 ,5 ,7,9, ......序号:1 2 3 4 5 ......数字找规律,可以先观察,猜想,然后逐一尝试。
观察所给的几个数,数字是序号的2倍减去1,猜想是2n-1,再试验看下几个是否适合,下面的数是11,13,......,当n=6时,2×6-1=11;当n=7时,2×7-1=13;......,适合。
这就可以确认这组数字的规律是2n-1. 其实这是一种合情推理。
(例2)::2,8,18。
根据所给数字找规律,列出代数式:其实就是2×1,2×4,2×9,......1,4,9,.....,都是完全平方数,是n^n,每项都乘2就可以了。
那就是2n^n.注:^是次方的意思。
2^3就是2的3次方,2^3=2×2×2=8练习如下问题:(1)1 ,4,7,10,......根据所给数字找规律,列出代数式:(2)1,4,9,16,25,36,......根据所给数字找规律,列出代数式:二、根据所给单项式找规律.例如:-2x,4x²,-8x³,16x^4,-32x^5,......序号:1 2 3 4 5 ......这类问题要把系数和字母部分分开考虑。
系数是:-2,4,-8,16,-32......序号是:1 2 3 4 5 ......系数绝对值的规律是2^n.负号用(-1)来控制。
这里第1、3、5、.....奇数项是负号,偶数项是正号。
初一数学期中专题复习1——找规律(代数式)1.如图,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.若前m个格子中所填整数之和是1684,则m的值可以是( )9a b c-51…A.1015 B.1010 C.1012 D.1018【答案】B2.观察表一,寻找规律.表二,表三,表四分别是从表一中截取的一部分,其中a + b + c的值为.【答案】763.按图程序计算,若开始输入的值为x=3,则最后输出的结果是()A.231 B.156 C.121 D.116【答案】A4.一座80层摩天大楼的电梯上,有显示楼层的液晶屏,如图,可显示01,02,…,99,由于屏幕受到损坏,显示左边数字的7根线段中有1根不能亮了,显示右边数字的7根线段中有3根不能亮了。
请问:电梯在运行的过程中,最多还有个楼层的数字显示是正确.【说明】数字0、1、2、3、4、5、6、7、8、9显示方式如下图所示.【答案】105.如图,该表是由从1 开始的连续自然数组成.下面所给的判断中,不正确的是……(▲ )A.表中第8行的最后一个数是64;B.第n行的第一个数是(n-1)2+1;C.第n行的最后一个数是n2;D.第n行共有2n个数.【答案】D6.下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( )A. 495B. 497C. 501D. 503【答案】A7.如图,这是一个数值转换机的示意图.若输入x的值为4,输出的结果为﹣11,则输入y的值为.【答案】±68.如图,将正整数按如图所示规律排列下去,若用有序数对(n,m)表示n排从左到右第m个数.如(4,3)表示9,则(20,8)表示.【答案】198…………………………………………………………………………………………11051601140142130130120160112161712131415161105142130120112171615141312119.世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是( ).A .1321 B .3601 C .4951 D .6601【答案】B 10.按图示的程序计算,若开始输入的x 为正整数,最后输出的结果为67,则x 的值是 .【答案】 2,7,2211.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径) 得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为----------------( ▲ )A .(12)n πB .(14)n πC . (12)2n +1 πD . (12)2n -1π【答案】C12.罗马数字采用七个罗马字母作为数字:I(表示1)、V (表示5)、X (表示10)、L (表示50)、C (表示100)、D (表示500)、M (表示1000).记数方法为:①相同的数字连写,所表示的数等于这些数相加,如III =3;①小的数字在大的数字右边,所表示的数等于这些数字相加得到的数,如DL =550;①小的数字在大的数字左边,所表示的数等于大数减去小数得到的数,如:XL =40.则关于y 的方程||y -I -XII =XC 的解为 ▲ .【答案】103或-101(只填一个答案不给分)P 1P 2P 3P 413.a 是不为2的有理数,我们把a -22称为a 的“哈利数”。
Ⅱ 分类拔高专题一、找规律题(一)、代数式找规律1、观察下列单项式:54325,4,3,2,a a a a a --,…(1)观察规律,写出第20YY 和第20YY 个单项式;(2)请你写出第m 个单项式和第n+1个单项式。
(m 为自然数)2、有一个多项式为332456b a b a b a a -+-…,按这种规律写下去,第六项是= ,最后一项是= 。
3、(1)观察一列数2,4,8,16,32,…发现从第二项开始,每一项与前一项之比是一个常数,这个常数是= ,根据此 规律,如果n a (n 为正整数)表示这个数列的第n 项,那么18a = ,n a = 。
(2)如果欲求203233331+++++ 的值,可令203233331+++++= S ①,将①式两边同乘以3,得 ,②由②减去①式,得S= ;(3)由上可知,若数列1a ,2a ,3a ,…n a ,n a ,从第二项开始每一项与前一项之比的常数为q ,则n a = ,(用含1a ,q ,n 的代数式表示),如果这个常数q ≠1,那么1a +2a +3a +…+n a = (用含1a ,q ,n 的代数式表示)。
4、 5、 观察下列一组数:21,43,65,87,……,它们是按一定规律排列的,那么这一组数的第n 个数是 .(二)、图形找规律5、用棋子摆成如图所示的“T ”字图案.(1)摆成第一个“T ”字需要 个棋子,第二个图案需要 个棋子;(2)按这样的规律摆下去,摆成第10个“T ”字需要 个棋子,第n 个需要 个棋子.6、如图是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中棋子个数是= ,第n 个“广”字中棋子个数是= 。
7、下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“●”的个数为 .8、将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3(1) (2) (3) …………个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有________个小圆;第n 个图形有______个小圆.9、观察下列图形,则第n 个图形中三角形的个数是()A.22n + B .44n + C .44n - D .4n10、观察如下图的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n 个点阵相对应的等式_____________11、下图是某同学在沙滩上用石于摆成的小房子:观察图形的变化规律,写出第n 个小房子用了[(n+1)2+(2n-1)] 块石子。
海豚教育个性化简案海豚教育个性化教案(真题演练)1.(2014•沂水县二模)有一列数a1,a2,a3,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2011为()1A. 2011B. 2 C。
-1 D.22.(2014•凤阳县模拟)观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A。
63 B。
57 C. 68 D。
60海豚教育个性化教案代数式——找规律1、观察下面的一列单项式:x ,22x -,34x ,48x -,…根据你发现的规律,第7个单项式为 ;第n 个单项式为2、填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )3、小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 .4、将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线)。
继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_ 条折痕 .如果对折n 次,可以得到 条折痕 。
5、现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下:▲ ▲△△▲△▲▲△△▲△▲▲……则黑色三角形有 个,白色三角形有 个。
6、 仔细观察下列图形。
当梯形的个数是n 时,图形的周长是 。
11 17、用火柴棒按如下方式搭三角形: (1)填写下表:1 2 3 100(2)照这样的规律搭下去,搭n 个这样的三角形需要______根火柴棒8、把编号为1,2,3,4,…的若干盆花按右图所示摆放,花盆中的花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第6盆花的颜色为___________色。
9、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成下列形式:为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较n n+1和(n+1)n的大小(n 为正整数),我们从n=1,n=2,n=3……这些简单的情况入手,从中发现规律,经过归纳,猜出结论。