全国高考数学真题5年考点统计(理数)
- 格式:xls
- 大小:88.50 KB
- 文档页数:21
高中数学近五年高考知识点统计近年来,高考数学成为考生们备受关注的科目之一。
为了帮助考生更好地备考,本文将对近五年高考数学的知识点进行统计和总结。
以下是详细内容:一、数与代数1. 整式与分式运算- 整数的性质与运算- 有理数的性质与运算- 整式的加减乘除- 分式的加减乘除- 分式的化简与恢复- 分式方程2. 公式与方程- 简单的一元一次方程- 一元一次方程组- 二元一次方程组- 二次根式的化简- 二次方程与一元二次方程组- 分数方程3. 数列与数列运算- 等差数列的概念与性质- 等差数列的通项与求和公式 - 等比数列的概念与性质- 等比数列的通项与求和公式 - 递推数列- 二项式展开与组合数二、函数1. 函数的概念与性质- 函数的定义与表示- 函数的图像与性质- 函数的单调性与奇偶性- 函数的周期性与最值2. 初等函数- 幂函数与指数函数- 对数函数与指数方程- 三角函数与三角方程- 反三角函数与三角恒等式 - 组合函数与反函数3. 函数的运算与应用- 函数的四则运算- 复合函数的导数- 函数的图像与变换- 函数的极值与最优化问题三、几何与三角1. 平面几何- 直线与角的性质- 同位角与内错角- 平行线与垂直线- 三角形的性质与判定- 三角形的相似与全等- 圆的性质与切线问题2. 空间几何- 空间中角的性质- 几何体的表面积与体积3. 三角函数与解三角形- 三角函数的定义与性质 - 三角函数的图像与周期 - 三角方程与三角恒等式 - 平面向量与解三角形四、解析几何1. 坐标系与直线- 坐标系的建立与直线方程 - 直线的位置关系与距离 - 垂直平分线与角平分线2. 圆与圆锥曲线- 圆的方程与性质- 圆锥曲线的方程与性质3. 空间直线与平面- 空间中直线与平面的位置关系- 空间中平面的位置关系以上是近五年高考数学的主要知识点,希望考生们可以根据这些内容进行有针对性的复习。
同时,建议考生们在备考过程中注重基础知识的掌握,多做题,做到理解与应用并重。
(1)卷全国高考文理科数学考点分布统计表近五年(含2017)新课标II2010-2017 卷高考理科数学考点分布统计表年新课标20172012 2015 2013 20102016 2011 2014 题次一元二求不等集合运算集合的运算(集合运算复数运算:不等式集(绝对值复数(集合的1 不等式有限集、并集式、除法、无理不等式合运算法、共轭合间关传统文化中的三角函(诱函数性复数平方复数相等复数(除法复数运算几何(单调性排列组合公式正弦和率问除法2乘分式、模的运乘法、共轭)运奇偶性公式逆用奇函数导数(切线复数的概念及等差数统计分函数及特称命题的算法(分式函数一复数运算 3 及其运抽绝对值环,算与简易逻比一次积的奇三角函数(独立重复试验双曲线古典概圆锥曲线圆锥曲线等差数列结合周运动、角几等车互斥事件和点到渐椭圆离(计数双曲线4度、画图,概式运心率公线的距理型思想向量数量积三角函函数的奇偶性双曲线数列等程序框图概率二曲线的标准逻 5 (单调性(定义范数分单调运算性倍角立体几何三视图二项式定理求二项分布的程序框图球体嵌三视图实际应用题球的表6三视功正方体锥体原立体积与体积计(双曲函数图算法(框图三视图空间几何体求数列等心率与平面向量的棱锥体的识别循环结构、程序框7线位置面何运数用了导计项求和系二项式三视图指数函由三角函数函数性质(圆锥曲线导数应用(两个方体与与对数像求单调递8函数、复合等轴双程序框积、特柱组合求切数的性区数线抛物积计项程序框三角函数二项式三角函数平移线性规三角(同角与算法程序框定积单调性数求参9 恒等变换求最的范圆锥曲线立体几何(函数性质抛物线与过焦抛物线抛物线向量与二项式定理韦判断函椭圆10 棱柱与球、点三角开式的系性弦长问定的表面积图像5/ 1(1)近五年新课标(含卷全国高考文理科数学考点分布统计表2017)1平面的截面面问题,分段函数(图立体几何面平行异面直三视图象变换含绝三角函球函数性质球体内指数与函数结ii 性质定理值对数运算(性质柱的表面所成的数形结三棱异面直函数图像所成的函数图三角函导数的综合递数列函数性质双曲线(中(反比的性(函数极用零点取数列新颖规12 三角关弦反函型点、单调范数向量的偶函数,求向量运算二项展随机模拟和向量运算量积及线性规13 向量模长运数量积积求参数标运线性规划二项式(与椭线性规划求最三角函四边形椭圆的顶点三视图(给理指定线的位数列:14最域视图写图形线性的标准方系关系三角函数双曲线与点到直线与圆(球内截函数奇等比数正态分布15 线性规划斜辅助角的距及其应求圆方程切求概性单调函数性质数列已平面图形折叠正余弦定理线性规解三角形(递推关对称性直线与解三角16 形结合思积、求角最大体的应求最项数列正弦定理解三角形项的解三角形与数列(递推等比数三角函数与解余弦定正弦定理数列通项等差数列系叠加、等比(列项正弦定理17 角放缩求余弦定理及三角余弦定错位相减义与通项公式和和求边面积公拆项消去垂直问立体几何立体几何空间垂直判证明面面垂直立几(统计与的证明线线垂四棱锥(线异面线面平行与性质分段体、垂直率系,求二面角18 空间向证明线线面角垂直线所成角的三棱锥二面角数分布余弦算的应5 / 2新课标1(卷全国高考文理科数学考点分布统计表含(1)近五年2017)非线性拟合;线概率与统立体几何:统计与概性回归方程求统计(随机抽计、独立重线性回归随机变服从正态分布模统计概率线线垂直率:利用回归方19样、独立性检法;型及数学期望量的分布证明二面方程(分布列)复试验概程进行预报预验率分布测解析几何直线与圆锥曲圆锥曲抛物线的切线椭圆(直线解析几何(椭圆)的位解析几轨迹方(圆、直线与抛物抛物线解析几何椭圆位置关关系(定(20弦长公式与函综合圆椭圆基本关系、等差位置关系探韦达定理,过法)、韦迹、导数列第一定义计算新问题点问题定导数:利用导数研导数及单线、求曲线的切线导数函数导数(应用(导数应用导数求利用导数求参新概念的理解数、二次、区间不数;不范围研究函数点、范围数不等函数单21分段函数的综合式分类式调性、最值零点问题不等式恒立求分类讨论点论求参分类讨论明取值范圆的切线判四点共圆直线与极坐标与参数与性质圆周(四点几何证几何证22圆、相几何证的位置圆、相似定理直角三系及证形射影定参数方程坐标系坐标系直角坐标方极坐标参数方程直线与圆的参数方程参数方程与极坐标互化程与直参数方数方程、求极坐标不等式证23坐标方直线与圆的求交点极坐标的互化求距置关应不等式不等式绝对值函数(分段函含绝对值不不等绝对值不等(图象,解绝的图像个绝绝对值式解法分段恒24等式个绝值不等式,对值不数一元二次值)、求等值求等式解形结合数的取式的数的范近五2017新课卷高考文科数学考点分布统计题20132014201520162017一元二次不集合运算不集合的运算(复数运算:分式求不等式集合的式、集合运算1式集合间关集、并集除法、交5/ 3近五年(含2017)新课标I卷全国高考文理科数学考点分布统计表(1)5/ 4近五年(含2017)新课标I卷全国高考文理科数学考点分布统计表(1)/ 5。
近五年全国卷数学考点分布全国新课标近五年全国卷数学考点分布全国新课标的文章应由本人根据自身实际情况书写,以下仅供参考,请大家根据自身实际情况撰写。
近五年全国卷数学考点分布全国新课标数学是一门基础学科,对于高考来说,数学也是必考科目之一。
在全国新课标卷中,数学的考点分布是比较稳定的,近五年的考点分布如下:一、代数代数是数学中的一个重要分支,也是高考数学中的必考内容。
在近五年的全国新课标卷中,代数的考点主要集中在以下几个方面:1、集合与逻辑用语。
主要考查集合的基本概念、集合的交并补运算以及充分必要条件的判断。
2、不等式。
主要考查不等式的性质、一元一次不等式(组)的解法以及含有绝对值的不等式的解法。
3、函数与方程。
主要考查函数的定义域、值域、解析式以及函数的性质,同时也考查了解方程的方法,例如换元法、待定系数法等。
4、数列。
主要考查数列的基本概念、通项公式以及前n项和公式的计算。
同时也考查了等差数列和等比数列的性质和计算方法。
二、几何几何是数学中的另一个重要分支,也是高考数学中的必考内容。
在近五年的全国新课标卷中,几何的考点主要集中在以下几个方面:1、平面几何。
主要考查三角形的面积、周长、内切圆半径等计算,四边形的基本性质和判定定理,圆的基本概念和性质,以及直线与圆、圆与圆的位置关系等。
2、立体几何。
主要考查空间几何体的基本概念、性质和计算方法,例如表面积、体积的计算,角度、距离的计算等。
3、解析几何。
主要考查直线、圆、椭圆、双曲线和抛物线的性质和计算方法,例如方程的求解、交点、切线、法线等。
三、概率与统计概率与统计是数学中的一个重要分支,也是高考数学中的必考内容。
在近五年的全国新课标卷中,概率与统计的考点主要集中在以下几个方面:1、概率。
主要考查古典概型和几何概型的概率计算方法,条件概率、相互独立事件概率的计算方法等。
2、统计。
主要考查数据的收集、整理、分析和描述方法,例如平均数、中位数、众数、方差等统计量的计算方法,直方图、折线图等统计图的绘制方法等。
绝密★启用前2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设,则()A.0B.C.D.2.已知集合,则()A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5B.6C.7D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。
专题21 不等式选讲【2024年】1.(2024·新课标Ⅰ)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 【答案】(1)详解解析;(2)7,6⎛⎫-∞- ⎪⎝⎭. 【解析】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-. 所以不等式的解集为7,6⎛⎫-∞-⎪⎝⎭. 2.(2024·新课标Ⅱ)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭. (2)()()()()22222121211f x x a x a x a x a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.3.(2024·新课标Ⅲ)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c . 【答案】(1)证明见解析(2)证明见解析. 【解析】 (1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. ,,a b c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题. 4.(2024·江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤. 【答案】22,3⎡⎤-⎢⎥⎣⎦【解析】1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤所以解集为22,3⎡⎤-⎢⎥⎣⎦【2024年】1.【2024年高考全国Ⅰ卷理数】已知a ,b ,c 为正数,且满意abc =1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++. 【答案】(1)见解析;(2)见解析.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥ =3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥.2.【2024年高考全国Ⅱ卷理数】已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【答案】(1)(,1)-∞;(2)[1,)+∞【解析】(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.3.【2024年高考全国Ⅲ卷理数】设,,x y z ∈R ,且1x y z ++=. (1)求222(1)(1)(1)x y z -++++的最小值; (2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 【答案】(1)43;(2)见详解. 【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥, 当且仅当x =53,y =–13,13z =-时等号成立. 所以222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤≤-+-+-⎣⎦,故由已知2222(2)(2)(1)()3a x y z a +-+-+-≥,当且仅当43a x -=,13a y -=,223a z -=时等号成立. 因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a +≥,解得3a ≤-或1a ≥-.4.【2024年高考江苏卷数学】设x ∈R ,解不等式||+|2 1|>2x x -.【答案】1{|1}3x x x <->或.【解析】当x <0时,原不等式可化为122x x -+->,解得x <13-;当0≤x≤12时,原不等式可化为x+1–2x>2,即x<–1,无解;当x>12时,原不等式可化为x+2x–1>2,解得x>1.综上,原不等式的解集为1{|1}3x x x<->或.【2024年】1. (2024年全国I卷理数)[选修4–5:不等式选讲]已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.【答案】(1).(2).【解析】(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.2. (2024年全国Ⅱ卷理数) [选修4-5:不等式选讲]设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.【答案】(1),(2)【解析】(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是.3. (2024年全国Ⅲ卷理数) [选修4—5:不等式选讲]设函数.(1)画出的图像;(2)当,,求的最小值.【答案】(1)见解析(2)5【解析】(1)的图像如图所示.(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为5。