红外光谱实验报告
- 格式:docx
- 大小:123.77 KB
- 文档页数:5
红外光谱的分析实验报告红外光谱的分析实验报告引言:红外光谱是一种重要的分析技术,广泛应用于化学、材料科学、生物医学等领域。
本实验旨在通过红外光谱仪对不同化合物进行分析,探索其在结构鉴定和物质性质研究中的应用。
实验方法:1. 实验仪器:红外光谱仪2. 实验样品:甲醇、乙醇、苯酚、苯甲酸3. 实验步骤:a. 将样品制备成均匀的固体样品,并放置于红外光谱仪的样品室中。
b. 启动红外光谱仪,选择合适的波数范围和扫描速度。
c. 点击开始扫描按钮,记录红外光谱图。
实验结果与分析:通过红外光谱仪获得了甲醇、乙醇、苯酚和苯甲酸的红外光谱图。
根据图谱中的吸收峰和波数,可以初步判断样品的官能团和分子结构。
1. 甲醇:甲醇红外光谱图中出现了一个宽而强烈的吸收峰,波数约为3400 cm-1,这是由于甲醇中的羟基(-OH)引起的。
另外,还可以观察到波数约为1050 cm-1处的吸收峰,这是由于甲醇中的C-O键引起的。
这些特征峰表明样品中存在醇官能团。
2. 乙醇:乙醇红外光谱图中也出现了一个宽而强烈的吸收峰,波数约为3400 cm-1,这同样是由于乙醇中的羟基(-OH)引起的。
此外,还可以观察到波数约为2900 cm-1处的吸收峰,这是由于乙醇中的C-H键引起的。
这些特征峰进一步验证了样品中存在醇官能团。
3. 苯酚:苯酚红外光谱图中出现了一个宽而强烈的吸收峰,波数约为3400 cm-1,同样是由于苯酚中的羟基(-OH)引起的。
此外,还可以观察到波数约为1600 cm-1处的吸收峰,这是由于苯酚中的芳香环引起的。
这些特征峰表明样品中存在酚官能团和芳香环。
4. 苯甲酸:苯甲酸红外光谱图中出现了一个宽而强烈的吸收峰,波数约为3400 cm-1,同样是由于苯甲酸中的羟基(-OH)引起的。
此外,还可以观察到波数约为1700 cm-1处的吸收峰,这是由于苯甲酸中的羧基(-COOH)引起的。
这些特征峰表明样品中存在羧酸官能团。
结论:通过红外光谱分析,我们成功地鉴定了甲醇、乙醇、苯酚和苯甲酸样品中的官能团和分子结构。
红外光谱的分析实验报告引言红外光谱分析是一种常用的分析技术,通过测量物质对红外辐射的吸收特性,可以获得物质的结构和组成信息。
本实验旨在通过红外光谱仪测量不同样品的红外光谱,并利用谱图进行分析和鉴定。
实验步骤1. 实验准备准备实验所需的设备和试剂,包括红外光谱仪、样品、红外透明片等。
2. 样品制备将待分析的样品制备成适合红外光谱测量的形式。
常见的制备方法包括固态压片法、涂布法等,根据样品的性质选择合适的制备方法。
3. 样品测量将制备好的样品放置在红外光谱仪的样品台上,调整仪器参数并启动测量程序。
确保样品与红外辐射充分接触,并保持稳定的测量条件。
4. 数据处理将测量得到的光谱数据导出,并进行必要的数据处理。
常见的处理方法包括基线校正、光谱峰位标定等。
5. 谱图分析根据处理后的数据,绘制红外光谱谱图。
观察谱图中的吸收峰位、强度等特征,并与已知谱图进行比对。
6. 结果与讨论根据谱图分析结果,对样品的结构和组成进行推测和讨论。
分析不同峰位的吸收特性,并与已有文献进行对比和验证。
实验结果1. 实验数据测量得到的红外光谱数据如下:波数(cm-1)吸光度1000 0.1231100 0.2341200 0.456……2. 谱图分析根据实验数据绘制得到的红外光谱谱图如下图所示:在此插入红外光谱谱图的Markdown代码3. 结果讨论根据谱图分析,样品中出现了多个吸收峰位,其中波数为1200 cm-1附近的吸收峰较为明显。
根据已有文献,该峰位与C-O键的振动有关,可以推测样品中含有羧酸基团。
此外,还观察到其他峰位,需要进一步分析和鉴定。
结论通过红外光谱分析实验,我们获得了样品的红外光谱谱图,并推测了样品中可能存在的功能基团。
进一步的实验和分析将有助于确认样品的结构和组成,为后续的研究工作提供基础数据。
参考文献[1] 张三, 李四. 红外光谱分析方法研究进展. 分析化学, 20XX, XX(XX): XX-XX.[2] 王五, 赵六. 红外光谱鉴定有机化合物的应用研究. 物理化学学报, 20XX,XX(XX): XX-XX.以上为红外光谱的分析实验报告,通过测量样品的红外光谱并进行谱图分析,我们可以获得样品的结构和组成信息,为进一步的研究提供重要参考。
一、实验目的1. 了解红外光谱的基本原理和操作方法。
2. 掌握红外光谱在有机化合物结构分析中的应用。
3. 通过对样品的红外光谱分析,判断其结构特征。
二、实验原理红外光谱是利用分子对红外光的吸收特性来研究分子结构和化学键的一种方法。
当分子吸收红外光时,分子内部的振动和转动能级发生变化,导致分子振动频率和转动频率的变化。
根据分子振动和转动频率的不同,红外光谱可以分为三个区域:近红外区、中红外区和远红外区。
中红外区是红外光谱分析的主要区域,因为它包含了大量的官能团特征吸收峰。
三、实验仪器与试剂1. 仪器:红外光谱仪、样品池、电子天平、移液器、干燥器等。
2. 试剂:待测样品、溴化钾压片剂、溶剂等。
四、实验步骤1. 样品制备:将待测样品与溴化钾按照一定比例混合,制成压片剂。
2. 样品测试:将制备好的样品放入样品池,置于红外光谱仪中,进行光谱扫描。
3. 数据处理:将扫描得到的光谱数据进行分析,识别特征吸收峰,判断样品的结构特征。
五、实验结果与分析1. 样品A的红外光谱分析(1)在3350cm-1附近出现一个宽峰,说明样品A中含有O-H键。
(2)在2920cm-1和2850cm-1附近出现两个尖锐峰,说明样品A中含有C-H键。
(3)在1720cm-1附近出现一个尖锐峰,说明样品A中含有C=O键。
(4)在1230cm-1附近出现一个尖锐峰,说明样品A中含有C-O键。
根据以上分析,样品A可能为含有O-H、C=O和C-O键的有机化合物。
2. 样品B的红外光谱分析(1)在3350cm-1附近出现一个宽峰,说明样品B中含有O-H键。
(2)在2920cm-1和2850cm-1附近出现两个尖锐峰,说明样品B中含有C-H键。
(3)在1640cm-1附近出现一个尖锐峰,说明样品B中含有C=C键。
(4)在1040cm-1附近出现一个尖锐峰,说明样品B中含有C-O键。
根据以上分析,样品B可能为含有O-H、C=C和C-O键的有机化合物。
红外光谱实验报告引言:光谱是研究物质结构和性质的重要手段之一。
其中,红外光谱作为一种常用的分析技术,被广泛应用于物质的鉴定、分析和表征。
本实验旨在通过红外光谱仪器验证不同物质的红外吸收特性,并对实验结果进行分析和解释。
实验材料和仪器:本次实验所用的样品包括有机化合物甲醇、乙醇和丙酮等。
实验使用的主要仪器是一台红外光谱仪,其原理基于样品与特定波长的红外辐射相互作用,通过检测被样品吸收、散射或透射的红外辐射,得到相应的红外光谱图谱。
实验步骤:1. 样品制备:将甲醇、乙醇和丙酮分别取少量于试管中。
2. 实验操作:将试管放入红外光谱仪中,进行光谱扫描操作。
3. 结果记录:记录各样品的红外光谱图谱,并进行观察和分析。
实验结果与讨论:通过实验操作得到的红外光谱图谱如下图所示(图1)。
[插入图1]从图中可以看出,甲醇、乙醇和丙酮的红外吸收峰位数目和位置存在明显差异。
接下来,我们将对各个样品的红外吸收峰进行解析。
甲醇样品:在图谱中可观察到两个主要峰位,分别出现在3000-3400 cm-1和1000-1300 cm-1范围内。
前一个峰位为甲醇分子中的O-H伸缩振动,后一个峰位则表示甲醇中的C-O伸缩振动。
乙醇样品:与甲醇样品类似,乙醇样品的红外光谱中也可观察到两个主要峰位,分别位于3000-3500 cm-1和1050-1270 cm-1范围内。
两个峰位的解释与甲醇相似,分别对应乙醇中的O-H伸缩振动和C-O伸缩振动。
丙酮样品:与甲醇、乙醇不同,丙酮样品的红外光谱图中只有一个主要峰位,出现在1710-1740 cm-1的范围内,对应着丙酮分子中的C=O伸缩振动。
通过对比不同样品的红外光谱图谱和相应峰位的分析,我们可以发现不同化合物的红外吸收峰位存在差异,这正是红外光谱技术可以用于物质鉴定和分析的基础。
实验结论:通过对甲醇、乙醇和丙酮等有机化合物的红外光谱实验观察和分析,我们验证了红外光谱技术在物质鉴定和分析中的有效性。
一、实验目的1. 了解红外光谱的基本原理和应用领域。
2. 掌握红外光谱仪的操作方法和实验技巧。
3. 通过红外光谱分析,对样品进行定性鉴定。
二、实验原理红外光谱(Infrared Spectroscopy)是一种利用分子对红外辐射的吸收特性进行物质定性和定量分析的技术。
当分子中的化学键振动和转动时,会吸收特定频率的红外光,从而产生红外光谱。
红外光谱具有特征性强、灵敏度高、样品用量少等优点,广泛应用于有机化学、材料科学、生物医学等领域。
三、实验仪器与试剂1. 仪器:红外光谱仪、样品池、紫外-可见分光光度计、电子天平、干燥器等。
2. 试剂:待测样品、标准样品、溶剂等。
四、实验步骤1. 样品制备:将待测样品研磨成粉末,过筛后备用。
2. 样品池准备:将样品池清洗干净,晾干后备用。
3. 样品测试:将样品放入样品池中,进行红外光谱扫描。
扫描范围为4000-400cm-1,分辨率设置为2cm-1。
4. 数据处理:将得到的红外光谱数据导入数据处理软件,进行基线校正、平滑处理等操作。
5. 定性分析:将处理后的红外光谱与标准样品光谱进行比对,结合化学知识,对样品进行定性鉴定。
五、实验结果与分析1. 样品A:经过红外光谱分析,样品A的特征峰与标准样品光谱一致,鉴定为化合物A。
2. 样品B:样品B的红外光谱特征峰与标准样品光谱存在差异,但经过化学知识分析,推断样品B为化合物B。
3. 样品C:样品C的红外光谱特征峰与标准样品光谱一致,鉴定为化合物C。
六、实验讨论与心得1. 实验过程中,样品池的清洁度对实验结果有较大影响。
实验前需确保样品池干净、干燥。
2. 在数据处理过程中,基线校正和平滑处理是提高光谱质量的重要步骤。
3. 红外光谱分析具有较好的准确性和可靠性,但在进行定性鉴定时,还需结合化学知识进行分析。
4. 实验过程中,注意红外光谱仪的操作安全,避免仪器损坏。
5. 本实验加深了对红外光谱原理和操作方法的理解,提高了样品分析能力。
实验报告红外光谱实验实验报告:红外光谱实验一、实验目的本次红外光谱实验的主要目的是学习和掌握红外光谱的基本原理、仪器操作方法,以及通过对样品的红外光谱分析,确定样品的化学结构和官能团信息。
二、实验原理红外光谱是基于分子振动和转动能级跃迁产生的吸收光谱。
当红外光照射到分子时,分子中的化学键会吸收特定频率的红外光,从而引起分子振动和转动能级的跃迁。
不同的化学键具有不同的振动频率,因此通过测量样品对不同频率红外光的吸收情况,可以得到样品的红外光谱图。
根据量子力学理论,分子的振动可以近似地看作是简谐振动。
对于双原子分子,其振动频率可以用以下公式计算:\\nu =\frac{1}{2\pi}\sqrt{\frac{k}{\mu}}\其中,\(\nu\)为振动频率,\(k\)为化学键的力常数,\(\mu\)为折合质量。
对于多原子分子,其振动形式更加复杂,但可以将其分解为不同的振动模式,如伸缩振动和弯曲振动等。
红外光谱图通常以波数(\(cm^{-1}\))为横坐标,表示红外光的频率;以吸光度(或透光率)为纵坐标,表示样品对红外光的吸收程度。
三、实验仪器与试剂1、仪器傅里叶变换红外光谱仪(FTIR)压片机玛瑙研钵干燥器2、试剂溴化钾(KBr,光谱纯)待测样品(如苯甲酸、乙醇等)四、实验步骤1、样品制备固体样品:采用 KBr 压片法。
称取约 1-2mg 待测样品于玛瑙研钵中,加入约 100-200mg 干燥的 KBr 粉末,充分研磨混合均匀。
将混合好的粉末转移至压片机模具中,在一定压力下压制成透明的薄片,放入干燥器中备用。
液体样品:采用液膜法。
将待测液体滴在两氯化钠晶片之间,形成均匀的液膜。
2、仪器操作打开红外光谱仪和计算机,预热 30 分钟。
进入仪器操作软件,设置实验参数,如扫描范围、分辨率、扫描次数等。
将制备好的样品放入样品室,进行光谱扫描。
3、数据处理对扫描得到的原始光谱图进行基线校正、平滑处理等。
对处理后的光谱图进行峰位识别和归属,确定样品中的官能团。
实验报告红外光谱测定物质结构实验实验报告:红外光谱测定物质结构实验引言:本实验旨在通过红外光谱仪器对给定的物质进行测试,以确定其分子结构和功能基团。
红外光谱是分析有机和无机物质结构的重要方法之一,通过测定物质在红外光波长上的吸收区域,可以了解物质分子的振动和转动信息,从而推断出物质的结构和组成。
1. 实验设计1.1 实验目的通过红外光谱测定给定物质的吸收峰和特征波数,确定物质的结构和功能基团。
1.2 实验原理红外光谱的原理是利用红外光波长下光的吸收特性与物质的振动和转动状态相关。
物质中的化学键和功能基团会吸收特定波数的红外光,在红外光谱图上形成吸收峰。
这些吸收峰的位置和强度可以提供物质结构和功能基团的信息。
1.3 实验步骤1. 首先,将待测物质样品制备成适当形式,如将其压片或溶解于适宜的溶剂中。
2. 将样品放入红外光谱仪器中,调整仪器的参数,如光源强度、扫描范围等。
3. 启动仪器开始扫描,记录红外光谱数据。
4. 根据红外光谱数据分析吸收峰的位置和形状,推断物质分子的结构和功能基团。
2. 实验结果与讨论2.1 实验结果根据实验操作,得到了物质A的红外光谱图,如下图所示。
(插入红外光谱图)2.2 结果分析根据红外光谱图,我们可以看到在波数范围X到Y之间出现了多个吸收峰。
根据化学键的特性和功能基团的吸收特点,我们可以推测物质A的结构和功能基团如下:(根据实际情况,增加关于物质A的结构和功能基团的推测)2.3 讨论红外光谱的分析结果对于确定物质结构和功能基团具有重要意义。
然而,在实际操作中可能会存在一些误差和限制。
例如,有些物质吸收峰重叠或弱,导致结构和功能基团的推断不够准确。
此外,样品制备和仪器参数的选择也会对结果产生影响。
因此,在进行红外光谱分析时,需要综合考虑多种因素。
3. 结论通过红外光谱测定,我们成功确定了物质A的结构和功能基团。
这一实验结果对于进一步研究物质的性质以及开展相关领域的科学研究具有重要意义。
一、实验目的1. 熟悉红外光谱仪的基本结构和工作原理;2. 掌握红外光谱仪的操作方法;3. 学习利用红外光谱图进行物质定性和定量分析;4. 培养实验操作能力和分析问题能力。
二、实验原理红外光谱法是利用分子振动和转动能级跃迁产生的吸收光谱来研究物质的分子结构、化学键和官能团的方法。
红外光谱仪通过发射红外光照射样品,样品中的分子吸收特定波长的红外光后,分子振动能级和转动能级发生跃迁,产生特征吸收峰。
根据特征吸收峰的位置、形状和强度,可以分析样品的化学组成和结构。
三、实验仪器与试剂1. 仪器:红外光谱仪、样品池、红外灯、数据采集系统等;2. 试剂:待测样品、溶剂、标准品等。
四、实验步骤1. 样品制备:将待测样品用溶剂溶解或研磨成粉末,制备成合适浓度的溶液或悬浮液;2. 样品池清洗:用蒸馏水清洗样品池,并用待测溶液冲洗3-5次,然后用氮气吹干;3. 样品池填充:将待测溶液或悬浮液注入样品池,填充高度约为1/3;4. 样品池密封:将样品池密封,防止样品挥发或受污染;5. 样品池定位:将样品池放入红外光谱仪样品池槽中,调整样品池位置,确保样品池中心与红外灯对准;6. 数据采集:打开红外光谱仪,设置合适的扫描参数(如波长范围、分辨率、扫描次数等),开始扫描样品;7. 数据处理:将采集到的光谱数据导入计算机,进行基线校正、平滑处理等预处理,然后利用软件进行定量分析。
五、实验结果与分析1. 样品红外光谱图:在红外光谱图中,可以看到一系列的吸收峰,这些吸收峰对应于分子中的不同化学键和官能团。
根据吸收峰的位置、形状和强度,可以分析样品的化学组成和结构。
2. 定性分析:通过比较样品红外光谱图与标准品红外光谱图,可以初步判断样品中是否存在特定的官能团。
例如,在实验中,我们通过比较样品与标准品红外光谱图,发现样品中存在羰基、羟基、酯基等官能团。
3. 定量分析:利用红外光谱图中的特征吸收峰,可以计算样品中特定官能团的含量。
例如,在实验中,我们通过计算样品中羰基、羟基、酯基等官能团的吸收峰强度,得到样品中这些官能团的相对含量。
一、实验目的1. 了解红外光谱分析的基本原理和应用领域。
2. 掌握红外光谱仪的结构、操作方法及实验技巧。
3. 学会利用红外光谱对样品进行定性、定量分析。
4. 培养实验操作能力和数据分析能力。
二、实验原理红外光谱分析是利用物质分子对红外光的吸收特性进行定性和定量分析的方法。
当分子吸收红外光时,分子中的化学键会发生振动和转动,从而产生特征的红外光谱。
通过对比标准样品的红外光谱和待测样品的红外光谱,可以鉴定物质的化学结构和组成。
三、实验仪器与试剂1. 仪器:红外光谱仪、样品池、电子天平、剪刀、镊子等。
2. 试剂:待测样品、标准样品、溴化钾压片剂等。
四、实验步骤1. 样品制备:将待测样品和标准样品分别剪成约2mm×2mm的小块,然后与溴化钾压片剂混合均匀,压成薄片。
2. 样品测试:将制备好的样品放入样品池,使用红外光谱仪进行测试。
设置合适的扫描范围和分辨率,对样品进行红外光谱扫描。
3. 数据处理:将扫描得到的红外光谱与标准样品的红外光谱进行对比,分析待测样品的化学结构和组成。
4. 结果分析:根据红外光谱的特征峰,鉴定待测样品的化学结构,并计算其含量。
五、实验结果与分析1. 样品A:红外光谱在3340cm-1处出现宽峰,为O-H伸缩振动峰;在1650cm-1处出现峰,为C=O伸缩振动峰;在1500cm-1处出现峰,为C-O伸缩振动峰。
综合分析,样品A为羧酸类物质。
2. 样品B:红外光谱在2920cm-1和2850cm-1处出现峰,为C-H伸缩振动峰;在1730cm-1处出现峰,为C=O伸缩振动峰;在1230cm-1处出现峰,为C-O伸缩振动峰。
综合分析,样品B为酮类物质。
3. 样品C:红外光谱在3340cm-1和1630cm-1处出现峰,为N-H伸缩振动峰;在1600cm-1处出现峰,为C=C伸缩振动峰;在1450cm-1处出现峰,为C-O伸缩振动峰。
综合分析,样品C为酰胺类物质。
六、实验讨论与心得1. 红外光谱分析是一种常用的定性、定量分析方法,具有快速、简便、准确等优点。
一、实验目的1. 了解傅里叶变换红外光谱仪的基本构造及工作原理。
2. 掌握红外光谱分析的基础实验技术。
3. 学会用傅里叶变换红外光谱仪进行样品测试。
4. 掌握几种常用的红外光谱解析方法。
二、实验原理红外光谱是一种利用物质对红外光的吸收特性来进行定性、定量分析的方法。
当物质分子受到红外光的照射时,分子内部的运动和振动会发生变化,从而产生吸收光谱。
根据吸收光谱的特征,可以鉴定物质的化学结构和组成。
傅里叶变换红外光谱仪(FTIR)是一种常用的红外光谱分析仪器,它利用傅里叶变换技术将红外光信号转换成光谱信号,提高了光谱分析的灵敏度和分辨率。
三、实验仪器与试剂1. 仪器:傅里叶变换红外光谱仪、样品制备器、样品池、干燥器等。
2. 试剂:苯甲酸、碳酸钙、聚乙烯醇、丙三醇、乙醇等。
四、实验步骤1. 样品制备:将待测物质与干燥的溴化钾粉末按一定比例混合,压制成透明薄片,放入样品池中。
2. 仪器调试:打开傅里叶变换红外光谱仪,进行系统预热和仪器调试,确保仪器处于正常工作状态。
3. 样品测试:将制备好的样品放入样品池,调整波长范围为4000~400cm-1,进行红外光谱扫描。
4. 数据处理:将扫描得到的光谱数据导入计算机,进行基线校正、平滑处理等,得到红外光谱图。
5. 红外光谱解析:根据红外光谱图,分析样品的官能团和化学结构,确定物质的组成。
五、实验结果与分析1. 苯甲酸的红外光谱分析:苯甲酸的红外光谱图显示,在1640cm-1和1710cm-1处有明显的吸收峰,分别对应于羰基的伸缩振动和羧基的伸缩振动。
在2920cm-1和2850cm-1处有吸收峰,对应于甲基和亚甲基的伸缩振动。
根据这些特征峰,可以确定样品为苯甲酸。
2. 碳酸钙的红外光谱分析:碳酸钙的红外光谱图显示,在870cm-1和1430cm-1处有明显的吸收峰,分别对应于碳酸根离子的对称伸缩振动和不对称伸缩振动。
在515cm-1处有吸收峰,对应于碳酸根离子的振动。
、实验目的
1、掌握溴化钾压片法制备固体样品的方法;
2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法;
3、初步学会对红外吸收光谱图的解析。
二、实验原理
红外光是一种波长介于可见光区和微波区之间的电磁波谱。
波长在〜1000卩m。
通常又把这个波段分成三个区域,即近红外区:波长在〜卩m (波数在13300〜4000cm-1 ),又称泛频区;中红外区:波长在〜50卩m (波数在4000〜200cm-1),又称振动区;远红外区:波长在50〜1000卩m (波数在200〜10cm-1),又称转动区。
其中中
红外区是研究、应用最多的区域。
红外区的光谱除用波长入表征外,更常用波数b表征。
波数是波长的倒数,表示单位厘米波长内所含波的数目。
其关系式为:
三、仪器和试剂
1、仪器:美国尼高立IR-6700
2、试剂:溴化钾,聚乙烯,苯甲酸
3、傅立叶红外光谱仪(FTIR的构造及工作原理
四、实验步骤
1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650CM1进行波数扫描,得到吸收光谱。
2、测绘苯甲酸的红外吸收光谱一一溴化钾压片法
取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约 2 卩m),使之混合均匀。
取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。
将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,
得到吸收光谱。
五、注意事项
1、实验室环境应该保持干燥;
2、确保样品与药品的纯度与干燥度;
3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果;
4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。
5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当
六、数据处理
该图中在波数700~800 1500~1600 2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。
表一聚乙烯的红外光谱
该物质谱图在500~2000之间的峰形颇多,可以先判断为芳香烃化合物,同时在2400~3400处有连续峰形,可能是酸的0-H伸缩振动。
该化合物可能是含苯环的酸性物质,推测为苯甲酸。
表二苯甲酸的红外光谱
七、实验结果的分析讨论
1、由图谱发现,由于分子间氢键的存在,不同分子之间发生了缔合,使振动频率减少导致吸收峰低移,谱带变宽。
2、与所查图谱相比,绘制的红外光谱图吸光度较弱,是因为CO2 浓度高,样品受潮湿影响,压片
薄膜的薄厚程度产生的影响。
八、思考题
1)为什么要选用KBr作为来承载样品的介质
KBr为一种无色晶体,相对NaC I来讲具有很好的延展性。
而且KBr对红外光吸收很小,因此可以测绘全波段光谱图。
2)红外光谱法对试样有什么要求
(a)试样应为“纯物质”(98%),通常在分析前,样品需要纯化,可以通过分馏、萃取、重结晶等分离和精制的方法;
(b)试样不含有水(水可产生红外吸收且侵蚀吸收室的盐窗;
(c)试样浓度或厚度应适当,使光谱图中的大多数吸收峰投射在合适范围内。
3)红外光谱法制样有哪些方法固体试样最常用的是压片法,此外还有石蜡糊法和薄膜法;液体试样一般采用液体池法和液膜法。
4)傅立叶变换红外光谱仪的特点:扫描速度快;具有很高的分辨率;灵敏度高;波数准确度高;光学部件简单;多通路等。