《分析化学》第十章 紫外-可见分光光度法
- 格式:doc
- 大小:44.50 KB
- 文档页数:2
第十章紫外-可见分光光度法1.名词解释:吸光度、透光率、吸光系数(摩尔吸光系数、百分吸光系数)、发色团、助色团、红移、蓝移。
2.什么叫选择吸收?它与物质的分子结构有什么关系?物质对不同波长的光吸收程度不同,往往对某一波长(或波段)的光表现出强烈的吸收。
这时称该物质对此波长(或波段)的光有选择性的吸收。
由于各种物质分子结构不同,从而对不同能量的光子有选择性吸收,吸收光子后产生的吸收光谱不同,利用物质的光谱可作为物质分析的依据。
3.电子跃迁有哪几种类型?跃迁所需的能量大小顺序如何?具有什么样结构的化合物产生紫外吸收光谱?紫外吸收光谱有何特征?电子跃迁类型有以下几种类型:σ→σ*跃迁,跃迁所需能量最大;n →σ*跃迁,跃迁所需能量较大,π→π*跃迁,跃迁所需能量较小;n→ π*跃迁,所需能量最低。
而电荷转移跃迁吸收峰可延伸至可见光区内,配位场跃迁的吸收峰也多在可见光区内。
分子结构中能产生电子能级跃迁的化合物可以产生紫外吸收光谱。
紫外吸收光谱又称紫外吸收曲线,是以波长或波数为横坐标,以吸光度为纵坐标所描绘的图线。
在吸收光谱上,一般都有一些特征值,如最大吸收波长(吸收峰),最小吸收波长(吸收谷)、肩峰、末端吸收等。
4.Lambert-Beer定律的物理意义是什么?为什么说Beer定律只适用于单色光?浓度C与吸光度A线性关系发生偏离的主要因素有哪些?朗伯-比耳定律的物理意义:当一束平行单色光垂直通过某溶液时,溶液的吸光度A与吸光物质的浓度c及液层厚度l成正比。
Beer定律的一个重要前提是单色光。
也就是说物质对单色光吸收强弱与吸收光物质的浓度和厚度有一定的关系。
非单色光其吸收强弱与物质的浓度关系不确定,不能提供准确的定性定量信息。
浓度C与吸光度A线性关系发生偏离的主要因素(1)定律本身的局限性:定律适用于浓度小于0.01 mol/L的稀溶液,减免:将测定液稀释至小于0.01 mol/L测定(2)化学因素:溶液中发生电离、酸碱反应、配位及缔合反应而改变吸光物质的浓度等导致偏离Beer定律。
第十章紫外-可见吸光光度法习题1.是非判断题1-1物质的颜色是由于选择性地吸收了白光中的某些波长所致,VitB12溶液呈现红色是由于它吸收了白光中是红色光波。
1-2因为透射光和吸收光按一定比例混合而成白光,故称这两种光为互补色光。
1-3有色物质溶液只能对可见光范围内的某段波长的光有吸收。
1-4符合朗伯-比耳定律的某有色溶液的浓度越低,其透光率越小。
1-5符合比耳定律的有色溶液稀释时,其最大吸收峰的波长位置不移动,但吸收峰降低。
1-6朗伯-比耳定律的物理意义是:当一束平行单色光通过均匀的有色溶液时,溶液是吸光度与吸光物质是浓度和液层厚度的乘积成正比。
1-7在吸光光度法中,摩尔吸光系数的值随入射光的波长增加而减小。
1-8吸光系数与入射光波长及溶液浓度有关。
1-9有色溶液的透光度随着溶液浓度的增大而减小,所以透光度与溶液的浓度成反比关系。
1-10在吸光光度测定时,根据在测定条件下吸光度与浓度成正比的比耳定律的结论,被测溶液浓度越大,吸光度也越大,测定结果也就越准确。
1-11进行吸光光度法测定时,必须选择最大吸收波长的光作入射光。
1-12朗伯-比耳定律只适用于单色光,入射光的波长范围越狭窄,吸光光度测定的准确度越高。
1-13吸光光度法中所用的参比溶液总是采用不含被测物质和显色剂的空白溶液.1-14在实际测定中,应根据光吸收定律,通过改变比色皿厚度或待测溶液浓度,使吸光度的读数处于0.2~0.7之间,以减小测定的相对误差。
1-15在吸光光度法测定时,被测物质浓度相对误差的大小只有透光度为15%~65% 的范围内才是最小的。
2.选择题2-1分光光度法与普通比色法的不同点是A.工作范围不同B.光源不同C.检测器不同D.检流计不同E.获得单色光方法不同2-2 Zn2+的双硫腙-CCl4萃取吸光光度法中,已知萃取液为紫红色络合物,其吸收最大光的颜色为A.红B.橙C.黄D.绿2-3有色络合物的摩尔吸光系数,与下列因素中有关系的是A.比色皿的厚度B.有色络合物浓度C.吸收池材料D.入射光波长2-4透光率与吸光度的关系是A.1T =A B.㏒1T=A C.㏒T=A D.T=㏒1A2-5某物质的摩尔吸光系数(ε)较大,说明A.光通过该物质溶液的厚度厚B.该物质溶液的浓度大C.该物质对某波长的光吸收能力很强D.测定该物质的灵敏度高E.测定该物质的灵敏度低2-6朗伯-比耳定律说明,当一束单色光通过均匀有色溶液中,有色溶液的吸光度正比例于A.溶液的温度B.溶液的酸度C.液层的厚度D.有色配合物稳定性E.溶液的浓度和溶液厚度的乘积2-7符合比耳定律的有色溶液稀释时,其最大吸收峰的波长位置A.向长波方向移动B.向短波方向移动C.不移动,但高峰值降低D.不移动,但高峰值增大2-8已知磷钼杂多酸络合物的透光率为10%,而它与硅钼杂多酸络合物的吸光度差为0.699,那么,硅钼杂多酸络合物的透光率为A. 50%B. 20%C. 30%D. 40%2-9进行光度分析时,误将标准系列的某溶液作为参比溶液调透光率100%,在此条件下,测得有色溶液的透光率为85%。
紫外可见分光光度法测定维生素B12含量作者:作者:靳月琴郭丽敏宋建荣杨金香刘海林陈文斌作者单位:长治医学院化学综合实验室(046000)【摘要】目的:探讨维生素B12片剂中维生素B12的含量测定方法。
方法:紫外可见分光光度法。
样品以标准曲线法为测定含量依据,在361 nm的波长处测定吸光度。
结果:维生素B12在5 μg/mL~100 μg/mL浓度范围线性关系良好。
回归方程Y=0.0193X+0.048,r=0.9937。
结论:测定的5个不同批号样品其含量均在标示范围之内,该方法简便、准确、灵敏度高。
【关键词】紫外可见分光光度法;维生素B12片剂;含量测定The Content Measurement of V-B12 by UV-VisJin Yueqin,Guo Limin,Shong Jianrong,et al.Department of Chemistry Complex Laboratory of Changzhi Medical CollegeAbstract Objective:The measurement method of V-B12 content in tablet is established.Methods:UV-Vis The absorption is measured at 361 nm according to calibration carve method.Results:The linear range is in 5 μg/mL~100 μg/mL and the regression equation is Y=0.0193X+0.048,r=0.9937.Conclusion:The measurement is done in 5 kind of lot number and the result indicate that the V-B12 content in tablet corresponds with standard range. This method is simple, accurate and high sensitivity.Key words UV-Vis;V-B12 tablet;Content measurement维生素B12是含钴的有机药物,为深红色结晶,又称为红色维生素B12或氰钴胺,是唯一含有主要矿物质的维生素。
紫外-可见分光光度法测定全文共四篇示例,供读者参考第一篇示例:紫外-可见分光光度法是一种广泛应用于化学分析领域的光谱分析技术。
该技术通过测量物质在紫外-可见光谱范围内吸收或发射的光线强度,来确定样品的化学成分和浓度。
它具有灵敏度高、选择性好、操作简便等优点,因而被广泛用于药物分析、环境监测、食品安全等领域。
在紫外-可见光谱中,紫外光谱通常指波长范围为200-400纳米(nm),可见光谱通常指波长范围为400-700nm。
物质在紫外-可见光谱范围内的吸收光谱是由电子跃迁引起的,不同种类的物质对不同波长的光线有不同的吸收特性,因而可以通过测量样品在不同波长下吸收光强度的变化来推断样品中的化学物质所含有的共轭结构和它的质量浓度。
紫外-可见分光光度法的主要仪器是紫外-可见分光光度计,它由光源、样品室、分光器、检测器和数据处理系统等部分组成。
在实验中,首先要选择合适的波长范围进行分析,然后将样品溶解于适当的溶剂中,放入样品室中进行测量。
当光线穿过样品之后,被检测器捕捉到,根据检测到的光强度差异来推断样品中的化合物。
紫外-可见分光光度法在化学分析中有着广泛的应用。
比如在制药行业中,可以用于药物的含量测定、纯度检验等;在环境监测领域中,可以用于监测水体中有机和无机物质的含量;在食品安全领域中,可用于检测食品中的添加剂是否合格等。
紫外-可见分光光度法是一种准确、快速、简便的化学分析方法,具有广泛的应用前景。
随着科学技术的不断发展,它将在更多的领域中得到应用,为人们的生活和工作带来更多的便利。
第二篇示例:紫外-可见分光光度法是一种常用的分析技术,广泛应用于化学、生物、环境、药物等领域。
本文将通过介绍紫外-可见分光光度法的原理、仪器和应用,来深入了解该技术的特点和优势。
紫外-可见分光光度法是一种基于分子吸收特性的分析方法。
在紫外-可见光谱区域,分子会吸收特定波长的光线,被激发到高能级状态,并发生颜色变化。
通过检测吸收光强度的变化,可以确定样品中目标物质的浓度。
紫外-可见光分光光度法在食品工业中的应用摘要:紫外--可见分光光度法是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。
操作简单、准确度高、重现性好。
其应用范围包括:①定量分析,广泛用于各种物料中微量、超微量和常量的无机和有机物质的测定。
②定性和结构分析,紫外吸收光谱还可用于推断空间阻碍效应、氢键的强度、互变异构、几何异构现象等。
③反应动力学研究,即研究反应物浓度随时间而变化的函数关系,测定反应速度和反应级数,探讨反应机理。
④研究溶液平衡,如测定络合物的组成,稳定常数、酸碱离解常数等。
紫外-可见光分光光度法在食品行业中的应用主要可大致分为在食品成分分析中的应用和在食品安全检测中的应用,其中在食品成分分析中的应用主要有紫外-可见分光光度计在食品酶分析中的应用、酸奶中维生素A的测定、水果汁中果糖的测定、番茄红素的测定、甜蜜素的测定等;而在食品安全检测中的应用主要有分光光度法测定食品中硼砂、紫外可见分光光度法检测食品中的镉、紫外可见分光光度法测定食品中的苏丹红Ⅲ、用分光光度法测定食品中吊白块的含量等。
本文分别就紫外-可见光分光光度法在食品工业中的这些应用作了简要介绍。
目前利用紫外-可见光分光光度法的各种方法正在逐步发展,而且随着社会的发展和人们生活水平的提高,紫外-可见光分光光度法在食品行业中的应用也会越来越广泛。
一:紫外--可见分光光度法简介紫外--可见分光光度法:是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。
操作简单、准确度高、重现性好。
波长长(频率小)的光线能量小,波长短(频率大)的光线能量大。
分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。
描述物质分子对辐射吸收的程度随波长而变的函数关系曲线,称为吸收光谱或吸收曲线。
紫外-可见吸收光谱通常由一个或几个宽吸收谱带组成。
第十章紫外-可见分光光度法- 经典习题
1.钯(Pd)与硫代米蚩酮反应生成1:4的有色配位化合物,用1.00cm吸收池在520nm处测得浓度为0.200×10-6g/ml的Pd溶液的吸光度值为0.390,试求钯-硫代米蚩酮配合物的及ε值。
(钯-硫代米蚩酮
配合物的分子量为106.4)
解:
2.取咖啡酸,在105°C干燥至恒重,精密称取10.00mg,加少量乙醇溶解,转移至200ml量瓶中,加水至刻度,取出5.00ml,置于50ml量瓶中,加6mol/L HCl 4ml,加水至刻度。
取此溶液于1cm石英吸收
池中,在323nm处测得吸光度为0.463,已知咖啡酸=927.9 ,求咖啡酸的百分质量分数。
解:
3.分别用0.5mol/L HCl 、0.5mol/L NaOH和pH4.00的邻苯二甲酸氢钾缓冲液配制某弱酸溶液,浓度均为含该弱酸0.001g/100ml。
在lmax=590nm处分别测出三者吸光度如下表。
求该弱酸的pKa值。
解一:
在pH=4的缓冲溶液中,[HIn]和[In -
]共存,则该弱酸在各溶液的分析浓度为C HIn+C In-,即0.001g/100ml。
因此在缓冲溶液中是两种型体混合物的吸收:A混=0.430=E HIn C HIn+E In-C In- (1)
在碱性溶液中是In -
的吸收:A In-=1.024=E In-(C HIn+C In-) (2)
在酸性溶液中是HIn的吸收:A HIn=0.002=E HIn(C HIn+C In-) (3)
(2),(3)式代入(1)得:
C HIn/C In-=1.3879
pKa=4+lg1.3879=4.14
解二:
由(2)、(3)式代入(1)式还可写成:
(4)
将代入(4),整理,取对数,得:
式中A混为该弱酸在缓冲液中的吸光度;A HIn为该弱酸在酸性溶液中的吸光度;A In-为该弱酸在碱性溶液中的吸光度;pH为缓冲溶液的pH 值。
把数据代入上式得:
此外,还可用酸、碱溶液中的A值分别求出HIn和In -
的E值,再求在pH=4的缓冲溶液中两型体的浓
度,即可求出pKa。
4.配合物MR2的吸收峰在480nm处。
当配位剂五倍以上过量时,吸光度只与金属离子的总浓度有关
且遵循比尔定律。
金属离子和配位剂在480nm处无吸收。
今有一含M 2+
0.000230mol/L,含R 0.00860mol/L
的溶液,在480nm处用1cm比色皿测得它的吸光度为0.690。
另有一含M 2+
0.000230mol/L,含R
0.000500mol/L的溶液,在同样条件下测得吸光度为0.540。
试计算配合物的稳定常数。
解:在配位剂过量5倍以上时,金属离子几乎全部以MR2存在,因此:
在R为0.000500mol/L的溶液中:。