(整理)丰田普锐斯电机及驱动控制系统解析.
- 格式:doc
- 大小:402.00 KB
- 文档页数:8
学习丰田普锐斯动力系统的体会
丰田普锐斯作为混合动力车型的代表之一,其动力系统结合了发动机和电动机,以提供高效的能源利用和低排放的特点。
通过学习丰田普锐斯动力系统,我对以下几点有所体会:
1. 高效能源利用:丰田普锐斯动力系统采用并联式混合动力系统,使发动机和电动机可以同时或分开工作,根据行驶条件智能地调整能源的利用,提高燃油效率。
这种系统还包括回收制动能量和自动启停功能,进一步提升油耗表现。
2. 低排放环保:丰田普锐斯动力系统采用了先进的排放控制技术,通过优化燃油燃烧过程,减少有害物质的排放,达到更严格的排放标准要求。
电动机在低速行驶时可以独立驱动,完全不产生尾气排放,减少了对环境的污染。
3. 平顺驾驶体验:丰田普锐斯动力系统的发动机和电动机协同工作,能够提供平顺的动力输出。
电动机提供扭矩补充,能够在起步和加速时提供充足的动力,使驾驶过程更加平顺和舒适。
4. 智能能源管理:丰田普锐斯动力系统通过智能能源管理系统,监测车辆的行驶状态和驾驶者的驾驶习惯,自动调整动力输出和能源利用,实现最佳的燃油效率。
这种系统还可以通过可视化界面向驾驶者展示能源利用情况和驾驶行为,帮助驾驶者改善驾驶习惯和节约能源。
总的来说,丰田普锐斯动力系统的学习让我更加了解混合动力技术的优势和应用,也体会到了其高效、环保和智能的特点。
这种技术的发展对于推动汽车行业的可持续发展具有重要意义。
干货:丰田第4代普锐斯混动变速器技术解析,值得收藏!推荐:《混合动力耦合系统构型与耦合装置分析设计方法》一书,详细分析了丰田THS和通用AHS系统,并提出了两种新的构型方案。
文末查看详情。
丰田第四代普锐斯混合动力变速器P610采用了全新的平行双电机结构,号称百公里油耗低至2.5L。
普锐斯前三代THS(丰田混合动力系统)均采用发动机和电机MG1在动力分配行星齿轮组同一侧,电机MG2在另一侧,三者同轴。
最新的第四代THS混合动力变速器P610,电机MG1(太阳轮)和发动机(行星架)依旧同轴,但是分别在行星齿轮组两侧。
电机MG2不再同轴,通过一个反转从动齿轮减速,并与行星齿轮组的齿圈结合。
第四代普锐斯新混动变速器结构示意图其主要参数如下表:新的P610混动变速器具有以下特点:1.轴向总长度减小了47mm,可适应新紧凑型平台;2.减小了重量、机械损失,提高了燃油效率;3.增强了NV(噪音和振动)性能。
更紧凑、重量更轻基于新的齿轮传动、新的电机和双电机平行布置,P610比P410更紧凑,重量更轻,而扭矩相差不大。
总长度比之前的P410缩小了很多(47mm),零件数量和总重量分别降低20%和6.3%。
PCU安装位置PCU安装在变速器顶部,使整个动力总成更加紧凑。
上代普锐斯放置于后备箱的电池,现在就可以安装到发动机舱。
这样能够缩短电缆长度、同时增大后备箱空间。
另外,将动力总成放得更低,使整车重心下降,对动态性能有帮助。
平行轴双电机结构及电机减速装置在上一代的P410变速器中,发电机和驱动电机安装在同一轴上,采用行星齿轮做为电机减速装置。
而采用平行轴双电机结构的P610,其发电机和驱动电机放在不同的轴上,采用了平行齿轮轴做为电机减速装置,大大减小了变速器总长度。
如下图如示,降低电机最大扭矩使得能够缩小电机尺寸。
新的差速器结构采用压装工艺来固定差速器壳体和齿圈。
对比之前的螺栓紧固法,减小了零件数量和尺寸,达到减重的目的。
详解普锐斯动力驱动系统由于丰田Prius汽油/电力混合动力车辆有着跑车的外观、类似航空设备的仪表板显示和无噪声平稳启动,那么一点也不奇怪,该车是同类车型中销售得最快的车辆。
(图1) 可是,除此之外,该车有一个可识别的重要特征:省油。
美国环境保护局(EPS)给出燃油级别:街道上是61英里/加仑(mpg),高速公路(理想测试条件)上是50mpg。
实际的,司机可期待的街道/高速路组合路面的燃油数是45到50mpg. 混合动力汽车的特色是,由汽油发动机发动,然后转换成电池动力以加速。
可是,Prius采取了不同的处理方法,用电池动力发动,然后在速度超过20mph 时,转换到汽油发动机。
虽然Prius有大的突破,但司机不必为了最大限度的节油而从完全制动开始踩油门。
由于美国和世界其他国家曾面临过的最高油价,在另外汽油消费能力不强的市场,Prius的耗油数是个受欢迎的信号。
混合动力系统技术Prius设计是基于Toyota称之为混合动力协同驱动概念。
此概念目标是协同电动马达动力和汽油发动机动力,并使汽车功率和环境性能最大化成为可能。
Prius最近的型号是基于Toyota混合动力总系统II (THS-II)技术。
THS-II系统的每个连续世代的产品改进了汽油燃效和减少散热,包括一个同轴的4缸1.5升发动机,一个高压镍氢电池(NiMH),一个带行星齿轮系统的智能混合动力驱动桥和一个复杂的发动机控制部件(图2)。
两种方法的混合物基本上,两种形式的汽车动力系统都存在:串联和并联。
每个都有各自整套正面和反面的特点。
不象其他混合动力汽油-电动车辆,Prius使两者结合了,并最大化每个的强项和补足他们的弱项。
在串联混合动力系统中,汽油发动机启动发生器,而产生的电流使电动马达驱动车轮(图3)。
汽车运行中,此处使用的低输出功率发动机在最经济的范围内保持汽车以稳定速度行驶,并使之有效的给电池再充电。
在并联混合动力系统中,汽油发动机和电动马达都直接驱动车轮。
丰田普锐斯混合动力汽车构造与维修学习目标1. 了解丰田普锐斯混合动力汽车性能2. 认识THS、变速驱动桥、发动机系统、制动系统和起动系统的结构3. 掌握这些系统的运行模式和工作原理,熟悉诊断流程和方法。
普锐斯混合动力系统组成及运行模式一、概述丰田混合动力汽车的核心技术是丰田混合动力系统(THS-I),它结合了汽油发动机和电机两种动力,通过并联或串联相结合的方式进行工作,以达到良好的动力性、经济性和低排放效果。
2003 年,丰田公司推出了第二代丰田混合动力系统(THS-II),该系统运用在普锐斯和凯美瑞等混合动力车型上。
另外,它采用了由大功率混合动力汽车蓄电池(额定电压为直流201.6V,简称为“HV 蓄电池”)和可将系统工作电压升至最高电压(直流 500V)的增压转换器组成的变压系统。
(1)优良的行驶性能丰田混合动力系统 II(THS-II)采用了由可将工作电压升至最高电压(直流 500V)的增压转换器组成的变压系统,可在高压下驱动电动机一发电机 1(MG1)和电动机一发电机 2(MG2),并以较小电流将与供电相关的电气损耗降到最低。
因此,可以使 MG1 和 MG2 高转速、大功率工作。
通过高转速、大功率 MG2 和高效 1NZ-FXE 发动机的协同作用,达到较高水平的驱动力,使车辆获得优良的行驶性能。
(2)良好的燃油经济性THS-II 通过优化MG2 的内部结构获得高水平的再生能力,从而实现良好的燃油经济性。
THS-II 车辆怠速运转时,发动机停止工作,并在发动机工作效率不良的情况下尽量停止发动机工作,车辆此时仅使用 MG2 来工作。
在发动机工作效率良好的情况下,发动机在发电的同时,使用 MG1 驱动车辆。
因此,该系统以高效的方式影响驱动能量的输入一输出控制,以实现良好的燃油经济性。
THS- Ⅱ车辆减速时,前轮的动能被回收并转换为电能,通过 MG2 对 HV 蓄电池再充电。
(3)低排放 THS-II 车辆怠速运转时,发动机停止工作,并在发动机工作效率不良的情况下尽量停止发动机工作,车辆此时仅使用 MG2 来工作,实现发动机尾气的零排放。
丰田普锐斯电机及驱动控制系统解析
作为全球最成功的环保车型,丰田普锐斯(PRIUS)早已成为油电混合动力车型中的全球销量冠军,即使在我们的身边,也经常可以见到它们的身影。
目前,在国内生产的丰田普锐斯(PRIUS)是采用丰田第二代混合动力系统,集发动机和电动机组合而成的并行混合动力车(图1)。
丰田第二代混合动力系统(THS-Ⅱ),可以根据车辆行驶状态,灵活地使用2
种动力源,并且弥补2种动力源之间不足之处,从而降低燃油消耗,减少有害气体排放,发挥车辆的最大动力。
由于其THS-Ⅱ电机及驱动系统结构复杂,技术先进,本文将为大家详细介绍该系统的结构及基本原理,以帮助读者更进一步了解THS-Ⅱ系统。
一、THS-Ⅱ电机及驱动控制系统的特点
1.在电动机和发电机之间采用AC500V高压电路传输,可以极大地降低动力传输中电能损耗,高效地传输动力。
2.采用大功率电机输出,提高电机的利用率。
当发动机工作效率低时,此系统可以将发动机停机,车辆依靠电机动力行驶。
3.极大地增加了减速和制动过程中的能量回收,提高能量的利用率。
二、THS-Ⅱ电机及驱动系统基本组成
1.HV蓄电池:由168个单格镍氢电瓶(1.2V×6个电瓶×28个模块)组成,额定电压DC20 1.6V,安装在车辆后备厢内。
在车辆起步、加速和上坡时,HV蓄电池将电能提供给驱动电机。
2.混合动力变速驱动桥:混合动力变速驱动桥由发电机MG1、驱动电机MG2和行星齿轮组成(图2)。
3.变频器:由增压转换器、逆变整流器、直流转换器、空调变频器组成。
(1)增压转换器:将HV蓄电池DC201.6V电压增压到DC500V(反之从DC500V降压到DC201.6V)。
(2)逆变整流器:将DC500V转换成AC500V,给电动机MG2供电。
反之将AC500V 转换成DC500V,经降压后,给HV蓄电池充电。
(3)直流转换器:将HV蓄电池DC201.6V降为DC12V,为车身电器供电,同时为备用蓄电池充电。
(4)空调变频器:将HV蓄电池DC201.6V转换成AC201.6V交流电为空调系统中电动变频压缩机供电。
4.HV控制ECU采用32位计算机,接收来自传感器和ECU(发动机ECU、HV蓄电池ECU、制动防滑控制ECU、电动转向ECU)信息。
根据此信息,计算车辆所需的扭矩和功率,将计算结果发送给发动机ECU,变频器总成,蓄电池ECU和制动防滑控制ECU。
三、THS-Ⅱ系统电机(MG1、MG2)工作原理
交流伺服驱动系统中,应用的交流永磁驱动电机有两大类。
一类称为无刷直流同步电动机(BDCM),另一类称为三相永磁同步电动机(PMSM),THS-Ⅱ系统的电机(MG1、MG2)属于BDCM类型的驱动电机。
BDCM用装有永磁体转子代替了有刷直流电动机的定子磁极。
有刷直流电动机依靠机械换向器,将直流电流转换成近似梯形波的交流电流。
而BDCM是将逆变器产生的方波交流电流直接输入电机定子绕组,省去了机械换向器和电刷。
BDCM定子绕组中通
入三相方波交流电流。
定子绕组上会产生感应电动势,生成与永磁转子磁场在空间位置成正交的电枢反应磁场。
在转子永磁铁磁场的作用下,电枢反应磁场以反作用电磁力驱动永磁转子同步旋转(图3)。
四、THS-Ⅱ电机(MG1、MG2)结构
1.MG1、MG2定子绕组采用三相Y形连接,每相由4个绕组并联,可以在给电机输入较大电流下,获得最大转矩和最小转矩脉动。
2.MG1、MG2永磁体转子:采用稀土永磁材料作为永磁铁,安装在转子铁芯内部(内埋式永磁转子)。
转子内的永磁铁为“V”形,这样永磁体既有径向充磁,又有横向充磁,有效集中了磁通量,提高电机的扭矩(图4)。
从永磁转子的磁路特点分析,内埋式永磁转子结构,改变了电机交、直轴磁路,可以改善电机的调速特性,拓宽速度范围。
3.MG1、MG2解角传感器:为了满足电机静止启动和全转速范围内转矩波动的控制目的,需要利用解角传感器精确地测量MG1、MG2永磁转子磁极位置和速度。
解角传感器是采用电磁感应原理制成的旋转型感应传感器,它由定子和转子组成(图5)。
椭圆型转子与MG1、MG2的永磁转子相连接,同步转动。
椭圆型转子外圆曲线代表着永磁转子磁极位置。
定子包括1个励磁线圈和2个检测线圈,2个检测线圈S和C轴线在空间坐标上正交,HV ECU按预定频率的交流电流输入励磁线圈A,随着椭圆型转子的旋转,转子和定子间的间隙发生变化,就会在检测线圈S和C上感应出相位差90°正弦、余弦感应电流,HV ECU根据检测线圈S和C感应电流的波形相位和幅值,以及波形的脉冲次数(图6),计算出MG1和MG2永磁转子的磁极位置和转速值信号,作为HV ECU对电机MG1、MG2矢量控制的基础信号。
五、THS-Ⅱ系统变频器电路
THS-Ⅱ系统变频器主要电路是由电力半导体功率器件绝缘栅双极型晶体管(IGBT)模块组成,变频器总成内的升压转换器、逆变/整流器担负着提供电机MG1、MG2的电能转换与调控任务(图7)。
1.升压转换器
升压直流斩波电路由HV蓄电池、电抗器L、绝缘栅双极型晶体管V8、二极管D7、电容器C组成(图8)。
升压时,HV ECU导通和关断绝缘栅双极型晶体管V8的控制极(绝缘栅双极型晶体管V8起开关作用),使电抗器L上的感应电动势与HV蓄电池DC201.6V电压叠加提供高压电源。
降压直流斩波电路由发电机MG1、逆变/整流器、绝缘栅双极型晶体管V7、二极管D8、电抗器L、电容器C1组成(图9)。
降压时,HV ECU利用绝缘栅双极型晶体管V7导通,把DC500V降压为平均值DC201.6V的直流电压,向HV蓄电池充电。
2.逆变/整流器
逆变电路(以供给MG2电源为例)由绝缘栅双极型晶体管V1-V6、续流二极管D1-D6和电容器C组成电压型三相桥式逆变电路。
由VH ECU触发绝缘栅双极型晶体管控制极,使V1~V6快速导通和关断,强行将DC500V直流电转换成三相AC500V交流电。
如果改变V1~V6的触发信号频率和时间,就能改变逆变器输入电机MG2定子绕组电流空间相量的相位和幅值,以适应电机MG2的驱动需要。
反之,电机MG2在车辆减速或制动时产生再生制动电能,经绝缘栅双极型晶体管V1~V6全控型桥式整流电路整流降压后,向HV蓄电池充电。
六、THS-Ⅱ电机驱动系统的控制
THS-Ⅱ电机驱动系统的控制核心组件是HV ECU,在HV ECU中,变频器对电机MG2输出电流转换的绝缘栅双极型晶体管模块(IGBT模块)的驱动控制电路如图10所示,图中划线部份是变频器控制逆变电路的微处理器。
微机储存的电机MG2速度指令与电机MG2解角传感器的速度反馈信号进行比较,速度控制器输一个直流电流指令信号,经过与电机MG2解角传感器的转子磁极位置信号相乘,得到电机MG2工作所需的电流指令信号,参考跟踪电机MG2实际工作电流信号,通过PWM比较器(脉冲宽度调制)计算后,转换成开关信号输出。
该信号经过隔离电路后,直接驱动变频器三组逆变电路IGBT模块中V1~V6控制极快速导通与关断,实现变频器输出电流的逆变、换相和定向目的。
七、维修THS-Ⅱ电动机及驱动系统注意事项
1.首先必须辨别THS-Ⅱ电动机驱动系统高压回路部份的电线和连接器都为橙色,并与其他线路及车身绝缘。
2.在检查THS-Ⅱ电动机驱动系统高压电路之前,必须戴上绝缘手套,拆下维修插销(图11),放在技师口袋内。
3.断开维修插销,5min内请不要接触任何高压连接器或端子,因为变频器内的高压电容器需要5min的放电时间。
4.当维修插销无法拆下时,可以将发动机舱内的HV保险丝取下(图12),从而达到断开高压线路的目的。
5.安装插销时,必须确认其分离杆锁止是否牢固,否则将会出现THS-Ⅱ系统故障代码。