52自动控制理论-第五章02
- 格式:pdf
- 大小:799.14 KB
- 文档页数:47
1第五章 频域分析法目的:①直观,对高频干扰的抑制能力。
对快(高频)、慢(低频)信号的跟踪能力。
②便于系统的分析与设计。
③易于用实验法定传函。
§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n -+⋅⋅+⋅⋅⋅+=2t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1 若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t 稳态响应为:t j t j ss e A eA t y ωω⋅+⋅=-)( 而)(21)()(22ωωωωωj G R j j s s R s G A m j s m -⋅-=+⋅+⋅⋅=-= )(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m t j m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即3φωωj e j G j G )()(=φωωj e j G j G -=-)()( ∴][)(21)()()(φωφωω+-+--⋅=t j t j m ss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m=)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。
自动控制原理第五章课后习题答案(免费)5-1设单位反馈系统的开环传递函数为对系统进行串联校正,满足开环增益 及 解:① 首先确定开环增益K,00()12lim v s K SG S k →===② 未校正系统开环传函为:012()(1)G s s s =+M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramGm = 70.5 dB (at 200 rad/sec) , P m = 16.5 deg (at 3.39 rad/sec)Frequency (rad/sec)③ 绘制未校正系统的开环对数频率特性,得到幅穿频率 3.4c ω=,对应相位角'0()164,16c G j ωγ∠=-∴=,采用超前校正装置,最大相角 0(180())4016630m c G j ϕγωγ=-+∠+=-+=④ 11sin ,31m αϕαα--=∴=+ 0()(1)KG s s s =+40γ=︒112K s -=⑤ 在已绘图上找出10lg 10lg3 4.77α-=-=-的频率 4.4m ω=弧度/秒 令c m ωω=⑥0.128/,0.385/m T s T s ωα=⇒==∴=校正装置的传函为:110.385()110.128Ts s G s Ts s α++==++校正后的开环传函为:012(10.39)()()()(1)(10.13)c s G s G s G s s s s +==++ 校正后1801374340γ=-=>,满足指标要求.-100-50050100M a g n i t u d e (d B )101010101010P h a s e (d e g )Bode DiagramGm = 99.2 dB (at 1.82e+003 rad/sec) , P m = 42.4 deg (at 4.53 rad/sec)Frequency (rad/sec)5-2设单位反馈系统的开环传递函数为要求 设计串联迟后校正装置。
第五章一、单项选择题1-5:D 、B 、D 、A 、B 6-10:B 、D 、C 、A 、C 11-13:D 、A 、B二、分析计算题5-1解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sCR sC R R R s U s U r c ττ ωωτωωωωω11121212121)1()()()(jT j K C R R j R R C R R j R j U j U j G r c a ++=+++==(b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sCR s U s U r c )(1111)()(2122222212ττ ωωτωωωωω2221211)(11)()()(jT j C R R j C R j j U j U j G r c b ++=+++==5-2解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图 频率特性:2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-= 系统误差传递函数: ,21)(11)(++=+=Φs s s G s e则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时,2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω)452sin(35.0)2sin()2(-=-Φ=t t j r c m ss ϕ )4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m s ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m s ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-4解 ()()()12G j K j K e j ==-+ωωπω=→∞00,()G j ω→∞∞=,()G j 0ϕωπ()=-2幅频特性如图解5-4(a)。
第五章 稳定性分析5—1 解:(1) 系统的特征方程为020)1(212=++⇒=++s s s s 。
因为二阶特征方程的所有项系数大于零,满足二阶系统的稳定的充分必要条件,即两个特征根均在S 平面的左半面,所以此系统稳定。
(2) 系统的特征方程为030)1(312=+-⇒=-+s s s s 。
因为二阶特征方程的项系数出现异号,不满足二阶系统的稳定的充分必要条件,所以此系统不稳定。
(注:BIBO 稳定意旨控制系统的输入输出(外部)稳定,系统稳定的充分必要条件是输出与输入之间传递函数的极点均在S 平面的左半平面。
若传递函数无零极点对消现象时,内部稳定与外部稳定等价。
此系统只含极点不含零点,所以传递函数的极点和特征方程的特征根等价,故直接可以用特征根的位置判系统的稳定性。
) 5—2 解: (1)Θ特征方程中所有项系数大于零,满足稳定的必要条件;又Θ三阶系统的系数内项乘积大于外项乘积(5011020⨯>⨯),满足稳定的充分条件。
∴ 该控制系统稳定。
(2)Θ特征方程中所有项系数大于零,满足稳定的必要条件;Θ特征方程中所有项系数大于零,满足稳定的必要条件;列写Routh故系统有两个特征根在S平面的右半部。
(3)Θ特征方程中所有项系数大于零,满足稳定的必要条件;又Θ三阶系统的系数内项乘积小于外项乘积(30020⨯⨯),不满足<81稳定的充分条件。
∴该控制系统不稳定。
(4)Θ特征方程中所有项系数大于零,满足稳定的必要条件;稳定。
由于第一列元素符号变化两次,系统特征根有两个在右半平面,其它4个根在左半平面。
(5)Θ特征方程中所有项系数大于零,满足稳定的必要条件;不稳定。
由于表中出现全为0的行,为确定特征根的分布可构造辅助方程012048402324,43324=+⇒=+⇒=++=s s s s s s k利用辅助方程的导数方程的对应项系数代替全零行元素,继续完成表的列写。
结果:第一列元素无负数,右半平面无根,有4个根在虚轴上。
自动控制理论第五章答案题5-2 (1) 解存在一个积分环节,低频处斜率为20/dB dec -,在1ω=时,()20log 20L K dB ω== 在2ω≥处,惯性环节对加速衰减,斜率由20/dB dec -变为40/dB dec - 在10ω≥处,又加入一个惯性环节,斜率由40/dB dec -变为60/dB dec - 系统相频特性按下式计算()90arctan(0.5)arctan(0.1)ϕωωω=---ω0 1 10 100 ∞()ϕω-90-122-214-263-270()/L dBω20dB40dB 60dB -20dB -40dB -60dB()/L dBω-90°-180°-270°(2)解(原有答案的相频特性曲线画错,现已更正)2275(10.2)0.75(10.2)()(16100)(0.010.161)s s G s s s s s s s ++==++++存在一个积分环节,低频处斜率为20/dB dec -,在1ω=时,()20log 2.5L K dB ω==- 在5ω≥处,增加一个微分环节,斜率由20/dB dec -变为0/dB dec在10ω≥处,加入一个二阶因子,斜率由0/dB dec 变为40/dB dec -,其中=0.80.707ζ>,不会产生谐振。
系统相频特性按下式计算216()90arctan(0.2)arctan()100ωϕωωω=-+-- ω0 1 10- 10+ 100 ∞()ϕω-90-88-117636()/LdBω20dB40dB 60dB -20dB -40dB -60dB()/L dBω-90°-180°题5-5 (d )在低频处斜率为20/dB dec -,存在一个积分环节K s ,20lg0100100KK =⇒= 在=0.01ω,斜率变为40/dB dec -,说明加入一个惯性环节110.01s +在20ω=,斜率变为60/dB dec -,说明又加入一个惯性环节1120s +所以,传递函数为100()(1001)(0.051)(1)(1)0.0120K G s s s s s ==++++ (f )在低频处斜率为20/dB dec -,存在一个积分环节K s ,20lg0100100KK =⇒= 在=45.3ω,斜率变为60/dB dec -,说明加入一个振荡环节22100()(21)45.345.3G s s ss ζ=++设1100()L ωω=为积分环节的幅频特性,则11(45.3)(100)20lg(45.3)20lg(100) 6.88L L -=-+=,又有1(100)0L =,所以1(45.3)6.88(45.3)6.884.8511.73L L =⇒=+=45.3100()|20lg 11.7345.30.286L ωωζ==-=⇒= 所以,传递函数为22100()0.572(1)45.345.3G s s s s =++题5-9(2)奈氏曲线为首先画出ω由0--∞→的奈氏图,再由于系统为I 型系统,s 平面上原点附近半圆在GH 平由图可以看出,N=0,又P=0,所以Z=0,系统稳定。