半导体二极管极其电路
- 格式:doc
- 大小:657.50 KB
- 文档页数:5
什么是二极管及其在电路中的应用二极管是一种具有两个电极的电子器件,是最简单的半导体器件之一。
它由一个p型半导体和一个n型半导体组成,两者通过pn结相连。
二极管的主要特性是具有单向导电性,即只能允许电流从正向流向负向,反向时几乎没有电流通过。
一、二极管的基本原理二极管的工作原理基于半导体物理学中的P-N结理论。
P-N结由p型半导体和n型半导体界面组成,当两者接触时,在界面区域形成一个电场。
在正向偏置情况下,即将正电压施加在p端,负电压施加在n端时,电场会将电子从n端推向p端,同时将空穴从p端推向n端,这样就形成了电流。
而在反向偏置情况下,电场会阻碍电子和空穴的移动,基本上没有电流通过。
二、二极管的基本类型常见的二极管有正向型二极管(正极性二极管)和反向型二极管(负极性二极管)。
正向型二极管只有在正向电压下才能导通,反向型二极管则只有在反向电压下才能导通。
三、二极管的应用1.整流器:由于二极管具有单向导电性,可以将交流电转换为直流电。
在通信设备和电源供应中经常使用整流二极管来转换电流。
2.电压调节器:二极管可以通过改变它的正向电压来实现电流的稳定流动。
在稳压电源中,二极管可以用于稳定输出电压。
3.信号检测:二极管可以用作信号检测器。
例如,在无线电接收器中,二极管可以将无线电信号转换为音频信号。
4.光电元件:在光电二极管中,光线照射到二极管上会产生电能。
这种特性使得光电二极管广泛应用于光电转换、光通信等领域。
5.调制解调器:在调制解调电路中,二极管可以用作解调器,将模拟信号恢复为原始信号。
6.保护电路:二极管也可以用于保护电路,例如过压保护、过流保护等。
在这些电路中,二极管可以截断超过一定电压或电流的信号,以保护其他电子元件。
结论:二极管作为一种常见的电子器件,具有许多重要的应用。
通过充分利用其单向导电性和电场控制能力,可以在电路中实现整流、调节、检测、保护等多种功能。
在日常生活和各种技术领域中,二极管的应用非常广泛,是现代电子技术中不可或缺的关键元素之一。
二极管原理及其基本电路二极管是一种最简单的半导体器件,它具有非常重要的功能和应用。
本文将介绍二极管的原理以及其基本电路。
一、二极管的原理二极管是由一种带有p型半导体和n型半导体的材料组成的。
在p-n 结的区域内,因为半导体的材料特性,会形成一个电势垒。
当外加电压的极性与电势垒形成的方向相反时,电势垒将变得更大,称为反向偏置;当外加电压的极性与电势垒形成的方向一致时,电势垒将变得更小,称为正向偏置。
在二极管的工作中,主要有以下几个重要的特性。
1.正向电压特性:当二极管处于正向偏置状态时,在两端加上正向电压时,电势垒逐渐缩小,直到消失。
在这个过程中,二极管的导电性变得很好。
正向电压越大,二极管导通越好。
2.反向电压特性:当二极管处于反向偏置状态时,在两端加上反向电压时,电势垒逐渐增加。
当反向电压超过反向击穿电压时,二极管就会发生击穿,电流急剧增大,此时二极管就会损坏。
3.导通和截止特性:当二极管处于正向偏置状态时,正向电压不超过一定限制时,二极管会导通。
当正向电压超过这个限制时,二极管截止,不导通。
而当二极管处于反向偏置状态时,无论外加电压的大小,其表现都是开路状态,不导通。
二、二极管的基本电路二极管广泛地应用于各种电路中,下面介绍几个常见的二极管基本电路。
1.正向电压特性测试电路:这是一个测试二极管正向电压特性的电路。
它由一个电压源、一个限流电阻和一个二极管组成。
通过改变电压源的电压,可以测量二极管在不同电压下的电流。
当电压逐渐增加时,电流也逐渐增加,直到达到二极管的最大电流。
2.整流电路:整流电路主要用于将交流电转换为直流电。
它由一个二极管和负载组成。
当二极管处于正向偏置状态时,它允许正向电流通过,从而将正半周期的交流信号变为直流信号。
而当二极管处于反向偏置状态时,它阻止反向电流通过。
3.限流电路:限流电路主要用于限制电流的大小。
它由一个电压源、一个电阻和一个二极管组成。
二极管起到了稳压和限流的作用。
第一章半导体二极管及其电路【教学要求】本章主要介绍了半导体的基础知识及半导体器件的核心环节—PN结。
PN结具有单向导电特性、击穿特性和电容特性。
介绍了半导体二极管的物理结构、工作原理、特性曲线和主要参数。
理想情况下,二极管相当于开关闭合与断开。
介绍了二极管的简单应用电路,包括整流、限幅电路等。
同时还介绍了稳压二极管、发光二极管、光电二极管、变容二极管。
教学内容、要求和重点见如表1.1。
表1.1 教学内容、要求和重点【例题分析与解答】【例题1-1】二极管电路及其输入波形如图1-1所示,设U im>U R,,二极管为理想,试分析电路输出电压,并画出其波形。
解:求解这类电路的基本思路是确定二极管D在信号作用下所处的状态,即根据理想二极管单向导电的特性及具体构成的电路,可获得输出U o的波形。
本电路具体分析如下:当U i增大至U R时,二极管D导通,输出U o被U R嵌位,U o=U R,其他情况下,U o=U i。
这类电路又称为限幅电路。
图1-1【例题1-2】二极管双向限幅电路如图1-2 (a)所示,若输入电压U i=7sinωt (V),试分析并画出电路输出电压的波形。
(设二极管的U on为0.7V,忽略二极管内阻)。
图1-2解:用恒压降等效模型代替实际二极管,等效电路如图1-2(b)所示,当U i<-3.7V时,D2反偏截止,D1正偏导通,输出电压被钳制在-3.7V;当-3.7V<U i <3.7V时,D1、D2均反偏截止,此时R中无电流,所以U o=U i;当3.7V<U i时,D1反偏截止,D2正偏导通,输出电压被钳制在3.7V。
综合上述分析,可画出的波形如图1-20(c)所示,输出电压的幅度被限制在正负3.7V 之间。
【例题1-3】电路如图1-3(a),二极管为理想,当B点输入幅度为±3V、频率为1kH Z的方波,A点输入幅度为3V、频率为100kH Z的正弦波时,如图1-3(b),试画出Uo点波形。
1.半导体二极管及其电路分析【重点】半导体特性、杂质半导体、PN结及其单向导电特性。
【难点】PN结形成及其单向导电特性。
1.1 半导体的基本知识1.1.1 半导体的基本知识(1)导电能力对温度的反应非常灵敏。
(2)导电能力受光照非常敏感。
(3)在纯净的半导体中掺入微量的杂质(指其他元素),它的导电能力会大大增强。
1.1.2 本征半导体纯净的半导体称为本征半导体,常用的本征半导体是硅和锗二晶体。
半导体有两种载流子,自由电子和空穴,如果从本征半导体引出两个电极并接上电源,此时带负电的自由电子指向电源正极作定向运动,形成电子电流,带正电的空穴将向电源负极作定向运动,形成空穴电流,而在外电路中的电流为电子电流和空穴电流之和。
1.1.3 杂质半导体1.N型半导体在硅晶体中掺入微量5价元素,如磷(或者砷、锑等),如图所示。
这种半导体导电主要靠电子,所以称为电子型半导体,简称N型半导本。
在N型半导体中,自由电子是多数载流子,而空穴2.P型半导体如果在硅晶体中,掺入少量的3价元素硼(铟、钾等),如图1-5所示。
这种半导体的导电主要靠空穴,因此称为空穴型半导体,有称P型半导体。
P型半导体的空穴是多数载流子,电子是少数载流子。
结论:N型半导体、P型半导体中的多子都是掺入杂质而造成的,尽管杂质含量很微,但它们对半导体的导电能力却有很大影响。
而它们的少数载流子是热运动产生的,尽管数量很少,但对温度非常敏感,对半导体的性能有很大影响。
1.1.4 PN结及其单向导电特性1.PN结的形成结论:在无外电场或其它因素激发时,PN结处于平衡状态,没有电流通过,空间电荷区是恒定的。
另外,在这个区域内,多子已扩散到对方并复合掉了,好像耗尽了一样,因此,空间电荷区又叫做耗尽层。
2.PN结单向导电性(1)正向特性当PN结外加正向电压(简称正偏),电源正极接P,负极接N,PN结处于导通状态,导电时电阻很小。
(2)反向特性当外加反向电压(简称反偏),电源正极接N,负极接P,PN结处于截止状态结论:PN结正偏时电路中有较大电流流过,呈现低电阻,PN结导通;PN结反偏时电路中电流很小,呈现高电阻,PN结截止,可见PN结具有单向导电性。
第一章 半导体二极管极其电路
1、 什么是本征半导体?什么是杂质半导体(N 型、P 型)?
本征半导体是非常纯净的半导体晶体,而在单晶半导体内,原子按晶体结构排列得非常
整齐。
杂质半导体:掺入微量元素的本征半导体,例:N 型掺入五价元素磷,P 型掺入三价
元素硼。
2、在半导体中有几种载流子?半导体的导电方式与金属的导电方式有什么不同?
答:在半导体中有两种载流子,电子和空穴。
而金属导体中只有自由电子参与导电。
3、如何理解电子-空穴对的产生和复合?
电子空穴对的产生与复合是由于自由电子的移动,空穴并不是真正存在的粒子,电子填充空穴位置即复合。
电子离开空穴即产生。
4、在PN 结中什么是扩散电流?什么是漂移电流?
答:PN 结两侧的P 型半导体、N 型半导体掺入的杂质元素不同,其载流子浓度也不相同。
由于存在载流子浓度的差异,载流子会从浓度高的区域向浓度低的区域运动,通常把这种运动称为扩散运动,把扩散运动产生的电流称为扩散电流。
在内电场的作用下,N 区的少数载流子(空穴)会向P 区做定向运动,同样P 区的少数载流子(自由电子)会向N 区做定向运动,这种运动称为漂移运动,由漂移运动产生的电流称为漂移电流。
5、说明扩散运动、漂移运动对空间电荷区(耗尽层)的影响。
答:扩散运动会使空间电荷区变宽、内电场加大;内电场的产生和加强又阻止了多子的扩散,
有助于少子的漂移,结果使空间电荷区变窄,削弱了内电场,如此反复,在P 区和N 区之间,多子的扩散和少子的漂移会形成动态平衡,扩散电流等于漂移电流,总电流等于零,空间电荷区宽度一定,内电场强度一定,PN 结呈电中性。
6、写出PN 结的伏安特性表达式并绘出响应的曲线。
答:PN 结的伏安特性可用下式描述:)1e (T D /s D -=nV v I i
7、 解释雪崩击穿、齐纳击穿、热击穿形成的原因,并说明热击穿与电击穿的异同。
雪崩击穿:当加在PN 结两端反向电压足够大时 PN 结内的自由电子数量激增导致反向电流迅速增大,导致击穿。
齐纳击穿:在PN 结两端加入高浓度的杂质,在不太高的反向电压作用下同样会使反向电流迅 迅增大产生击穿
热击穿:加在PN 结两端的电压和流过PN 结电流的乘积大于PN 结允许的耗散功率,PN 结会因为热量散发不出去而被烧毁
不同:电击穿可逆,热击穿不可逆,需要避免
8、PN结中的势垒电容、扩散电容是如何形成的?
势垒电容:是由空间电荷区产生的,在空间电荷区中缺少载流子、只有不能移动的正、负离子。
且当外加电压发生变化,空间电荷区电荷量发生变化呈现电容效应。
扩散电容:在PN结正偏时,N区电子向P区扩散,靠近结边缘的浓度大,远离结边缘的浓度小,产生电容效应。
9、为什么PN结具有单向导电性?
答:PN结两端加入正向电压时,外场强的方向和内场强的方向相反。
在外场强的作用下,空间电荷区变窄,使扩散运动大于漂移运动,从而产生较大的正向扩散电流(一般为几毫安),此时称PN结处于导通状态。
PN结两端加入反向电压时,外场强的方向和内场强的方向相同。
在外场强的作用下,空间电荷区变宽,阻止了扩散运动,扩散电流接近于零,PN结只存在由少数载流子形成的微小的漂移电流。
又称为反向饱和电流(典型值范围为10-14~10-8A),此时称PN结处于截止状态。
所以PN结具有单向导电性。
10、根据二极管的伏安特性曲线,解释二极管在3个区段(截止区、导通区、击穿区)的工作
情况。
答:二极管的伏安(V−I)特性分为3个区间:①段为正向导通区;②段为反向截止区;③段为反向击穿区。
1.正向特性
在二极管正向偏置且电压比较小时,外加电压不足以克服PN结的内电场,二极管的电流约等于零,二极管等同于一个大的电阻;当正向电压大于门坎电压时,二极管等同于一个小的电阻,因而电流迅速加大,二极管开始导通。
2.反向特性
在二极管反向偏置时,在内电场和外加电压的共同作用下,很容易通过空间电荷区形成反向饱和电流,此时,扩散电流约为零。
由于反向饱和电流是由少数载流子漂移形成的,它的数值一般比较小。
3.击穿特性
当二极管处于反向偏置状态,且反向电压大于击穿电压V BR时,二极管电流迅速增加,这种击穿称为反向击穿。
11、简述二极管基本电路及其分析方法。
答:1.指数模型:
)1
(/D
s
D
-=T V v e
I
i
2.理想模型:当外加电压大于0V时,二极管导通,电阻为0Ω;当外加电压小于0V 时,二极管截止,电阻无穷大。
此模型适用于外加电压远远大于二极管的管压降情况。
3.恒压降模型:当二极管导通时,认为管压降是一个恒定的值,对于硅管典型值是0.7V 。
此模型适用于二极管中的电流大于等于1mA 的情况。
二极管理想模型 二极管恒压降模型
4.折线模型:较真实地描述了二极管的伏安特性,用理想二极管、一个门槛电压为V th (硅管约为0.5V )的电池和一个电阻r D (约200欧)的串联来等效。
5.小信号模型:在直流工作电压的基础上,求出Q 点附近的二极管的等效电阻Q
I r D d mV 26 。
二极管折线模型 二极管小信号模型
12、二极管的四种简化模型时什么?使用小信号模型的条件是什么?
理想模型、折线模型、恒压降模型、小信号模型。
使用小信号模型时,输入信号的幅值一定要小。
13、分析题图1-1中各二极管的工作状态(导通或截止),并求出输出电压,设二极管是理想的。
题图1-1
(a )导通,15o v =V ; (b )截止,35o v =V ; (c )导通,31o v =V ; (d )截止,20o v =V ; (e )导通,46o v =V ; (f )截止,6 2.5o v =V ;
14、分析题图1-2中各二极管的工作状态(导通或截止),并求出输出电压的值。
题图1-2
(a )D (左)截止,D (右)导通,12o v =V ;(b )D (左)导通,D (右)截止,20o v =V ;
15、电路如题图1-3(a )所示,输入电压如题图1-3(b )所示,在0 < t < 5ms 的时间周期内,
画出输出电压的波形。
用恒压降模型,管压降为0.7V 。
题图1-3
16、
17、电路如题图1-5所示,当vi1、vi2、vi3分别输入0V 或5V 电压时,求输出电压vo 的值,用表格的形式给出,如题表1-1所示。
(利用二极管的理想模型)
题表1-1
题图1-5
18、
稳压二极管是根据齐纳击穿效应制成的二极管,流过其的电流变化很大,但是稳压管两端电压变化却很小。
注意事项:
1工作在反向击穿区; 2合理控制稳压管反向工作电流;3 稳压管要和负载并联.
19、
发光二极管将电能转换成光能。
20、
注:为示意图,没
做精确计算
21、
22、在正半周时A、B同向,负半周时反向。
因为该电路是整流电路。
23、理论值:[12/(1+0.5)]﹡0.5 = 4V
实际测量值会小一些:
二极管会有一定的电阻,二极管左端的电压会比4V高一些(4.22V);
二极管会有0.7V的电压降,二极管的右端会比4V低一些(3.54V)。