多项式的因式分解(1)——提公因式法
- 格式:pptx
- 大小:1.93 MB
- 文档页数:16
第六讲 因式分解之提取公因式法一、知识要点1、 因式分解:把一个多项式写成几个整式的积的形式叫做多项式的因式分解。
(1) 多项式的乘法与多项式因式分解的区别简单地说:乘法是积.化和.,因式分解是和.化积.。
如:()()22b a b a b a -=-+,从左边到右边的变形属于整式乘法; ()()b a b a b a -+=-22,从左边到右边的变形属于因式分解; (2)因式分解的方法:①提公因式法; ②运用公式法; ③十字相乘法; ④分组分解法2、提公因式法:(1)如果多项式的各项含有公因式,那么就可以把这个公因式提出来。
把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。
(2)公因式:多项式ab +ac +ad 的各项ab 、ac 、ad 都含有相同的因式a ,a 称为多项式各项的公因式。
公因式由两部份构成:系数:各项系数的最大公约数相同字母的指数:取最低次幂(3)用提公因式法时的注意点:① 公因式要提尽,考虑的顺序是,先系数,再单独字母,最后多项式。
如:4a 2(a-2b)-18ab(a-2b)=2a(a-2b)(2a-9b);② 当多项式的第一项的系数为负数时,把“-”号作为公因式的负号写在括号外,使括号内的第一项的系数为正。
如:-2m 3+8m 2-12m= -2.m(m 2-4m+6); ③ 提公因式后,另一个多项式的求法是用原多项式除以公因式。
二、知识运用典型例题例1、下列各式由左边到右边的变形中,哪些是因式分解,那些不是,为什么?(1) ()()ab b a b a 422+-=+ (2)()()ab b a b a 422-+=- (3)()()22b a a b -=+- (4)()()22b a b a +=--练习:下列式子从左到右的变形中是因式分解的是( )2233.236A a b ab a b ⋅= 2.(1)(1)1B x x x +-=-()22.211C x x x ++=+ ()2.111D x x x x ++=++例2、 若多项式2x mx n ++分解因式的结果是()()65x x -+,则m = ,n = 。
提取公因式法分解因式的步骤公因式法是一种常用的因式分解方法,它通过提取多个代数式的公因式,将其进行合并简化,从而得到原始代数式的因式分解形式。
下面将介绍公因式法分解因式的具体步骤。
1.观察多项式中的各个项,寻找它们之间的公因式。
公因式是指可以同时整除多个项的代数式。
2.将找到的公因式提取出来,并用括号括起来。
提取公因式时,需要将公因式的系数和变量一同提取出来。
3.将原始多项式中的每一项除以提取出来的公因式。
这一步可以通过将每一项的系数与公因式的系数进行除法运算来实现。
4.将提取出来的公因式与上一步得到的商相乘,并将结果写在括号外面。
这一步是将公因式和商相乘,重新得到原始多项式。
5.最后,将括号外面的结果与原始多项式进行比较,确保两者相等。
这一步是为了验证因式分解的正确性。
通过以上步骤,我们可以完成对多项式的因式分解。
下面通过一个具体的例子来说明公因式法的应用。
假设我们要对多项式3x^2 - 6x进行因式分解。
第一步,观察多项式中的各个项,发现它们之间的公因式是3x。
第二步,将公因式3x提取出来,并用括号括起来,得到3x( ).第三步,将原始多项式中的每一项除以公因式3x,得到(3x^2)/(3x) - (6x)/(3x)。
第四步,将提取出来的公因式3x与上一步得到的商相乘,并将结果写在括号外面,得到3x((3x^2)/(3x) - (6x)/(3x))。
第五步,化简括号内的表达式,得到3x(x - 2)。
将括号外面的结果与原始多项式进行比较,发现它们相等,因此得到的因式分解形式为3x(x - 2)。
通过以上步骤,我们成功地将多项式3x^2 - 6x分解为公因式3x和商(x - 2)的乘积形式。
总结起来,提取公因式法分解因式的步骤包括观察多项式中的各个项,寻找公因式,提取公因式并用括号括起来,将每一项除以公因式得到商,将公因式与商相乘得到因式分解形式,最后验证分解结果的正确性。
这一方法简单实用,可以帮助我们快速进行因式分解运算。
一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。
例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。
常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。
多项式的因式分解和乘法多项式是代数学中常见的一种表达式形式,它由一系列的代数项按照特定的运算规则组合而成。
在代数学中,多项式的因式分解和乘法是两个重要的操作,它们在解决实际问题和简化计算中具有广泛的应用。
本文将围绕多项式的因式分解和乘法展开讨论。
一. 多项式的因式分解多项式的因式分解是将一个多项式表达式拆解成相乘的数或代数项的算法。
它可以帮助我们找到多项式的根、简化计算以及解决实际问题。
在进行多项式的因式分解时,我们可以采用以下的方法:1. 提取公因式法:通过找出多项式中的公因式,将其提取出来,从而得到因式分解结果。
例如,对于多项式2x^2 + 4x,我们可以提取出公因式2x,得到2x(x + 2)。
2. 分解差平方法:对于形如a^2 - b^2的多项式,我们可以利用差平方公式(a - b)(a + b)将其进行因式分解。
例如,对于多项式x^2 - 4,我们可以得到(x - 2)(x + 2)的因式分解结果。
3. 分解二次三角形式:对于形如a^2 + 2ab + b^2的多项式,我们可以使用二次三角形式进行因式分解,即(a + b)^2。
例如,对于多项式x^2 + 4x + 4,我们可以得到(x + 2)^2的因式分解结果。
二. 多项式的乘法多项式的乘法是将两个或多个多项式相乘的操作。
它通常用于计算多项式的展开式或者解决实际问题。
在进行多项式的乘法时,我们可以采用以下的方法:1. 使用分配律:多项式的乘法可以利用分配律进行展开。
例如,对于多项式(x + 2)(x + 3),我们可以将其展开得到x^2 + 5x + 6。
2. 使用FOIL法则:FOIL法则是一种用于展开两个二次多项式相乘的方法。
其中,F代表首项相乘,O代表外项相乘,I代表内项相乘,L 代表尾项相乘。
例如,对于多项式(x + 2)(x + 3),我们可以使用FOIL 法则展开得到x^2 + 5x + 6。
3. 使用多项式的乘法公式:当需要计算两个多项式相乘时,我们可以使用多项式的乘法公式进行展开。
因式分解的七种常见方法因式分解是代数学中非常重要的一个基本概念,可以帮我们优化计算过程,得到简化的式子。
在因式分解的过程中,需要运用不同的方法来将一个给定的式子分解为若干个简单的乘积,本文将会介绍七种常见的因式分解方法。
1. 公式法公式法是一种较为常见的因式分解方法,它可以应用于一些特定的式子。
公式法常用的公式有两个:(1)$a^2-b^2=(a+b)(a-b)$该公式被称为"a二次减b二次"公式。
它告诉我们,一个平方数减另一个平方数的结果可以表示为两个因子的乘积,并分别是它们的和与差。
例如:$16-9=7\times5=(4+3)\times(4-3)$(2)$a^3+b^3=(a+b)(a^2-ab+b^2)$该公式被称为"a立方加b立方"公式。
它告诉我们一个立方数加另一个立方数的结果可以表示为两个因子的乘积,并分别是它们的和与差减去它们的积。
例如:$8^3+1^3=513=(8+1)\times(8^2-8+1)$2. 提公因式法提公因式法是一种常用的因式分解方法。
它的主要思想是将式子中的公因式先提出来,再对剩下的部分进行因式分解。
例如:$ax^2+bx=a(x^2+\frac{b}{a}x)$在上述式子中,$a$是公因式,$(x^2+\frac{b}{a}x)$是剩余部分的因式分解。
这样我们就把原始式子分解成了两个因子的乘积。
3. 十字相乘法十字相乘法主要用于二次三项式的因式分解。
该方法基于以下思想:将二次三项式分解为两个一次三项式的乘积,其中每个一次三项式的首项系数积等于原始式子的二次项系数,常数项积等于原始式子的常数项。
例如:$ax^2+bx+c$,首先将它分解为两个一次三项式$(px+q)(rx+s)$,然后进行十字相乘运算$(px+q)(rx+s)=px\times rx+px\times s+qrx+qs$,其中最后两项括号里的$c$是常数项。
【知识要点】1、提取公因式:型如()ma mb mc m a b c ++=++,把多项式中的公共部分提取出来。
☆提公因式分解因式要特别注意:(1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是正的,并且注意括号内其它各项要变号。
(2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。
(3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c 变成-(c-a-b )才能提公因式,这时要特别注意各项的符号)。
(4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。
(5)分解因式时,单项式因式应写在多项式因式的前面。
2、运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式:()()22a b a b a b -=+-; ()2222a ab b a b ±+=±。
平方差公式的特点是:(1) 左侧为两项;(2) 两项都是平方项;(3) 两项的符号相反。
完全平方公式特点是: (1) 左侧为三项;(2) 首、末两项是平方项,并且首末两项的符号相同; (3) 中间项是首末两项的底数的积的2倍。
☆运用公式法分解因式,需要掌握下列要领:(1)我们学过的三个乘法公式都可用于因式分解。
具体使用时可先判断能否用公式分解,然后再选择适当公式。
(2)各个乘法公式中的字母可以是数,单项式或多项式。
(3)具体操作时,应先考虑是否可提公因式,有公因式的要先提公因式再运用公式。
(4)因式分解一定要分解到不能继续分解为止,分解之后一定要将同类项合并。
【典例分析】例1.分解下列因式:(1)22321084y x y x y x -+ (2)233272114a b c ab c abc --+(3)323111248ab a b a b --+ (4)y x y x y x x 32223313231+-+-(5)23)(2)(m n a n m -+- (6)32)(4)(2y z y z y x -+-练习:因式分解(1)a(x-y)+b(x-y)-(x-y) (2)6(x+y)-12z(x+y) (3)(2x+1)y 2+(2x+1)2y(4)p(a 2+b 2)+q(a 2+b 2)-l(a 2+b 2) (5)2a(b+c)-3(b+c) (6)6(x-2)+x(2-x)(7)m(a-b)-n(b-a) (8)2a(x+y-z)-3b(x+y-z)+5c(z-x-y);(9)m(m-n)2-n(n-m)2 (10)2(x-y)(a-2b+3c)-3(x+y)(2b-a-3c).例2. 把下列各式分解因式:(1)x 2-4y 2 (2)22331b a +-(3)22)2()2(y x y x +-- (4)11622-b a练习:把下列各式分解因式: (1)224b a -(2)11622-y x(3)22481916b a +-(4)2916a -例3.运用完全平方公式因式分解:(1)21449x x ++ (2)25102+-a a(3)229124b ab a +- (4)42242b b a a +-(5)21222+-x x (6)x x x 2718323+-(7)2()6()9m n m n +-++ (8)22224)1(4)1(a a a a ++-+(9)161)(21)(2+---y x y x (10)9)(6)(222+-+-x x x x练习:把下列各式分解因式:(1)221025x xy y -+ (2)222y xy x -+-(3)1692+-t t (4)22816y x xy +-(5)2411x x ++ (6)xy y x 4422-+(7)81224-+-x x (8)ax y ax y ax ++2232(9) 161)(21)(2+---y x y x (10) )(12)(9422n m m n m m ++++例4. 把下列各式分解因式:(1)32231212x x y xy -+ (2)442444)(y x y x -+(3)222)1(4+-a a (4)2222)(4)(12)(9b a b a b a ++-+-练习:把下列各式分解因式:(1)222224)(b a b a -+ (2)222)41(+-m m(3)22248)4(3ax x a -+ (4)4224168b b a a +-(5))()(2x y y x a -+- (6))()(422m n b n m a -+-例5.已知2=+b a ,利用分解因式,求代数式222121b ab a ++。
提公因式法的三个步骤提公因式法是一种常用的代数方法,用于将多项式进行因式分解。
它可以将多项式中共同的因式提取出来,使得多项式变得更加简单,是解决代数问题的重要工具。
下面我们将介绍提公因式法的三个步骤。
第一步:找出公因式在使用提公因式法时,首先需要找出多项式中的公因式。
所谓公因式,就是多项式中所有项的共同因子。
通常来说,公因式是多项式中最高次项的系数和变量的乘积。
例如,对于多项式2x^2+4x,它的公因式为2x。
因为2x可以因式分解为2*x,而2和x分别是2x^2和4x的因子。
因此,我们可以将2x提取出来,得到2x(x+2)。
第二步:将公因式提取出来在找到公因式之后,我们需要将它从多项式中提取出来。
这一步可以通过将每一项都除以公因式来实现。
例如,对于多项式2x(x+2),我们可以将2x提取出来,得到2x(x+2)=2x*1*(x+2)。
第三步:将提取出来的公因式和剩余部分相乘最后一步是将提取出来的公因式和剩余部分相乘,得到原始的多项式。
例如,对于多项式2x(x+2),我们提取出来的公因式为2x,剩余部分为(x+2),那么我们可以将它们相乘,得到原始的多项式2x^2+4x。
通过以上三个步骤,我们就可以使用提公因式法将多项式进行因式分解。
在实际应用中,我们需要根据具体情况灵活运用,找到多项式中的公因式,并将其提取出来,最终得到简化后的多项式。
需要注意的是,提公因式法只适用于多项式中存在公因式的情况。
如果多项式中不存在公因式,就需要使用其他的方法来进行因式分解。
此外,在实际应用中,我们还需要注意多项式的次数和项数,以便选择最合适的方法进行因式分解。
提公因式法是一种常用的代数方法,可以将多项式进行因式分解,使得代数问题变得更加简单。
通过掌握提公因式法的三个步骤,我们可以更加灵活地运用它来解决实际问题。
多项式的因式分解知识点
(1)因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
(2)公因式:一个多项式每一项都含有的相同的因式叫做这个多项式的公因式.
(3)确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数最低的.
(4)提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
(5)提出多项式的公因式以后,另一个因式的确定方法是:用原来的多项式除以公因式所得的商就是另一个因式.
(6)如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的,在提出“-”号时,多项式的各项都要变号.
(7)因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式.
(8)运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.。
因式分解的常用方法(7种)把一个多项式化成几个整式积的形式这种变形叫做把这个多项式因式分解(或分解因式) 因式分解X2-1 ---------- * (X+1)(X-1)I y整式乘法一■、提公因式法.:ma+mb+mc = m(a+b+c)如何找公因式?(1)取各项系数的最大公约数;(2)取各项都含有的相同字母;(3)取相同字母的最低次赛.二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a2-b2(2)(a±b)2 = a2±2ab+b2(3)(a+b)(a2-ab+b2) = a3-a2b+ab2+a2b-ab2+b3= a3+b3(4)(a-b)(a2+ab+b2) = a3+a2b+ab2-a2b-ab2-b3= a3-b3下面再补充两个常用的公式:(5)a2+b2+c2+2ab+2bc+2ac=a2+2ab+b2+2ac+2bc+c2=(a+b) 2+2(a+b)c +c 2=[(a+b)+c] 2=(a+b+c) 2 ;(6)a3+b3+c3-3abc=(a3+ab2+ac2-a2b-abc-ca2) + (a2b+b3+bc2-ab2-b2c-abc) + (a2c+b2c+c3-abc-bc2-c2a) = (a+b+c)(a2+b2+c2-ab-bc-ca);例.已知a,b, c是A ABC的三边,且a 2 + b 2 + c 2 = ab + bc + ca,则A ABC的形状是() 人.直角三角形8等腰三角形C等边三角形口等腰直角三角形解:a 2 + b 2 + c 2 = ab + bc + ca n 2 a 2 + 2 b 2 + 2 c 2 = 2 ab + 2 bc + 2 can (a一b)2 + (b一c)2 + (c一a)2 = 0 n a = b = c三、分组分解法.(一)分组后能直接提公因式例1、分解因式:am + an + bm + bn分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部” 看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解的十二种方法及多项式因式分解的一般步骤把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x -2x -x(2003淮安市中考题)x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
初二数学上册:因式分解常见八种解题方法常见的方法有:①提取公因式法;②公式法;③提公因式法与公式法的综合运用。
在对一个多项式因式分解时,首先应考虑提取公因式法,然后考虑公式法,对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等。
下面通过例题一一介绍。
一.提取公因式法(一)公因式是单项式的因式分解1.分解因式确定公因式的方法①系数:取各项系数的最大公因数;②字母(或多项式):取各项都含有的字母(或多项式);③指数:取相同字母(或多项式)的最低次幂。
注意:公因式可以是单独的一个数或字母,也可以是多项式,当第一项是负数时可先提负号,当公因式与多项式某一项相同时,提公因式后剩余项是1,不要漏项.解:原式=一4m²n(m²一4m+7).(二)公因式是多项式的因式分解2.因式分解15b(2a一b)²+25(b一2a)²解:原式=15b(2a一b)²+25(2a一b)²=5(2a一b)²(3b+5)二.公式法(一)直接用公式法3.分解因式(1).(x²+y²)²一4x²y²(2).(x²十6x)²+18(x²+6x)十81解:(1)原式=(x²+y²+2xy)(x²+y²一2xy)=(x十y)²(x一y)²(2)原式=(x²十6x+9)²=[(x+3)²]²=(二)先提再套法4.分解因式(三)先局部再整法5.分解因式9x²一16一(x十3)(3x+4)解:原式=(3x十4)(3x一4)一(x十3)(3x十4)=(3x+4)[(3x一4)一(x+3)]=(3x十4)(2x一7)(四)先展开再分解法6.分解因式4x(y一x)一y²解:原式=4xy一4x²一y²=一(4x²一4xy+y²)=一(2x一y)²三.分组分解法7.分解因式x²一2xy+y²一9解:原式=(x一y)²一9=(x一y十3)(x一y一3)四.拆、添项法8.分解因式五.整体法(一)"提"整体9.分解因式a(x+y一z)一b(z一x一y)一c(x一z+y)解:原式=a(x十y一z)十b(x十y一z)一c(x十y一z)=(x十y一z)(a+b一c)(二)"当"整体10.分解因式(x+y)²一4(x+y一1)解:原式=(x+y)²一4(x+y)+4=(x十y一2)²(三)"拆"整体11.分解因式ab(c²+d²)+cd(a²+b²)解:原式=abc²+abd²+cda²+cdb²=(abc²+cda²)+(abd²+cdb²)=ac(bc 十ad)+bd(ad+bc)=(bc十ad)(ac+bd)(四)"凑"整体12.分解因式x²一y²一4x+6y一5解:原式=(x²一4x十4)一(y²一6y+9)=(x一2)²+(y一3)²=[(x一2)十(y一3)][(x一2)一(y一3)]=(x+y一5)(x一y十1)六.换元法13.分解因式(a²十2a一2)(a²+2a+4)+9解:设a²+2a=m,则原式=(m一2)(m+4)十9=m²十4m一2m一8+9=m²+2m十1=(m+1)²=(a²+2a十1)²=、七.十字相乘法公式:x²十(a十b)x十ab=(x+a)(x十b)或对于一个三项式若能象上边一样中间左侧上下相乘得x²,中间右侧上下相乘得ab,中间上下斜对角相乘之和为(a+b)x,则能进行分解,如: 14.x²一5x一14解:原式=(x一7)(x十2)十字相乘法分解因式非常重,在以后有关代数式的运算,解方程等知识中常常用到.八.待定系数法15.分解因式x²+3xy+2y²十4x+5y+3解:因为x²+3xy+2y²=(x+y)(x+2y)设原式=(x+y+m)(x+2y十n)=x²十3xy+2y²十(m+n)x+(2m+n)y+mn.∴m=1,n=3∴原式=(x+y+1)(x+2y+3)【总结】因式分解的知识在代数中有着重要的地位,同学们要多加强这方面的练习,为以后的学习奠定扎实的基础。
多项式的因式分解提公因式法一、知识概述因式分解与整式和分式联系极为密切.因式分解是在学习有理数和整式四则运算的基础上进行的,它为今后学习分式运算、解方程和方程组及代数式和三角函数式的恒等变形提供必要的基础.1、一般地,对于两个多项式f与g,如果有多项式h使得f=gh,那么我们把g叫做f的一个因式,此时,h也是f的一个因式,2、一般地,把一个含字母的多项式表示成若干个均含字母的多项式的乘积的形式,称为把这个多项式因式分解.3、几个多项式的公共的因式称为它们的公因式.4、如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种把多项式因式分解的方法叫做提公因式法.5、提公因式的方法公因式的系数为各项系数的最大公约数,字母部分为相同字母的最低次数.如8x3y2-6x2y3+2xy4的公因式为2xy2;用提公因式法分解因式的关键是准确地出公因式,解题步骤可概括为“一找、二分、三提、四查”.二、重难点知识1、对因式分解的理解(1)因式分解是多项式的一种恒等变形,也是单项式与多项式,多项式与多项式相乘的逆向变形.(2)分解因式是对多项式而言的,且分解的结果必须是整式的积的形式.(3)分解因式都是在指定的数集内进行(如无特殊说明,一般指有理数),其结果要使每一个因式不能再分解为止.2、公因式的构成①系数:各项系数的最大公约数;②字母:各项都含有相同字母;③指数:相同字母的最低次幂.3、提公因式时要一次提尽.添加括号时如果括号前面有负号,括号内的各项要变号.三、典型例题讲解例1、(1)下列各式中从左到右的变形,是因式分解的是()A.(x+5)(x-5)=x2-25B.C.x2y-xy2=xy(x-y)D.15=3×5(2)下列各式的因式分解中正确的是()A.-a2+ab-ac=-a(a+b-c)B.9xyz-6x2y2=3xyz(3-2xy)C.3a2x-6bx+3x=3x(a2-2b)D.解析:(1)显然,A是乘法运算,不正确;B分解因式是将多项式分成几个整式的积,而右边有分式;D是常数,是单项式,不是多项式,不属于分解因式范围,所以C是正确的.(2)A.提-a后括号里面各项要变号,但第二、三项未变号.B.第二项没有公因式z.C.提3x后,括号里第三项还有因数1,掉了一项.D.是正确的.答案:(1)C;(2)D例2、分解因式:(1).(2).分析:(1)由于两项、中都有公因式,因此可提取.(2)多项式中各项字母没有相同的,因此只需提出系数公约数即可. 解:(1)=.(2)=.点评:(1)当公因式是单项式时,一定要注意取各项系数的最大公约数和相同字母的最低次幂;(2)对于数字系数,提出的系数应是多项式中各项系数的最大公约数.很多同学在分解因式时容易忽略数字系数的处理,以致于造成分解不彻底的错误.(3)提公因式后,一定要注意括号内的项数与原多项式的项数在合并同类项之前是相同的,不能漏项,尤其是将整个一项作为公因式提取后,这一项就变为1.例3、把下列各式分解因式:(1)6x4y2-12x3y+27x2y3;(2)-x4y+x3y2-x2y3;(3)x n+3x n-1+x n-2;(4)5(x-y)3+10(y-x)2;(5)m(5ax+ay-1)-m(3ax-ay-1).分析:分解因式时,首先要看多项式各项有无公因式,若有公因式,应先提取公因式,要对数字系数和字母分别进行考虑,如果系数为整数,应该提各项系数的最大公约数;字母考虑两点:一点是取各项相同的字母,一点是各项相同字母的指数取最低的;公因式提出后,剩下的因式的求法是:用公因式去除多项式的每一项,所得的商即为剩下的因式.一个多项式中的公因式,既可以是一个单项式,也可以是一个多项式,注意用整体思想去观察分析多项式,关于幂的底数的符号与指数有如下规律:解:(1) 6x4y2-12x3y+27x2y3=3x2y·2x2y-3x2y·4x+3x2y·9y2=3x2y(2x2y-4x+9y2)(2)-x4y+x3y2-x2y3=-(x4y-x3y2+x2y3)=-(x2y·x2-x2y·xy+x2y·y2)=-x2y(x2-xy+y2)(3)x n+3x n-1+x n-2=x n-2·x2+x n-2·3x+x n-2·1=x n-2(x2+3x+1)(4)5(x-y)3+10(y-x)2=5(x-y)3+10(x-y)2=5(x-y)2(x-y+2)(5)m(5ax+ay-1)-m(3ax-ay-1)=m[(5ax+ay-1)-(3ax-ay-1)]=m·(5ax+ay-1-3ax+ay+1)=m(2ax+2ay)=2ma(x+y)例4、不解方程组求7y(x-3y)2-2(3y-x)3的值.分析:先把7y(x-3y)2-2(3y-x)3进行因式分解,再将2x+y=6和x-3y=1整体代入. 解:7y(x-3y)2-2(3y-x)3=7y(x-3y)2+2(x-3y)3=(x-3y)2[7y+2(x-3y)]=(x-3y)2(2x+y)∵2x+y=6,x-3y=1,∴原式=12×6=6.点评:先化简再求值以及整体代入的思想在求值问题中经常运用.例5、求证:32000-4×31999+10×31998能被7整除.分析:先把32000-4×31999+10×31998因式分解证明:∵32000-4×31999+10×31998=31998×(32-4×3+10)=7×31998∴32000-4×31999+10×31998能被7整除.在线测试一、选择题1、在下列四个式子中,从等号左边到右边的变形是因式分解的是()A.-5x2y3=-5xy(xy2)B.x2-4-3x=(x+2)(x-2)-3xC.ab2-2ab=ab(b-2)D.(x-3)(x+3)=x2-92、49a3bc3+14a2b2c2-21ab2c2在分解因式时,应提取的公因式是()A.7abc2B.7ab2c2C.7a2b2c2D.7a3bc33、已知二次三项式x2+bx+c 可分解为(x+α)(x+β),下面说法中错误的是()A.若b>0,c>0,则α、β同取正号B.若b<0,c>0,则α、β同取负号C.若b>0,c<0,则α、β异号,且正数的绝对值小于负数的绝对值D.若b<0,c<0,则α、β异号,且负的一个数的绝对值较大4、因式分解(x-y)2-(y-x)应为()A.(x-y)(x-y-1) B.(y-x)(x-y-1)C.(y-x)(y-x-1) D.(y-x)(y-x+1)5、把多项式3m(x-y)-2(y-x)2分解因式的结果是()A.(x-y)(3m-2x-2y) B.(x-y)(3m-2x+2y)C.(x-y)(3m+2x-2y) D.(y-x)(2x-2y+3m)6、在下列各式中:①a-b=b-a;②(a-b)2=(b-a)2;③(a-b)2=-(b-a)2;④(a-b)3=(b-a)3;⑤(a-b)3=-(b-a)3;⑥(a+b)(a-b)=(-a+b)(-a-b).正确的等式有()A.1个B.2个C.3个D.4个7、在分解-5x3(3a-2b)2+(2b-3a)2时,提出公因式-(3a-2b)2后,另一个因式是()A.5x3B.5x3+1C.5x3-1 D.-5x38、下列各组代数式中没有公因式的是()A.5m(a-b)与b-a B.(a+b)2与-a-bC.mx+y与x+y D.-a2+ab与a2b-ab2 9、下列各题因式分解正确的是()A.3x2-5xy+x=x(3x-5y)B.4x3y2-6xy3z=-2xy2(2x2-yz+3)C.3ab(a-b)-6a(a-b)=3(a-b)(ab-2a)D.-56x3yz+14x2y2z-21xy2z2=-7xyz(8x2-2xy+3yz)10、把3a n+2+15a n-1-45a n分解因式是()A.3(a n+2+5a n-1-15a n)B.3a n(a2+5a-1-15)C.3a n-1(a3+5-15a-1)D.3a n-1(a3+5-15a)重 做提 示B 卷二、解答题。
探索因式分解的方法——1、提取公因式法教学设计宁强县第一初级中学张丽琴一、教材分析:“因式分解”是“华东师大版八年级数学(上)”第12章第5节内容。
本课安排在“整式的乘法”后,明确了因式分解与整式乘法的联系,起到知识的承上启下的作用。
本节主要讲“提公因式法”,为一个课时。
提取公因式法是因式分解的基本方法,也为学习因式分解的其他方法及利用因式分解解一元二次方程打下坚实的基础。
二、目标分析:知识与技能:1、理解因式分解的含义,能判断一个式子的变形是否为因式分解。
理解公因式的含义,能够快速准确地找出公因式。
2、熟练运用提取公因式法分解因式,达到高效学习的目的。
过程与方法:经历自主探究、合作交流、类比归纳的学习过程,体会类比、整体的数学思想方法,形成自己的数学的学习模式。
情感态度、价值观:培养学生养成探究的习惯,将“探究”作为一种自觉行为,并体会由此带来的快乐,从中感受数学的应用价值。
三、教学重难点:教学重点:理解因式分解的含义及运用提取公因式法分解因式。
教学难点:合理分组,运用提取公因式法分解因式。
四、学习者分析:1、初二学生性格开朗活泼,对新鲜事物较敏感,并且较易接受,因此,教学过程中创设的问题情境应较生动活泼,直观形象,且贴近学生的生活,从而引起学生的有意注意。
2、初二学生对整式的运算比较熟悉,对互逆过程也有一定的感知。
3、初二学生已经具备了一定的自我学习能力,所以本节课中,应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究如何用提公因式法分解因式。
五、教法学法:教法:类比、启发式、探究式教学方法1、教学过程中渗透类比的数学思想,形成新的知识结构体系;2、设置启发式、探究式教学,让学生经历知识的形成,从而达到对知识的深刻理解与灵活应用。
学法:自主、合作、探索的学习方式在教学活动中,既要提高学生独立解决问题的能力,又要培养团结协作精神,拓展学生探究问题的深度与广度,以促进学生发展为目的。