基于BP神经网络的短期电力负荷预测
- 格式:doc
- 大小:462.51 KB
- 文档页数:40
电力负荷预测设计与实现摘要:在对大量历史负荷数据进行统计分析的基础上,根据电力负荷的特点,在考虑天气温度、日类型、实际历史负荷等因素对预测负荷影响的基础上,本文介绍了一种基于bp神经网络的短期负荷预测方法。
该方法充分发挥了神经网络处理非线性问题的能力和人工神经网络自学习、自适应的优点。
实际算例表明,这种方法应用在短期负荷预测方面有较高的精度。
关键词:电力负荷预测电力负荷电力负荷预测基本算法0、引言短期负荷预测是随着电力系统ems的逐步发展而发展起来的,现已经成为ems必不可少的一部分和为确保电力系统安全经济运行所必需的手段之一。
短期负荷预测技术经过几十年的发展,人们提出了许多的预测方法。
现有的预测方法大体可以分为2类:经典的数学统计方法以及上世纪90年代兴起的各种人工智能方法。
1、电力负荷预测综述电力负荷有两方面的含义:一方面是指电力工业的服务对象;另一方面是指上述各用电单位、用电部门或用电设备使用电力和电量的具体数量。
电力负荷预测中的负荷概念是指国民经济整体或部门或地区对电力和电量消费的历史情况及未来的变化发展趋势。
电力负荷预测工作既是电力规划工作的重要组成部分,也是电力规划的基础。
本文运用神经网络对某市某年某月某日进行电力负荷的短期预测,它为这一地区电力规划奠定了一定的基础,同时也为这一地区电力工业布局、能源资源平衡和人力资源的需求与平衡提供可靠的依据。
因此,电力负荷预测是一项十分重要的工作,它对于保证电力工业的健康发展有着十分重要的意义。
2、电力负荷分析本文对某市进行电力短期负荷预测,电力负荷的构成与特点如下:电力系统负荷一般可以分为城市民用负荷、商业负荷、农村负荷、工业负荷以及其他负荷等,不同类型的负荷具有不同的特点和规律。
城市民用负荷主要是城市居民的家用电器,它具有年年增长的趋势,以及明显的季节性波动特点,而且民用负荷的特点还与居民的日常生活和工作的规律紧密相关。
商业负荷,主要是指商业部门的照明、空调、动力等用电负荷,覆盖面积大,且用电增长平稳,商业负荷同样具有季节性波动的特性。
基于BP神经网络的短期电力负荷预测摘要:本论文首先对短期电力负荷预测进行了概述,在详细分析bp神经网络原理的基础上,通过对某市历史负荷数据的分析,应用bp神经网络,建立了短期负荷预测模型,应用matlab 6.5软件进行实际建模仿真。
关键词:电力负荷bp神经网络预测建模仿真1.引言由于电力的生产与使用具有特殊性,即电能是不能储存的,这样就要求系统发电出力随时紧跟系统负荷的变化动态平衡,否则,就会影响供用电的质量,重则危及系统的安全与稳定。
随着电力系统的商品化和市场化,电力负荷预测的准确性对电力系统安全经济运行和国民经济发展具有重要意义。
正确地预测电力负荷,既是为了保证供应国民经济各部门及人民生活以充足的电力需要,也是电力工业自身发展的需要。
2.输入层和输出层的设计在预测日的前一天中,每1个小时对电力负荷进行一次测量,这样一来,一天共测得24组负荷数据。
由于负荷值曲线相邻的点之间不会发生突变,因此后一时刻的值必然和前一时刻的值有关,除非出现重大事故等特殊情况。
所以这里将前一天的实时负荷数据作为网络的样本数据。
此外,由于电力负荷还与环境因素有关,如最高和最低温度等。
因此,还需要通过天气预报等手段获得预测日的最高和最低温度。
这里将电力负荷预测日当日的气象特征数据作为网络的输入变量。
因此,输入变量就是一个26维的向量。
显而易见,目标向量就是预测日当天的24个负荷值,即一天中每个整点的电力负荷。
这样一来,输出变量就成为一个24维的向量。
获得输入和输出变量后,要对其进行归一化处理,将数据处理为区间[0,1]之间的数据。
归一化方法有许多种形式,本文采用如下公式:在样本中,输入向量为预测日前天的电力实际负荷数据,目标向量是预测日当天的电力负荷。
由于这都是实际的测量值,因此,这些数据可以对网络进行有效的训练。
如果从提高网络精度的角度出发,一方面可以增加网络训练样本的数目,另一方面还可以增加输入向量的维数。
目前,训练样本数目的确定没有通用的方法,一般认为样本过少可能使得网络的表达不够充分,从而导致网络外推能力不够;而样本过多可能会出现样本冗长现象,既增加了网络的训练负担,也可能出现信息量过剩使得网络出现过拟合现象。
电力需求预测基于BP神经网络模型引言在当今社会中,电力需求预测对于能源供应商和电力系统运营商来说是一个关键的任务。
准确地预测电力需求可以帮助电力系统更好地规划资源分配,提高能源利用效率,降低能源浪费,并确保电力系统的稳定运行。
本文将介绍一种基于BP神经网络模型的电力需求预测方法,并探讨其在实际应用中的优势和局限性。
1. 研究背景和意义:随着工业化和城市化的快速发展,电力需求规模呈现出快速增长的趋势。
然而,电力供应的能力与电力需求的匹配程度却难以保持一致。
因此,准确地预测电力需求对于电力系统运营商和能源供应商来说具有重要意义。
2. 电力需求预测方法:BP神经网络模型是一种常用的基于历史数据的预测方法。
它通过训练神经网络来学习历史数据中的模式和趋势,并用于预测未来的电力需求。
BP神经网络模型具有多层结构,包括输入层、隐藏层和输出层。
输入层将历史数据作为输入,隐藏层通过学习历史数据的模式来预测未来的需求。
输出层给出了对未来电力需求的预测结果。
3. BP神经网络模型的优势:(1)灵活性:BP神经网络模型可以适应各种类型的电力需求预测问题,包括小时、日或年度的需求预测。
它可以根据需求数据的特征自动调整网络的参数和结构,并产生准确的预测结果。
(2)非线性建模:BP神经网络模型可以处理非线性关系,这在电力需求预测中非常重要。
电力需求往往受多种因素的影响,如天气、经济状况和人口增长等,这些因素之间存在复杂的非线性关系。
BP神经网络模型能够捕捉这些关系,并进行准确的预测。
(3)自适应性:BP神经网络模型可以通过不断训练来提高预测的准确性。
随着新的数据不断到来,模型可以自动地更新参数和结构,以适应新的需求模式。
4. BP神经网络模型的局限性:(1)数据需求:BP神经网络模型需要大量的历史数据来进行训练。
如果历史数据不足或质量不高,模型的预测准确性将受到限制。
(2)超参数选择:BP神经网络模型有许多超参数需要人工选择,如网络的层数、节点数和学习速率等。
基于贝叶斯神经网络方法短期负荷预测指南短期负荷预测在电力系统运行中起着至关重要的作用。
正确的负荷预测可以帮助电力公司合理调度发电机组,优化电力供需平衡,提高电力系统的可靠性和经济性。
贝叶斯神经网络(Bayesian Neural Network,BNN)作为一种强大的建模工具,已经在负荷预测领域取得了很好的效果。
本文将介绍基于BNN方法进行短期负荷预测的指南。
首先,我们需要准备历史负荷数据作为训练样本。
这些历史负荷数据通常包括负荷的时间序列和对应的日期时间信息。
为了提高预测模型的准确性,我们可以考虑使用一些相关的影响因素作为特征变量,例如天气数据、季节性因素等。
接下来,我们需要选择一个合适的BNN模型结构。
BNN是一种基于神经网络的概率图模型,可以有效处理不确定性问题。
常见的BNN模型包括Bayesian Feedforward Neural Network(BFNN)、Bayesian Recurrent Neural Network(BRNN)等。
根据实际需求,选择一个适合的模型。
在训练BNN模型之前,我们需要进行数据预处理。
常见的预处理方法包括标准化、归一化等,以提高数据的可比性和模型的训练效果。
接着,我们可以使用一些常见的优化算法训练BNN模型,例如随机梯度下降(Stochastic Gradient Descent,SGD)、Adam等。
在进行优化算法调参时,可以使用交叉验证的方法选择最优的参数配置。
训练好BNN模型后,我们可以进行负荷预测。
预测的输入是未来一段时间的特征变量,输出是对应时间段的负荷预测结果。
预测结果可以是点预测,也可以是概率分布预测。
最后,我们需要评估负荷预测的准确性。
常见的评估指标包括均方根误差(Root Mean Square Error,RMSE)、平均绝对误差(MeanAbsolute Error,MAE)等。
通过对预测准确性的评估,可以判断BNN模型的负荷预测效果,并进行相应的改进。
基于BP神经网络的短期负荷预测基于BP神经网络的短期负荷预测一、引言电力系统的短期负荷预测在电力行业中扮演着重要角色。
准确预测短期负荷有助于确保电力系统的稳定运行,合理安排电力资源,提高电力供应的可靠性和效率。
然而,由于负荷预测的复杂性和不确定性,传统的统计方法往往不能满足准确预测的要求。
随着计算机技术的快速发展,人工智能技术被广泛应用于负荷预测领域。
其中,基于BP神经网络的短期负荷预测方法因其较高的准确性和灵活性而备受关注。
本文旨在探讨基于BP神经网络的短期负荷预测原理及应用,并通过实例分析展示其优势和局限性。
二、基于BP神经网络的负荷预测原理BP神经网络(Backpropagation Neural Network)是一种具有反向传播算法的人工神经网络。
它由输入层、隐藏层和输出层组成,通过非线性映射将输入信号转换为输出信号。
在负荷预测中,输入层通常包含历史负荷数据和其它相关因素(如天气、季节等),输出层则是预测的负荷值。
具体而言,BP神经网络的预测过程可以分为以下几个步骤:1. 数据准备:将历史负荷数据进行预处理,包括归一化、滤波和特征提取等。
同时,对于相关因素的数据也需要进行同样的处理。
2. 网络搭建:确定神经网络的结构和参数设置。
隐藏层的节点数量和层数的选择是关键,过少会导致欠拟合,过多则可能引起过拟合。
3. 前向传播:将输入数据通过神经网络传递,计算每个神经元的输出。
此过程中,网络中的连接权重根据当前输入和人工设定的权重进行调整。
4. 反向传播:根据误差函数计算损失,并通过链式法则更新各层的权重。
该过程反复进行直到误差小于预设阈值。
5. 预测与评估:使用训练好的神经网络对新的输入数据进行预测,并评估预测结果的准确性。
常用评估指标包括均方根误差(RMSE)和平均绝对百分比误差(MAPE)等。
三、基于BP神经网络的负荷预测应用基于BP神经网络的短期负荷预测方法已在电力系统中得到广泛应用。
以下是几个典型的应用实例:1. 区域负荷预测:通过采集各个区域的历史负荷数据和相关影响因素,建立对应的BP神经网络模型,实现对区域负荷的短期预测。
神经网络模型下短期电力负荷预测电力系统短期负荷预测关系到电力系统的平稳调度。
负荷预测的精度直接影响到电力系统的经济性和稳定性,智能电网对负荷预测的实时性要求也越来越高。
因此,国内外学者一直将短期电力负荷预测作为研究重点。
人工神经网络是一种智能算法,其在各种领域都有广泛的应用。
近年来专家学者也将人工神经网络应用到了短期电力负荷预测中。
在负荷预测算法中,使用最多的是BP 神经网络。
本文通过对人工蜂群算法(ABC)进行改进,以提高人工蜂群算法的预测精度及全局收敛性,用改进后的人工蜂群算法优化BP神经网络,即ABC-SA电力负荷预测模型。
最后通过仿真实验预测值与真实值比较,验证本文方法的有效性。
短期电力负荷预测(Short-term load forecasting,STLF)主要是指对未来若干小时、1天至几天的电力负荷预报,作为安排发购电计划,经济分配负荷及安排机组出力的基础,精准的负荷预测是保证电网安全可靠运行的前提条件【1】。
随着科技以及计算机技术的发展,电力负荷预测的相关技术也在不断进布,目前国内外研究短期负荷预测的方法,大体上有传统的基本的分析预测方法以及灰度预测、回归分析和神经网络等智能预测算法【2,3】。
人工蜂群算法是群只能算法的一种,该算法一经提出,由于其结构简单易实现、性能优越,越来越多研究人员对其进行研究。
人工蜂群算法虽然优秀,但是其存在很多优化算法都存在的缺点——容易陷入局部最优。
人工蜂群到算法后期,侦察蜂多次迭代后,又转换为极值点的采蜜蜂,导致搜索能力减弱,甚至陷入局部最优。
于是本文采用模拟退火算法对人工蜂群算法进行改进,称为ABC-SA算法,它作用是维持优良解,在采蜜蜂阶段和观察蜂阶段扩大蜜蜂的搜索范围,从而提高收敛速度。
并将该算法用到优化BP神经网络的训练中,使用优化后的神经网络对电力负荷进行预测。
1.人工蜂群算法及其改进1.1人工蜂群算法原理在人工蜂群优化算法中,类比生物学的机理,同样包含三个基本的组成要素:蜜源,雇佣蜂,非雇佣蜂【4】。
西安工业大学北方信息工程学院
本科毕业设计(论文)题目:基于BP神经网络的短期电力负荷预测
系别电子信息工程系
专业电气工程及其自动化
班级B070307
姓名宋亮
学号B********
导师张荷芳焦灵侠
2011年6月
毕业设计(论文)任务书
系别电子信息系专业电气工程自动化班b070307 姓名宋亮学号b07030716
1.毕业设计(论文)题目:基于bp神经网络的短期电力负荷预测
2.题目背景和意义:电力系统是由电力网、电力用户组成,其作用就是对各类用户尽可能经济地提供可靠而合乎标准要求的电能,以随时满足负荷要求。
但是由于电力的生产与使用具有其特殊性,即电能是不能储存的。
这就要求系统发出电力随时紧跟系统负荷的变化动态平衡,否则,就会影响供用电的质量。
电力系统负荷预测因此发展起来,成为工程科学中重要的研究领域,是电力系统自动化中一项重要内容。
在电力系统安排生产计划和实际运行的过程中,负荷预测起着十分重要的作用,主要表现在以下几个方面:(1)经济调度的主要依据。
对电力系统来说,必须对用户提供可靠而经济的电能,以随时满足各类用户的要求,亦即满足用户的负荷需求,而在另一方面,又要考虑生产成本,由于电能不能大量储存,因此必须在确保系统安全的情况下尽量减少实时发电备用容量。
(2)生产计划的要求。
电力系统中,由于其可靠性的要求,各种发、供电设备都有确定的检修周期。
(3)电力系统安全分析的基础。
电力事故所造成经济损失和社会影响是巨大的,必须尽量避免。
3.设计(论文)的主要内容(理工科含技术指标):负荷预测并达到一定误差范围之内。
4.设计的基本要求及进度安排(含起始时间、设计地点):电子系实验室
1-5周;开题,针对原理及应用、主要技术难点的收集资料,熟悉课题方案。
6-10周;完成方案论证,确定设计方案。
10-15周;利用Matlab对系统做进一步的仿真分析
16-18周;完成所有的设计工作,整理资料,完成毕业论文,准备答辩。
5.毕业设计(论文)的工作量要求400机时
*或实习(天数):100天
①实验(时数)
*:A4×2
②图纸(幅面和张数)
③其他要求:论文:15000字以上;外文翻译:5000字以上
指导教师签名:年月日
学生签名:年月日
系主任审批:年月日说明:1本表一式二份,一份由学生装订入册,一份教师自留。
2 带*项可根据学科特点选填。
基于BP神经网络的短期电力负荷预测
摘要
负荷预测技术是近年来各国潜心研究的一个新领域,它对于电力系统的规划与运行、获得最好的经济效益,有重大的意义。
特别是电力科技与其它学科发展将会更加交融和促进。
利用人工神经网络方法来对电力负荷进行短期预测是一种常用而且非常有效的一个方法。
因此,与人工神经网络相关的一些预测算法就成为预测技术发展的一个重点。
本文首先对预测技术,人工神经网络及其应用于电力系统进行了一些理论基础的介绍和探讨工作,重点介绍了BP网络在负荷预测方面的一些知识及实际应用。
本文以实例为背景,详细论述了BP网络在电力负荷预测中的实际应用,并深入研究了在实际的系统中从输入模式的划分,隐节点的选取,权值的修改,学习率的调整等实际的问题。
对于节假日的负荷,本文对其进行另外的讨论。
最后用MATLAB仿真得到预测结果并分析了预测结果。
关键词:电力系统;短期负荷预测;BP;人工神经网络
Short-Term Electric Power Load Forecasting Based on
Neural Network MODEL
Abstract
Load forecasting technology is a new field in which many countries research with great concentration in recent few years. Load forecasting technology plays an important role not only in the design and running in power system but also in the increase of economical benefit. Short-term Load prediction based on artificial neural network is a common but most efficacious method. So some forecasting algorithms attached to ANN begin to be a promising and important field in the development of prediction technology.
The paper primarily explicated some algorithms about prediction in EMS. Firstly,the background and development of prediction technology are introduced and then some introduction of basic theory and research work have been done about how to apply ANN to prediction technology, during which HP network and BP network are introduced importantly and then some improvement about the application of ANN to prediction technology is given. With an example the paper explicitly discusses the application of BP network in load prediction and has a deep research in pattern division of inputting, the selection on the number of the hidden layer, the modifying of weight, the adjustment of the speed of the study and etc. In the paper, a new and sufficient method about the selection of the training sample is proposed and also the division of inputting in festivals is operated with a new method by using interpolation. Besides, in the paper, the longest predicable time is studied theoretically and practically operated. The compare of the two kinds of network and their respective privilege and limitations is the emphasis in the paper.
The paper cites chaos theory to predict technology. In the end the paper give some prospects and hypothesis on the prediction.
Key words:Power System;Short-Term Load Forecasting(STLF); BP; Artificial Neural Network(ANN)
目录
1 绪论 (1)
1.1负荷预测的目的和意义 (1)
1.2国内外研究现状 (1)
1.3本文主要研究内容 (2)
2电力负荷预测分析 (4)
2.1电力系统负荷预测的分类和特点 (4)
2.1.1电力系统负荷预测的分类 (4)
2.1.2电力系统负荷预测的特点和基本原理 (4)
2.1.3电力负荷预测的影响因素 (5)
2.1.4电力负荷预测的要求 (6)
2.2短期电力负荷预测的主要方法及模型 (6)
2.3预测方法比较 (10)
3人工神经网络 (11)
3.1神经网络的发展概述 (11)
3.2神经网络的特点 (12)
3.3神经网络学习控制 (12)
3.4神经网络非线性控制 (13)
3.5神经网络用于预测技术 (13)
4 BP神经网络 (15)
4.1BP神经网络结构 (15)
4.2BP神经网络的学习方式 (15)
4.3BP算法的数学描述 (16)
4.3.1 网络误差与权值的调整分析 (16)
4.3.2BP算法推导对于输出层 (17)
4.4BP神经网络的主要特点 (18)
5系统设计与实现 (20)
5.1具体实例分析 (20)
5.2输入/输出变量设计 (21)
5.3BP网络仿真设计 (22)。