神经网络负荷预测
- 格式:ppt
- 大小:770.50 KB
- 文档页数:30
摘要:为了及时掌握电力负荷的变动信息,就需要对电力负荷进行准确预测。
鉴于此,探究出一种CNN和LSTM的组合模型来预测一日到一周的电力短期负荷波动情况。
CNN模型负责从输入信息中提取特征,LSTM模型利用CNN模型的输出信息进行负荷预测,最终得到预测结果。
选取西班牙公开的电力数据为实验数据,运用Python语言搭建预测模型,分别与CNN和LSTM单一模型进行对比,验证了所提组合预测模型的可靠性,其在电力短期负荷预测领域应用效果较好,可为供电部门电力规划提供理论依据。
关键词:短期负荷预测;长短期记忆网络(LSTM);卷积神经网络(CNN);CNN-LSTM引言准确的电力短期负荷预测可以保障智能电网环境的安全、经济和可靠运行。
不准确的电气电力短期负荷预测会降低电力系统的可靠性,甚至给电力系统带来安全隐患,从而影响发电计划制定,造成资源浪费和环境污染,难以实现碳达峰、碳中和目标。
在电力负荷预测领域,学者将预测方法分类,包括物理模型法、统计法和人工智能法。
物理模型法可以预测电力负荷,但其预测准确率低,很少被应用;统计法则过多地依赖于历史数据的周期性和异常值,面对复杂和非线性的电力负荷数据难以获得准确的预测结果。
因此,越来越多的学者将人工神经网络用于负荷预测领域,人工神经网络的自学习功能,可以根据数据情况随时调整模型参数,从而使预测结果更接近真实值。
一些发展中国家的电力部门仍然在用传统的统计方法如回归分析和自回归综合移动平均线法(ARIMA)进行负荷预测,从而制定发电计划和电力调度。
然而,在一些发达国家,人工智能的预测方法被广泛应用于电力短期负荷预测领域。
在1943年提出人工神经网络(ANN)并被应用于语音识别;在1982年提出循环神经网络(RNN)并应用于图像识别;用RNN模型实现了中长期电力负荷的精准预测;在1997年提出长短期记忆网络(LSTM),解决了RNN网络随时间反向传播中权重消失的问题并被应用于文字识别;用长短期记忆网络结合分位数回归法,提高了电力短期负荷预测效率;在1998年提出卷积神经网络(CNN);提出一种卷积神经网络设置阈值模型,实现了异常用电检测;提出了改进的BP神经网络方法,提升了预测算法的健壮性;将CNN模型用于短期电力负荷预测,还考虑了一年中四季的特征,提高了预测的精度。
2020年28期创新前沿科技创新与应用Technology Innovation and Application基于BP 和SOM 神经网络相结合的电力负荷预测研究易礼秋(新疆财经大学统计与数据科学学院,新疆乌鲁木齐830012)1概述随着时代的快速发展,科学技术与经济技术的不断更新,电力能源在当代社会里扮演着一个十分重要的角色,是生活中不可缺少的一部分。
电力系统的正常运行保障了各行各业的用电需求,它的供应与国家经济和人们生活有着密切关联。
电力负荷预测尤其是短期电力负荷预测,有益于系统维持可用发电容量与电力需求之间的平衡,准确的短期电力负荷预测,电力系统的作用是对各个行业的用户提供尽可能高质量和可靠性强的电能。
电力系统的准确预测与电力系统的控制以及运行有着密切的相互作用,也是电网规划的重要依据,准确可靠的电力负荷预测能够确保系统的稳定运营,为我们的生活增添了多彩多样的色彩。
电力负荷预测是电力系统稳定运作的至关重要的部分,以电力负荷为对象进行的一系列预测工作,通常负荷预测可根据应用目的和预测时间长短的不同,可以分为短期、中期、长期这几类,其中,短期负荷预测对于电力系统的经济稳定运行以及人们生活质量有着重要作用,从预测对象来看,电力负荷预测包括对未来电力需求量(功率)的预测和对未来用电量(能量)的预测以及对负荷曲线的预测,其主要工作是预测未来电力负荷的时间分布和空间分布,为电力系统规划和运行提供可靠的决策依据,在发电这一过程中,精确测量负荷大小有利于节能减排、降低经济成本、改进提升电能性能,还起到保护环境的作用,这更体现出短期电力负荷预测的重要性,为了精准及时地预测电能的消耗具体情况,对电力负荷预测来说能够建立预测模型是十分必要的因素。
近年来,国内外对短期电力负荷预测模型进行研究是非常广泛的,针对其预测方法也是在不断创新,经典预测方法包括时间序列法、指数平滑法、回归分析法等等;现代主要预测方法有灰色预测法、支持向量机法、随机森林预测法、人工神经网络方法、小波分析法等等。
基于神经网络的负荷预测技术在电力系统中的应用研究电力系统是现代社会的基础设施之一,保障了工业、商业和居民的日常用电需求。
然而,电力系统需要在瞬息万变的情况下保持平衡,包括负荷平衡、能源平衡和网络平衡等方面。
因此,在电力系统中进行负荷预测是至关重要的。
近年来,神经网络作为一种强大的模型,已经在电力系统的负荷预测中大放异彩。
一、神经网络的基本原理神经网络是一种模拟人类大脑功能的算法,具有自适应、非线性和并行处理等特点,可以自我学习和优化模型。
神经网络是由多个神经元组成的,每个神经元根据输入信号进行计算,并通过激活函数生成输出。
神经元之间的连接权重可以根据误差不断调整,从而优化模型性能。
神经网络可以分为前向神经网络、反向传播神经网络和递归神经网络等不同类型。
二、电力系统中的负荷预测电力系统中的负荷预测是指对未来一段时间内的负荷进行估计。
负荷预测的准确性对于电力系统的稳定运行和经济效益都非常重要。
传统的负荷预测方法基于时间序列分析、回归分析等统计方法,但这些方法需要大量的历史数据和专业知识,而且对于复杂的系统和非线性的关系难以拟合。
因此,神经网络作为一种自适应学习方法,逐渐应用于电力系统中的负荷预测。
三、基于神经网络的负荷预测算法基于神经网络的负荷预测算法通常包括以下步骤:数据预处理、特征提取、神经网络建模、模型训练和预测等阶段。
数据预处理主要涉及数据清洗、过滤和归一化等方法,以确保数据的准确性和一致性。
特征提取是将原始数据转换为可供神经网络处理的数据形式,常见的特征包括时间、天气、节假日和工作日等。
神经网络建模是将特征与输出负荷建立映射关系的过程,常见的神经网络模型包括BP神经网络、RBF神经网络和FNN神经网络等。
模型训练是通过训练数据和误差反馈调整神经网络的连接权重,以优化模型性能。
最后,预测阶段是将模型应用于测试数据,进行负荷预测。
四、基于神经网络的负荷预测应用研究基于神经网络的负荷预测已被广泛应用于电力系统中,包括电力市场调度、电力负荷预测和电力安全评估等领域。
基于BP神经网络的短期电力负荷预测摘要:本论文首先对短期电力负荷预测进行了概述,在详细分析bp神经网络原理的基础上,通过对某市历史负荷数据的分析,应用bp神经网络,建立了短期负荷预测模型,应用matlab 6.5软件进行实际建模仿真。
关键词:电力负荷bp神经网络预测建模仿真1.引言由于电力的生产与使用具有特殊性,即电能是不能储存的,这样就要求系统发电出力随时紧跟系统负荷的变化动态平衡,否则,就会影响供用电的质量,重则危及系统的安全与稳定。
随着电力系统的商品化和市场化,电力负荷预测的准确性对电力系统安全经济运行和国民经济发展具有重要意义。
正确地预测电力负荷,既是为了保证供应国民经济各部门及人民生活以充足的电力需要,也是电力工业自身发展的需要。
2.输入层和输出层的设计在预测日的前一天中,每1个小时对电力负荷进行一次测量,这样一来,一天共测得24组负荷数据。
由于负荷值曲线相邻的点之间不会发生突变,因此后一时刻的值必然和前一时刻的值有关,除非出现重大事故等特殊情况。
所以这里将前一天的实时负荷数据作为网络的样本数据。
此外,由于电力负荷还与环境因素有关,如最高和最低温度等。
因此,还需要通过天气预报等手段获得预测日的最高和最低温度。
这里将电力负荷预测日当日的气象特征数据作为网络的输入变量。
因此,输入变量就是一个26维的向量。
显而易见,目标向量就是预测日当天的24个负荷值,即一天中每个整点的电力负荷。
这样一来,输出变量就成为一个24维的向量。
获得输入和输出变量后,要对其进行归一化处理,将数据处理为区间[0,1]之间的数据。
归一化方法有许多种形式,本文采用如下公式:在样本中,输入向量为预测日前天的电力实际负荷数据,目标向量是预测日当天的电力负荷。
由于这都是实际的测量值,因此,这些数据可以对网络进行有效的训练。
如果从提高网络精度的角度出发,一方面可以增加网络训练样本的数目,另一方面还可以增加输入向量的维数。
目前,训练样本数目的确定没有通用的方法,一般认为样本过少可能使得网络的表达不够充分,从而导致网络外推能力不够;而样本过多可能会出现样本冗长现象,既增加了网络的训练负担,也可能出现信息量过剩使得网络出现过拟合现象。
基于贝叶斯神经网络方法短期负荷预测指南短期负荷预测在电力系统运行中起着至关重要的作用。
正确的负荷预测可以帮助电力公司合理调度发电机组,优化电力供需平衡,提高电力系统的可靠性和经济性。
贝叶斯神经网络(Bayesian Neural Network,BNN)作为一种强大的建模工具,已经在负荷预测领域取得了很好的效果。
本文将介绍基于BNN方法进行短期负荷预测的指南。
首先,我们需要准备历史负荷数据作为训练样本。
这些历史负荷数据通常包括负荷的时间序列和对应的日期时间信息。
为了提高预测模型的准确性,我们可以考虑使用一些相关的影响因素作为特征变量,例如天气数据、季节性因素等。
接下来,我们需要选择一个合适的BNN模型结构。
BNN是一种基于神经网络的概率图模型,可以有效处理不确定性问题。
常见的BNN模型包括Bayesian Feedforward Neural Network(BFNN)、Bayesian Recurrent Neural Network(BRNN)等。
根据实际需求,选择一个适合的模型。
在训练BNN模型之前,我们需要进行数据预处理。
常见的预处理方法包括标准化、归一化等,以提高数据的可比性和模型的训练效果。
接着,我们可以使用一些常见的优化算法训练BNN模型,例如随机梯度下降(Stochastic Gradient Descent,SGD)、Adam等。
在进行优化算法调参时,可以使用交叉验证的方法选择最优的参数配置。
训练好BNN模型后,我们可以进行负荷预测。
预测的输入是未来一段时间的特征变量,输出是对应时间段的负荷预测结果。
预测结果可以是点预测,也可以是概率分布预测。
最后,我们需要评估负荷预测的准确性。
常见的评估指标包括均方根误差(Root Mean Square Error,RMSE)、平均绝对误差(MeanAbsolute Error,MAE)等。
通过对预测准确性的评估,可以判断BNN模型的负荷预测效果,并进行相应的改进。
负荷预测方法
负荷预测方法是指通过使用各种技术和模型来预测未来的负荷需求。
以下是一些常用的负荷预测方法:
1. 历史数据分析方法:根据过去的负荷数据,通过统计分析、时间序列分析等方法,来预测未来的负荷需求。
这种方法主要基于负荷的周期性和趋势性。
2. 多变量回归分析方法:通过分析多个影响负荷的变量,如天气、工作日等,建立回归模型来预测负荷需求。
这种方法可以考虑到多个影响因素的综合作用。
3. 人工神经网络方法:使用神经网络模型来学习和预测负荷需求。
这种方法可以通过训练网络来自适应地学习负荷的复杂关系。
4. 支持向量机方法:使用支持向量机模型来建立负荷预测模型。
这种方法可以处理非线性关系和高维数据。
5. 智能优化方法:使用智能优化算法,如遗传算法、粒子群算法等,来寻找最优的负荷预测模型参数。
这种方法可以提高预测的准确性和效率。
以上是一些常用的负荷预测方法,不同方法适用于不同的负荷特点和需求。
在实际应用中,可以根据具体情况选择合适的方法或结合多种方法来进行负荷预测。
智能电网中的负荷预测与优化控制智能电网是以网络化通信、大数据、人工智能和新能源技术为特点的电力系统,可以实现电力生产、传输、分配和使用的智能化管理和调度。
负荷预测和优化控制作为智能电网中重要的技术手段,可以提高电力系统的稳定性、安全性和经济性。
一、负荷预测负荷预测是指根据历史数据、气象预报、节假日等因素,预测未来一定时间段内的负荷需求。
负荷预测可以为电力生产和调度提供决策参考,如预测潮流峰值,选择合理的机组组合,优化电力调度计划等。
现有的负荷预测技术主要包括时间序列分析、神经网络、灰色系统、支持向量机等方法。
时间序列分析是最早也是最常用的负荷预测方法,其原理是将时间序列分解为趋势、季节、循环等部分,并进行回归分析和误差修正。
神经网络是一种模拟人脑神经细胞之间联结关系的算法,其优点在于自适应性强,可以自动学习历史数据中的模式和规律。
灰色系统是一种非参数分析方法,适用于数据样本较少和复杂度较高的情况下。
支持向量机是一种基于统计学习理论的方法,可以将复杂的非线性问题转化为高维空间的线性问题,在数据量大、噪声干扰较大的情况下表现良好。
二、优化控制优化控制是指通过调整发电机组的出力、电力输送的路径和电力市场价值等手段,使得电力系统的性能指标最优化。
常见的优化目标包括最小化发电成本、降低损耗、优化电网结构、提高电力质量等。
优化控制主要分为静态优化和动态优化两种方法。
静态优化是指在某一时刻或一段时间内,通过对电力系统进行模拟计算和分析,确定最优的调度计划。
静态优化方法包括整数规划、线性规划、非线性规划、动态规划等。
动态规划是一种动态决策过程最优化的模型,通过逐步选择最佳控制状态和控制动作,使得系统的性能指标最优化。
动态规划方法需考虑随时间变化的电力需求和电力负荷,具有全局优化的能力,但计算复杂度较高。
动态优化是指在电力系统运行过程中,通过实时监测和预测电力负荷情况,采取相应的调整策略,使系统性能最优化。
动态优化方法包括模型预测控制、反演控制、自适应控制等。