运筹学 最短路问题--迪科斯屈算法
- 格式:ppt
- 大小:3.03 MB
- 文档页数:12
最短路问题的求解方法最短路问题是图论中的一个经典问题,它在很多实际应用中都有着重要的作用。
在现实生活中,我们经常需要求解最短路径,比如在地图导航、网络通信、交通运输等领域。
因此,研究最短路问题的求解方法具有重要的理论意义和实际应用价值。
在图论中,最短路问题的求解方法有很多种,其中比较经典的有Dijkstra算法、Bellman-Ford算法、Floyd-Warshall算法等。
这些算法各有特点,适用于不同的场景和要求。
下面我们就逐一介绍这些算法的原理和求解方法。
Dijkstra算法是一种用于求解单源最短路径的算法,它采用贪心策略,每次找到当前距离最短的节点进行松弛操作,直到所有节点都被遍历。
Dijkstra算法的时间复杂度为O(V^2),其中V为节点的个数。
这种算法适用于边权值为正的图,可以求解从单个源点到其他所有点的最短路径。
Bellman-Ford算法是一种用于求解单源最短路径的算法,它可以处理边权值为负的图,并且可以检测负权回路。
Bellman-Ford算法的时间复杂度为O(VE),其中V为节点的个数,E为边的个数。
这种算法适用于一般情况下的最短路径求解,但是由于其时间复杂度较高,不适用于大规模图的求解。
Floyd-Warshall算法是一种用于求解所有点对最短路径的算法,它可以处理边权值为正或负的图,但是不能检测负权回路。
Floyd-Warshall算法的时间复杂度为O(V^3),其中V为节点的个数。
这种算法适用于求解图中所有点对之间的最短路径,可以同时求解多个源点到多个目标点的最短路径。
除了上述几种经典的最短路求解算法外,还有一些其他的方法,比如A算法、SPFA算法等。
这些算法在不同的场景和要求下有着各自的优势和局限性,需要根据具体情况进行选择和应用。
在实际应用中,最短路问题的求解方法需要根据具体的场景和要求进行选择,需要综合考虑图的规模、边权值的情况、时间效率等因素。
同时,对于大规模图的求解,还需要考虑算法的优化和并行化问题,以提高求解效率。
Dijkstra算法是一种用于求解最短路径问题的常用算法,适用于带权有向图。
以下是Dijkstra 算法的求解过程:
初始化:将起始节点标记为当前节点,并将起始节点到所有其他节点的距离初始化为无穷大(表示暂时未知)。
将起始节点到自身的距离设置为0,表示起始节点到自身的最短路径长度为0。
遍历所有节点:
选择当前节点的邻接节点中,距离最小且尚未被访问的节点。
更新该邻接节点的最短路径长度。
如果经过当前节点到达该邻接节点的路径比当前记录的最短路径更短,则更新最短路径长度。
继续遍历未访问的节点,直到所有节点都被访问。
重复步骤3,直到所有节点都被访问或者没有可达节点。
最终得到起始节点到其他节点的最短路径长度。
在Dijkstra算法的求解过程中,使用一个距离表(distances)来记录起始节点到各个节点的当前最短路径长度,一个访问表(visited)来标记节点是否已被访问。
同时,使用优先队列(例如最小堆)来选取下一个距离最小且尚未被访问的节点。
具体的实现可以使用迭代或递归的方式,根据实际情况来选择合适的数据结构和算法实现。
在实际编程中,可能还需要考虑处理边的权重、处理节点的邻接关系和路径记录等细节。
Dijkstra算法要求图中的边权重非负,且无法处理负权边的情况。
对于含有负权边的图,可以考虑使用其他算法,如Bellman-Ford算法或SPFA(Shortest Path Faster Algorithm)等。
dijkstra 最短路优化算法
Dijkstra最短路优化算法是一种用于解决单源最短路径问题的
算法,它采用贪心的思想逐步找到从起点到所有其他节点的最短路径。
算法步骤如下:
1. 初始化距离数组dist[],用于记录从起点到每个顶点的最短
距离。
将起点距离设为0,其他顶点的距离设为无穷大。
2. 创建一个优先队列(最小堆)Q,用于存储待选的顶点。
将
起点加入到Q中。
3. 当Q非空时,重复以下步骤:
- 从Q中取出当前距离最小的顶点u。
- 遍历u的所有邻居节点v,并计算起点到v的距离new_dist。
如果new_dist小于dist[v],则更新dist[v]。
- 将v加入到Q中。
4. 重复步骤3,直到Q为空。
该算法的优化主要包括:
1. 使用最小堆可以快速获取当前距离最小的顶点。
2. 使用一个visited数组记录已经访问过的顶点,避免重复计算。
3. 使用优先队列存储待选的顶点,可以按照距离大小自动排序,减少不必要的遍历。
Dijkstra算法的时间复杂度为O((V+E)logV),其中V是顶点数,E是边数。
最短路dijkstra算法详解最短路问题是图论中的一个经典问题,其目标是在给定图中找到从一个起点到其他所有节点的最短路径。
Dijkstra算法是解决最短路问题的一种常用算法,本文将详细介绍Dijkstra算法的原理、实现以及时间复杂度等相关内容。
一、Dijkstra算法的原理Dijkstra算法是一种贪心算法,其基本思想是从起点开始,逐步扩展到其他节点。
具体而言,Dijkstra算法通过维护一个集合S来记录已经找到了最短路径的节点,以及一个数组dist来记录每个节点到起点的距离。
初始时,S集合为空,dist数组中除了起点外所有节点都被初始化为无穷大。
接下来,重复以下步骤直到所有节点都被加入S集合:1. 从dist数组中选择距离起点最近的未加入S集合的节点u;2. 将u加入S集合;3. 更新与u相邻的未加入S集合的节点v的距离:如果从起点出发经过u可以得到更短的路径,则更新v对应位置上dist数组中存储的值。
重复以上步骤直至所有节点都被加入S集合,并且dist数组中存储了每个节点到起点的最短距离。
最后,根据dist数组中存储的信息可以得到起点到任意节点的最短路径。
二、Dijkstra算法的实现在实现Dijkstra算法时,需要使用一个优先队列来维护未加入S集合的节点,并且每次从队列中选择距离起点最近的节点。
由于C++标准库中没有提供优先队列,因此需要手动实现或者使用第三方库。
以下是一个基于STL堆实现的Dijkstra算法代码示例:```c++#include <iostream>#include <vector>#include <queue>using namespace std;const int INF = 0x3f3f3f3f;vector<pair<int, int>> adj[10001];int dist[10001];void dijkstra(int start) {priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;pq.push(make_pair(0, start));dist[start] = 0;while (!pq.empty()) {int u = pq.top().second;pq.pop();for (auto v : adj[u]) {if (dist[u] + v.second < dist[v.first]) {dist[v.first] = dist[u] + v.second;pq.push(make_pair(dist[v.first], v.first));}}}}int main() {int n, m, start;cin >> n >> m >> start;for (int i = 1; i <= n; i++) {dist[i] = INF;}for (int i = 1; i <= m; i++) {int u, v, w;cin >> u >> v >> w;adj[u].push_back(make_pair(v, w));}dijkstra(start);for (int i = 1; i <= n; i++) {if (dist[i] == INF) {cout << "INF" << endl;} else {cout << dist[i] << endl;}}return 0;}```以上代码中,adj数组用于存储图的邻接表,dist数组用于存储每个节点到起点的最短距离。
最短路的算法--Dijkstra算法在图G中,给定s和t两个顶点。
从s到t可以有多条路径,从这多条路中找出长度最的最短路。
设每条弧的长度均为非负值。
小的路,这样的路称为从s到t的最短路。
设每条弧的长度均为非负值。
下面的算法是由狄杰斯特拉(Dijkstra,1959)提出的,其想法是:设已知图中最接近于顶点s的m个顶点以及从顶点s到这些顶点中每一个顶点的最短路(从s到其本身的最短路是零路,即没有弧的路,其长度为0)。
对顶点s和这m个顶点着色。
然后,最接近于s的个顶点可如下求之:第m+1个顶点可如下求之:对于每一个未着色的顶点y,考虑所有已着色顶点x,把弧(x,y)接在从s到x的最短路后面,这样就得到从s到y的m条不同路。
从这m条路中选出最短的路,它就是从s 到y的最短路。
相应的y点就是最接近于s的第m+1个顶点。
因为所有弧的长度都是非负值,所以从s到最接近于s的第m+1个顶点的最短路必然只使用已着色的顶点作为中间顶点。
的最短路为止。
从m=0开始,将这个过程重复进行下去,直至求得从s到t的最短路为止。
算法:狄杰斯特拉最短路算法第1步开始,所有弧和顶点都未着色。
对每个顶点x指定一个数d(x),d(x)表示从s到x 的最短路的长度(中间顶点均已着色)。
开始时,令d(s)=0,d(x)=∞(对所有x≠s)。
y表示已着色的最后一个顶点。
对始点s着色,令y=s。
如下:第2步对于每个未着色顶点x,重新定义d(x)如下:d(x)=min{ d(x),d(y)+a(y,x)} 公式对于所有未着色顶点x,如d(x)=∞,则算法终止。
因为此时从s到任一未着色的顶点都没有路。
否则,对具有d(x)最小值的未着色顶点x进行着色。
同时把弧(y,x)着色(指向顶点x的弧只有一条被着色)。
令y=x。
第3步如果顶点t已着色,则算法终止。
这时已找到一条从s到t的最短路。
如果t未着色,则转第2步。
步。
注意:已着色的弧不能构成一个圈,而是构成一个根在s的树形图,此树形图称为最短路树形图。
最短路的dijkstra算法基本过程
最短路的Dijkstra算法基本过程
Dijkstra算法是用来解决最短路径问题的一种算法,它是由荷兰计算机科学家Edsger W. Dijkstra在1959年发明的,是目前最常用的最短路径算法。
它是以贪心策略为基础的,主要是利用局部最优求全局最优。
基本过程如下:
1. 从起点出发,设计出一个距离变量dist[],初始值为无穷大。
2. 将dist[起点]设置为0。
3. 找出当前最近的顶点u,计算出从起点到u的中间点v的最短路径,并更新dist[v]的值,即dist[v] = min(dist[v], dist[u] + w(u,v)),其中w(u,v)表示从u到v的边的权重。
4. 重复步骤3,直到所有的顶点都被处理完为止。
5. 返回dist[],表示从起点到其他所有点的最短路径。