[超详细版]复变函数与积分变换复习提纲
- 格式:pdf
- 大小:181.90 KB
- 文档页数:15
复变函数与积分变换复习提纲第一章 复变函数一、复变数和复变函数()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续极限 A z f z z =→)(lim 0连续 )()(lim 00z f z f z z =→第二章 解析函数一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。
二、柯西——黎曼方程掌握利用C-R 方程⎪⎩⎪⎨⎧-==xy yx v u v u 判别复变函数的可导性与解析性。
掌握复变函数的导数:yx y x y y x x v iv iu u v iu y fi iv u x f z f +==-=+-=∂∂=+=∂∂=ΛΛ1)('三、初等函数重点掌握初等函数的计算和复数方程的求解。
1、幂函数与根式函数θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数nk z i n ner z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数2、指数函数:)sin (cos y i y e e w xz+==性质:(1)单值.(2)复平面上处处解析,zze e =)'((3)以i π2为周期 3、对数函数ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……)性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:kk z z 1)'(ln =。
4、三角函数:2cos iz iz e e z -+= ie e z iziz 2sin --=性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界5、反三角函数(了解)反正弦函数 )1(1sin 2z iz Ln iz Arc w -+==反余弦函数 )1(1cos 2-+==z z Ln iz Arc w 性质与对数函数的性质相同。
复变函数复习提纲(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:两个复数不能比较大小.2.复数的表示 1)模:z =2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctanyx之间的关系如下: 当0,x > arg arctan yz x=;当0,arg arctan 0,0,arg arctan yy z xx y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-= 3.乘幂与方根 1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。
复变函数与积分变换复习提纲第一章 复变函数一、复变数和复变函数()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续极限 A z f z z =→)(lim 0连续 )()(lim 00z f z f z z =→第二章 解析函数一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。
二、柯西——黎曼方程掌握利用C-R 方程⎪⎩⎪⎨⎧-==xy yx v u v u 判别复变函数的可导性与解析性。
掌握复变函数的导数:yx y x y y x x v iv iu u v iu y fi iv u x f z f +==-=+-=∂∂=+=∂∂=1)('三、初等函数重点掌握初等函数的计算和复数方程的求解。
1、幂函数与根式函数θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数nk z i n ner z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数2、指数函数:)sin (cos y i y e e w xz+==性质:(1)单值.(2)复平面上处处解析,zze e =)'((3)以i π2为周期 3、对数函数ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……)性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:kk z z 1)'(ln =。
4、三角函数:2cos iz iz e e z -+= ie e z iziz 2sin --=性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界5、反三角函数(了解)反正弦函数 )1(1sin 2z iz Ln iz Arc w -+==反余弦函数 )1(1cos 2-+==z z Ln iz Arc w 性质与对数函数的性质相同。
西南交大复变函数与积分变换复习提纲一. 复变函数1. 复数(1)复数的运算例 ()()()()11031(1)1324,(2),(3)1,(4)11i i i i i i-+++++. (2)区域、单连通、多连通区域的判断2. 解析函数(1)解析函数的概念:函数在区域内解析、函数在某一点解析、奇点。
(2)函数解析的判断:Cauchy-Riemann 条件、导数公式。
例 判断函数2(z)f x y ixy =+ 在何处可导?何处解析?例 找出函数的奇点 2sin (1)(z 1)e zz + ,(2)sin z e z π. (3)初等函数例 计算下列表达式的值()99312(1)e ,(2)ln 1i)i i π+++ . 3.级数(1)级数敛、散性的判断例 判断下列级数是否收敛,如果收敛是条件收敛还是绝对收敛。
()()3211111222(1),(2),(3),,!n nn n n n n n i i in i n n n n ∞∞∞∞====+++∑∑∑∑(2)幂级数的收敛:Abel 定理、收敛半径例 计算幂级数的收敛半径()()()110(1)(1)1,(2),(3)312121!nn n n n n n i z z n z n n +∞+∞+∞===-++++∑∑∑. (3)函数的幂级数展开:Taylor 级数、Laurent 级数例 将函数在指定点展开成幂级数12321,0,1,1(z 1)z z z z ==-=+. 例 将函数在指定的圆环域内展开成Laurent 级数21(z),(1)12,(2)013,(3)2 3.(z 1)(z 2)f z z z =<<<+<->+- 4.复变函数的积分(1)基本积分公式:[](),()()()z z t t C f z dz f z t z t dt αββα=≤≤'=⎰⎰.例 计算复积分的值,C z dz c ⎰从i -到i 的在右半平面的单位圆周.(2)Cauchy 积分定理(单连通、多连通)、积分与路径无关、Cauchy 积分公式、高阶导数公式例 复积分299cos 12sin(z 1)(z 1)e zz dz =++⎰的值等于? 例 计算复积分的值2,C z dz c ⎰从i -到i 的在右半平面的单位圆周.例 计算复积分()24cos (z )z z dz z i π=++⎰的值.(3)留数:孤立奇点的类型、极点的级数、孤立奇点处留数的计算(重点:m 级极点处留数的计算)、留数定理、利用留数计算复积分和定积分.例 判断下列函数的孤立奇点的类型,如果是极点请指明极点的级数.12100sin 1(1),(2),(3)e (1)z z z z e z z z+-+ 例 计算下列复积分的值 223211(1),(2)tan ,(3)sin z (z 1)1z z z z e z dz zdz dz z z π===-+-⎰⎰⎰ 例 计算下列定积分的值2240011(1),(2)2sin 1x dx dx x x π+∞+++⎰⎰ 二. 积分变换1.Fourier 变换(1)Fourier 的定义、Fourier 变换的计算、函数的Fourier 积分表达式、δ函数的筛选性.例 (),kt f t e k -+=∈R 计算函数的Fourier 变换[]()f t F. 例 2(t 2)e ?t dt δ+∞--∞-=⎰(2)Fourier 变换的性质:线性性质、平移性质、伸缩性质、对称性质、微分性质、积分性质及Paeseval 等式.例 计算Fourier 变换:12[]t te+-F . 例 计算积分2212dt t +∞-∞⎛⎫ ⎪+⎝⎭⎰ 的值. (3)卷积(Fourier 变换意义下):卷积的定义、卷积的计算及卷积定理例 设20,0,sin ,0,(t),(t),00, t t t t f g e t π-<≤≤⎧⎧==⎨⎨≥⎩⎩其它.计算卷积(t)g(t)f *.place 变换(1) Laplace 变换的定义、计算.例 设3,02,(t)1,24,0, 4.t f t t ≤<⎧⎪=-≤<⎨⎪≥⎩计算Laplace 变换[()]f t L .(2) Laplace 变换的性质:线性性质、微分性质、积分性质及位移性质. 例 计算Laplace 变换202[]tx xcos x dx e ⎰L ,22002[t ],[2]t t t x cos x dx e xcos xdx e⎰⎰L L . (3) 利用Laplace 变换计算定积分.例 计算定积分的值20sin (1)cos ,(2)x xx x xe dx dx xe +∞-⎰⎰. (4) 卷积(Laplace 变换意义):卷积的定义、卷积的计算及卷积定理. 例 计算如下卷积(1)t cos2t,(2)sint cost,(3)e cos t t ***.。
.WORD.格式.复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z ez z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。
(一)复数的概念1. 复数的概念:z x iy , X, y 是实数,x Re z , y Im z . i 2注:一般两个复数不比较大小,但其模(为实数)有大小2. 复数的表示1) 模:z 贋~y 2 ;2) 幅角:在z 0时,矢量与x 轴正向的夹角,记为Arg z (多值函数);主值arg z 是位 于(,]中的幅角。
3) a rg z 与arctan#之间的关系如下:x当 x 0, arg zarctan';xy0,arg z arcta n — x y0,arg z arcta n 丄x4) 三角表示:z z cos isin ,其中 arg z ;注:中间一定是“ +”号5) 指数表示:z z e i ,其中 arg z 。
(二)复数的运算复变函数复习重点y 当x 0,y1. 加减法:若乙x! iy“Z2 X2 i y2,贝U x x2 i y1 y22. 乘除法:1) 若 z-i 捲 iy 「Z 2 X 2 iy 2,则召勺住 yy i X2% w ;N i% X 2 iy 2 X 2 iy 2 X 2 iy 23.(三)复变函数1.复变函数:w f z ,在几何上可以看作把z 平面上的一个点集D 变到w 平面上的一个 点集G 的映射.2.复初等函数e z e X cosy is in y ,在z 平面处处可导,处处解析;且 e z1ie% i% Z 2X 2 iy 2X 1X 2 y“2 i y 1X 2 y 2X 12) 若 Z | Z i e 1, Z 2z 2 e i 21) 若Z 2) 若ZnZz (cos Z (cos 1ncosisinisin 2kzdzd ,则,则2k i sin —nnz (cosni sin n(k 0,1,2卅 n 1))z"e in 。
(有n 个相异的值)1)指数函数注:e z是以2 i为周期的周期函数。
(注意与实函数不同)3) 对数函数:Lnz ln z i(argz 2k ) (k 0, 1, 2”)(多值函数);主值:In z lnz i argz。
复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctan y z x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z ez z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。
复变函数与积分变换复习提纲第一章复变函数第二章解析函数u (x, y ) iv (x, y )可导与解析的概念。
二、柯西——黎曼方程三、初等函数重点掌握初等函数的计算和复数方程的求解。
幕函数与根式函数3、对数函数1,(3)在单值解析分枝上:(In z )'kz kiz ize e cosz2iz ize e sin z2i5、反三角函数(了解)掌握利用C-R 方程U x V y 掌握复变函数的导数:U y判别复变函数的可导性与解析性。
V xf'⑵匚UxiVxiU y VyU x iU yiVxn nr (cos i sin ) (cosni sinnn inr e单值函数1 i arg z2 k n nr ek =o 、 1、2、…、n-1)n 多值函数2、 指数函数:w e z e x(cos y i siny)性质:(1)单值.(2) 复平面上处处解析, (e z )'(3)以 2 i 为周期w Lnz lnz i(arg z2k ) lnz i2k(k=0、土 1、土 2 . )性质:(1)单值 (2)复平面上处处解析(3)周期性 (4)无界、复变数和复变函数U x, y 二、复变函数的极限与连续iv x, y极限 lim f (z)z z连续 lim f (z)f (z 0)z z、复变函数w f (z ) 1、 性质:(1 )多值函数,(2) 除原点及负实轴处外解析4、三角函数:反正弦函数 wArc sin z丄L n(iz 、1 z 2) i反余弦函数 w Arccosz !Ln (z z 2 1)i性质与对数函数的性质相同。
s sLnz s[ln z| (2k arg z ) i]6、一般幂函数:z e e(k =o 、±1…)四、调和函数与共轭调和函数:1) 调和函数:2u (x, y ) 02) 已知解析函数的实部(虚部),求其虚部(实部) 有三种方法:a )全微分法b )利用C-R 方程 c)不定积分法第三章解析函数的积分一、 复变函数的积分| f z dz udx vdy i vdx udy 存在的条件。