小学数学知识点大全
- 格式:doc
- 大小:47.50 KB
- 文档页数:8
一、各年级知识点:小学一年级九九乘法口诀表。
学会基础加减乘。
小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级学会乘法交换律,几何面积周长等,时间量及单位。
路程计算,分配律,分数小数。
小学四年级线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级比例百分比概率,圆扇圆柱及圆锥。
二、必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
三、计算方面读懂理解会应用以下定义定理性质公式1、加法交换律:两数相加交换加数的位置,和不变。
小学数学知识点大全目录小学数学知识点大全 (1)(一) 常用的数量关系式 (2)(二) 小学数学图形计算公式 (2)(三) 常用单位换算 (4)(四) 基本概念 (5)第一章数和数的运算 (5)一概念 (5)二方法 (8)三性质和规律 (10)四运算的意义 (11)五应用 (14)第二章度量衡 (23)一长度 (23)二面积 (23)三体积和容积 (23)四质量 (24)五时间 (24)六货币 (25)第三章代数初步知识 (25)一、用字母表示数 (25)二、简易方程 (26)三、解方程 (27)四、列方程解应用题 (27)五、小学范围内常用方程解的应用题: (27)六、比和比例 (28)第四章几何的初步知识 (29)一线和角 (29)二平面图形 (30)三立体图形 (32)第五章简单的统计 (33)一统计表 (33)二统计图 (34)(一)常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数(二)小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长 S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长 V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)周长=直径×л=2×л×半径 C=лd=2лr面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)侧面积=底面周长×高=ch(2лr或лd)表面积=侧面积+底面积×2体积=底面积×高体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)(三)常用单位换算长度单位换算1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升重量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒(四)基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
小学数学知识点和重点难点大全一、整数及四则运算1.整数的认识2.整数的比较大小3.整数的加法、减法、乘法、除法运算4.整数的混合运算5.整数的括号运算6.整数的奇偶性7.整数的约数和倍数二、分数1.分数的认识2.分数的加法、减法、乘法、除法运算3.真分数、假分数和带分数之间的转化4.分数的比较大小5.分数的化简和约分6.分数的四则混合运算7.分数的加减混合运算三、小数1.小数的认识2.小数与分数的转化3.小数的加法、减法、乘法、除法运算4.小数的周期性与循环小数5.有限小数和无限小数的判断6.分数的小数化和小数的分数化7.小数的四则混合运算四、长度和面积1.长度单位的认识(米、厘米、千米)2.长度单位之间的换算3.长度的加法、减法运算4.面积单位的认识(平方米、平方厘米)5.面积单位之间的换算6.长方形和正方形的面积计算7.长方形和正方形的周长计算五、容量和质量1.容量单位的认识(升、毫升、立方米)2.容量单位之间的换算3.容量的加法、减法运算4.质量单位的认识(千克、克、吨)5.质量单位之间的换算6.质量的加法、减法运算7.容量和质量的换算六、几何图形1.点、线、线段、射线、角的认识2.三角形、四边形、多边形的认识3.正方形、长方形、圆的认识4.平行线、垂直线、相交线的认识5.直角、钝角、锐角的认识6.图形的对称性7.图形的放大和缩小七、时间1.时间的认识(秒、分钟、小时、一天的24小时)2.时刻的表示3.时钟的读法和时钟的表记4.时间的加法、减法运算5.天、周、月和年的认识6.日期的计算八、统计与概率1.数据的收集和整理2.数据的图表示法(条形图、折线图、饼图)3.数据的分析和解读4.概率的认识5.事件的概率计算6.试验和样本空间的认识7.赌博问题的概率计算以上为小学数学的知识点和重点、难点的大致概括,学生在学习数学时,应注重对每个知识点的透彻理解和巩固。
通过大量的练习和实际应用,培养学生的数学思维和解决问题的能力,以提高数学学习的效果。
小学数学所有知识点一、数的概念和认识1. 数的分类2. 数的读法和写法3. 数的比较和排序二、整数1. 整数的概念2. 整数的四则运算3. 整数的加减法特性4. 整数运算中的括号运算三、小数1. 小数的概念2. 小数的读法和写法3. 小数的加减乘除运算4. 小数与分数的关系四、分数1. 分数的概念2. 分数的读法和写法3. 分数的加减乘除运算4. 分数与小数的关系五、几何图形1. 点、线、线段、射线2. 角的概念和分类3. 三角形的分类和性质4. 平行线与垂直线的关系六、面积与周长1. 长方形的面积和周长2. 正方形的面积和周长3. 三角形的面积和周长4. 圆的面积和周长七、时间和日历1. 时、分、秒的认识2. 12小时制和24小时制3. 时间的加减运算4. 日历的使用和读取八、数据统计与概率1. 数据的收集和整理2. 图表的制作和分析3. 概率的认识和计算4. 实际问题的统计和概率解答九、代数与方程1. 代数式的认识2. 一元一次方程的解法3. 实际问题的代数建模4. 算式和方程的关系十、变量与函数1. 变量的概念和使用2. 函数的概念和特性3. 函数图像的理解4. 实际问题的函数解答以上十个知识点是小学数学的主要内容,通过系统的学习和训练,学生可以掌握和运用这些知识来解决实际问题。
在学习的过程中,要注重理论的学习和实际问题的应用,培养学生的逻辑思维和问题解决能力。
同时,要注重与生活的联系,让学生发现数学在日常生活中的应用,提高他们的学习兴趣和动力。
希望学生们在小学数学学习中取得优异的成绩,并在将来的学习中打下坚实的数学基础。
小学数学必备知识点归纳一、数的认识和应用1.数的分类:自然数、整数、有理数、实数2.数的概念:零、一、十以内的数3.数的读法:个位数、十位数、百位数、千位数……二、数的运算1.加法:加法原理、进位、补数2.减法:减法原理、减法运算法则、借位3.乘法:乘法表、乘法运算法则、倍数、因数、乘积4.除法:除法运算法则、除数、被除数、商、余数5.混合运算:加减乘除的综合运用三、整数运算1.整数的概念:正整数、负整数、绝对值2.整数的四则运算:加法、减法、乘法、除法3.整数的加减混合运算4.整数的乘除混合运算四、小数运算1.小数的概念:小数点、十分位、百分位、千分位……2.小数的读法和写法:读小数、写小数3.小数的四则运算:加法、减法、乘法、除法4.小数的加减混合运算5.小数的乘除混合运算五、分数1.分数的概念:真分数、假分数、单位分数2.分数的读法和写法:读分数、写分数3.分数的四则运算:加法、减法、乘法、除法4.分数的加减混合运算5.分数的乘除混合运算六、倍数和约数1.倍数的概念:倍数、正倍数、负倍数、最小公倍数2.倍数的性质:相邻倍数、最大公倍数3.约数的概念:约数、最大约数、公约数、质因数4.约数的性质:倍数与约数的关系、最小公约数七、面积和周长1.长方形和正方形的面积和周长2.三角形的面积和周长3.圆的面积和周长八、比例和比例关系1.比例的概念:比例、比2.比例的计算:比例的求解、比例的性质、比例的四则运算3.比例关系的应用:比例图、分数比例、百分比九、平均数1.平均数的概念:算术平均数、加权平均数2.平均数的计算:算术平均数的计算、加权平均数的计算十、图形的认识1.点、线、面的概念2.直线、射线、线段的比较与区分3.平行线和垂直线的判断4.四边形、三角形、圆形的特征和性质5.多边形的命名和分类十一、图形的性质和应用1.角的概念:直角、锐角、钝角2.角的比较与运算:相交、夹角、对顶角、同位角3.图形的对称性4.图形的放缩和相似性5.图形的投影和旋转。
小学数学知识点大全第一章 数和数的运算一、概念(一 )整数1、整数的意义自然数和0都是整数。
2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数.一个物体也没有,用0表示。
0也是自然数.3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位.其中“一"是计数的基本单位。
10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字.每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零.6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万"或“亿"作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑴ 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。
⑵ 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如: 1302490015 省略亿后面的尾数是 13 亿。
⑶ 四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法. 8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
以此类推。
(二)小数1、小数的意义把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
小学数学知识点归纳梳理大全第一章数的认识1.1 自然数和零的认识1.2 整数的认识1.3 分数的认识1.4 小数的认识第二章加减法2.1 加法的基本概念和性质2.2 减法的基本概念和性质2.3 两位数的加减法2.4 三位数的加减法2.5 带有进位和借位的加减法第三章乘法与除法3.1 乘法的基本概念和性质3.2 乘法口诀表3.3 两位数的乘法3.4 三位数的乘法3.5 除法的基本概念和性质3.6 两位数的除法3.7 三位数的除法3.8 带有余数的除法第四章分数运算4.1 分数的加减法4.2 分数的乘法4.3 分数的除法4.4 分数的化简4.5 分数的比较和排序第五章小数运算5.1 小数的加减法5.2 小数的乘法5.3 小数的除法5.4 小数的化简与比较第六章数字的应用6.1 百分数的认识与转化6.2 货币和找零的计算6.3 数字的估算与近似6.4 数字的应用问题解决第七章几何图形与测量7.1 点、线、面的认识7.2 直线与曲线的区别7.3 角的认识与分类7.4 三角形的认识与分类7.5 四边形的认识与分类7.6 圆的认识与性质7.7 长度的测量7.8 面积的测量7.9 体积的测量第八章数据统计8.1 图表的阅读与制作8.2 数据的收集与整理8.3 数据的分析与解读8.4 实际问题的解决第九章逻辑推理9.1 命题、真值与逻辑连接词9.2 命题的组合与析取9.3 条件语句与拟反命题9.4 几何图形的推理第十章应用题10.1 简单应用题10.2 复杂应用题10.3 字母代数式的解答在小学阶段,数学是一个非常重要的学科,它不仅是培养学生逻辑思维和分析问题的能力,也是培养他们解决实际问题的能力的关键。
而对于老师和家长来说,掌握小学数学知识点的归纳和梳理是非常重要的,可以帮助学生更好地掌握知识并应用到实际生活中。
本文将从数的认识开始介绍,包括自然数和零、整数、分数和小数的认识。
对于每个知识点,将详细介绍其基本概念和性质,以及相应的运算规则和习题练习。
小学数学知识整理一、几何形体周长、面积、体积计算公式:长方形的周长=〔长+宽〕X2 C=〔a+b〕 X2正方形的周长=边长X4 C=4a长方形的面积=长><宽S=ab正方形的面积=边长X边长S=a.a三角形的面积=底><高+2 S=ah +2平行四边形的面积=底><高S=ah梯形的面积=〔上底+下底〕x高+ 2 S= 〔a+b〕 h+2直径=半径X 2 d=2r 半径=直彳至+ 2 r= d +2圆的周长=圆周率x直径=圆周率x半径x 2 c= xd =2仃圆的面积=圆周率x半径x半径三角形的面积=底*高+ 2o公式S= a xh+2正方形的面积=边长x边长公式S= a Xa长方形的面积=长><宽公式S= a xb平行四边形的面积=底><高公式S= a xh梯形的面积=〔上底+下底〕x高+ 2公式S=〔a+b〕h +2内角和:三角形的内角和=180度.长方体的体积=长x宽x高公式:V=abh长方体〔或正方体〕的体积=底面积X高公式:V=abh正方体的体积=棱长x棱长x棱长公式:V=aaa圆的周长=直径x无公式:L= d d = 2仃圆的面积=半径x半径x无公式:S= x r2圆柱的表〔侧〕面积:圆柱的表〔侧〕面积等于底面的周长乘高.公式:S=ch=圆柱的外表积:圆柱的外表积等于底面的周长乘高再加上两头的圆的面积.公式:圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh圆锥的体积=1/3底面X积高.公式:V=1/3Sh Ttdh =2无由S=ch+2s=ch+2 xr2二、分数的加、减、乘、除法那么:分数的加、减法那么:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分, 然后再加减.分数的乘法那么:用分子的积做分子,用分母的积做分母.分数的除法那么:除以一个数等于乘以这个数的倒数.三、单位换算:(1) 1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米(2) 1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米(3) 1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米(4) 1吨=1000千克1千克=1000 克=1公斤=2市斤(5) 1公顷=10000 平方米1亩= 666.666 平方米(6) 1升=1立方分米=1000毫升1毫升=1立方厘米(7) 1元=10角1角=10分1元= 100 分(8) 1世纪=100 年1年=12月大月(31天)有:1\3\5\7\8\10\12 月小月(30天)的有:4\6\9\11 月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒四、数量关系计算公式:1、每份数x份数=总数+每份数=份数总数+份数=每份数2、1倍数X倍数=几倍数+ 1倍数=倍数几彳§数+倍数=1倍数3、速度X时间=路程+速度=时间路程+时间=速度3、速度X时间=路程+速度=时间路程+时间=速度4、单价X数量=总价+单价=数量总价+数量=单价5、工作效率X工作时间=工作总量工作总量+工作效率=工作时间工作总量+工作时间=工作效率6、加数十加数=和和一一个加数=另一个加数7、被减数-减数=差被减数-差=减数差十减数=被减数8、因数X因数=积积+一个因数=另一个因数9、被除数+除数=商被除数+商=除数商X除数=被除数五、算术方面:1 .加法交换律:两数相加交换加数的位置,和不变.2 .加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.3 .乘法交换律:两数相乘,交换因数的位置,积不变.4 .乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.5 .乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:〔2+4 〕X5= 2X5+4 X5o6 .除法的性质:在除法里,被除数和除数同时扩大〔或缩小〕相同的倍数,商不变. 0除以任何不是0的数都得0.7 .等式:等号左边的数值与等号右边的数值相等的式子叫做等式. 等式的根本性质:等式两边同时乘以〔或除以〕一个相同的数,等式仍然成立.8 .方程式:含有未知数的等式叫方程式.9 . 一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.学会一元一次方程式的例法及计算.即例出代有X的算式并计算.10 .分数:把单位“ 1〞平均分成假设干份,表示这样的一份或几分的数,叫做分数.11 .分数的加减法那么:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分, 然后再加减.12 .分数大小的比拟:同分母的分数相比拟,分子大的大,分子小的小.异分母的分数相比拟,先通分然后再比拟;假设分子相同,分母大的反而小.13 .分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.14 .分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.15 .分数除以整数〔0除外〕,等于分数乘以这个整数的倒数.16 .真分数:分子比分母小的分数叫做真分数.17 .假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.18 .带分数:把假分数写成整数和真分数的形式,叫做带分数.19 .分数的根本性质:分数的分子和分母同时乘以或除以同一个数〔0除外〕,分数的大小不变20 . 一个数除以分数,等于这个数乘以分数的倒数.21 .甲数除以乙数〔0除外〕,等于甲数乘以乙数的倒数.六、特殊问题:和差问题的公式〔和十差〕+2=大数〔和—差〕+2 =小数和倍问题和+〔倍数—1〕=小数小数X倍数=大数〔或者和—小数=大数〕差倍问题差+〔倍数—1〕=小数小数X倍数=大数〔或小数十差=大数〕植树问题:1非封闭线路上的植树问题主要可分为以下三种情形〔1〕如果在非封闭线路的两端都要植树,那么:株数=段数十1=全长+株距—1全长=株距X 〔株数—1〕株距=全长+ 〔株数一1〕〔2〕如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长+株距全长=株距X株数株距=全长+株数〔3〕如果在非封闭线路的两端都不要植树,那么:株数=段数—1=全长+株距—1全长=株距x 〔株数十1〕株距=全长+ 〔株数十1〕2封闭线路上的植树问题的数量关系如下株数=段数=全长+株距全长=株距X株数株距=全长一株数盈亏问题:〔盈十亏〕+两次分配量之差=参加分配的份数〔大盈-小盈〕+两次分配量之差=参加分配的份数〔大亏-小亏〕+两次分配量之差=参加分配的份数相遇问题:相遇路程=速度和x相遇时间相遇时间=相遇路程+速度和速度和=相遇路程+相遇时间追及问题:追及距离=速度差X追及时间追及时间=追及距离+速度差速度差=追及距离+追及时间流水问题:〔1〕一般公式: 顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=〔顺流速度十逆流速度〕+2水流速度=〔顺流速度—逆流速度〕+2〔2〕两船相向航行的公式:甲船顺水速度 +乙船逆水速度=甲船静水速度+乙船静水速度〔3〕两船同向航行的公式:后〔前〕船静水速度-前〔后〕船静水速度=两船距离缩小〔拉大〕速度浓度问题:溶质的重量十溶剂的重量=溶液的重量溶质的重量+溶液的重量x 100% =浓度溶液的重量x浓度=溶质的重量溶质的重量+浓度=溶液的重量利润与折扣问题:利润=售出价一本钱利润率=利润+本钱X 100% =〔售出价+本钱—1〕 X100%涨跌金额=本金X涨跌百分比折扣=实际售价+原售价x 100%〔折扣<1〕利息=本金X利率X时间税后利息=本金X利率X时间X 〔1 -5%〕工程问题:〔1〕一般公式:工作效率X工作时间=工作总量工作总量+工作时间=工作效率工作总量+工作效率=工作时间〔2〕用假设工作总量为“ 1〞的方法解工程问题的公式:1 +工作时间=单位时间内完成工作总量的几分之几。
小学数学知识点大全目录:1. 引言2. 数的认识2.1 自然数2.2 整数2.3 小数2.4 分数3. 四则运算3.1 加法3.2 减法3.3 乘法3.4 除法4. 应用题4.1 算术应用题4.2 比例问题4.3 单位换算4.4 面积与体积5. 几何知识5.1 平面图形5.2 立体图形5.3 对称与变换6. 概念与逻辑6.1 数的概念6.2 逻辑推理7. 结语1. 引言本文旨在汇总小学阶段数学教育中所涉及的主要知识点,为教师、家长和学生提供一个参考和复习的资料。
小学数学是数学教育的基础,涵盖了数的认识、四则运算、应用题解决、几何图形认知以及基本的逻辑推理能力。
2. 数的认识2.1 自然数自然数是用于计数和排序的数,包括0和所有正整数(1, 2,3, ...)。
2.2 整数整数包括自然数、它们的相反数(负整数 -1, -2, -3, ...)以及零。
2.3 小数小数是实数的一种表示形式,由整数部分、小数点和小数部分组成,如0.5、-0.25等。
2.4 分数分数表示一个整体被等分后的一部分或几部分,形式为a/b,其中a是分子,b是分母,b≠0。
3. 四则运算3.1 加法加法是将两个或多个数值合并成一个总和的运算。
3.2 减法减法是从一个数中去掉另一个数的值,得到差。
3.3 乘法乘法是重复加法的一种形式,表示将一个数加到自身若干次。
3.4 除法除法是将一个数分成若干等份,求每一份的大小。
4. 应用题4.1 算术应用题涉及基本四则运算的实际问题,如购物、时间计算等。
4.2 比例问题比例问题涉及两个或多个比率相等的情况,常用于解决速度、比例分配等问题。
4.3 单位换算单位换算涉及不同计量单位之间的转换,如米与厘米、千克与克等。
4.4 面积与体积面积是二维图形的大小,体积是三维空间的大小,需要通过特定的公式进行计算。
5. 几何知识5.1 平面图形平面图形是所有点均在同一个平面内的图形,如圆形、正方形、三角形等。
小学数学知识点大全第一章数和数的运算一、概念(一)整数1、整数的意义自然数和0都是整数。
2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
其中“一”是计数的基本单位。
10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑴准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。
⑵近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如: 1302490015 省略亿后面的尾数是 13 亿。
⑶四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法。
8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
以此类推。
(二)小数1、小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
小学数学知识点大全基本概念第一章数和数的运算一、概念(一)整数1、整数的意义自然数和0都是整数。
2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
其中“一”是计数的基本单位。
10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑪准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。
⑫近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如: 1302490015 省略亿后面的尾数是 13 亿。
⑬四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法。
8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
以此类推。
(二)小数1、小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
如1/10记作0.1,7/100记作0.07。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。
小数部分有几个数位,就叫做几位小数。
如0.36是两位小数,3.066是三位小数在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
3、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
4、比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……5、小数的分类⑪纯小数:整数部分是零的小数,叫做纯小数。
例如: 0.25 、 0.368 都是纯小数。
⑫带小数:整数部分不是零的小数,叫做带小数。
例如: 3.25 、 5.26 都是带小数。
⑬有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如: 41.7 、 25.3 、 0.23 都是有限小数。
⑭无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如: 4.33 …… 3.1415926 ……⑮无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:∏⑯循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如: 3.555 …… 0.0333 …… 12.109109 ……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如: 3.99 ……的循环节是“ 9 ”, 0.5454 ……的循环节是“ 54 ”。
⑰纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
例如: 3.111 …… 0.5656 ……⑱混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222 …… 0.03333 ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
(三)分数1、分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:⑪分母相同的分数,分子大的那个分数就大。
⑫分子相同的分数,分母小的那个分数就大。
⑬分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
⑭如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数⑪真分数:分子比分母小的分数叫做真分数。
真分数小于1。
⑫假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
⑬带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
6、分数和除法的关系及分数的基本性质⑪除法是一种运算,有运算符号;分数是一种数。
因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
⑫由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
⑬分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
7、约分和通分⑪分子、分母是互质数的分数,叫做最简分数。
⑫把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
⑬约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
⑭把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
⑮通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
8、倒数⑪乘积是1的两个数互为倒数。
⑫求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
⑬ 1的倒数是1,0没有倒数(四)百分数 1、百分数的意义表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
4、百分数与折数、成数的互化:例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐闯砂俜质褪?0%,则六成五就是65%。
5、纳税和利息:税率:应纳税额与各种收入的比率。
利率:利息与本金的百分率。
由银行规定按年或按月计算。
利息的计算公式:利息=本金×利率×时间 6、百分数与分数的区别主要有以下三点:⑪意义不同。
百分数是“表示一个数是另一个数的百分之几的数。
”它只能表示两数之间的倍数关系,不能表示某一具体数量。
如:可以说 1米是 5米的 20%,不可以说“一段绳子长为20%米。
”因此,百分数后面不能带单位名称。
分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。
分数不仅可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕米等。
⑫应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较。
而分数常常是在测量、计算中,得不到整数结果时使用。
⑬书写形式不同。
百分数通常不写成分数形式,而采用百分号“%”来表示。
如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分.百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
7、数的互化⑪小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
⑫分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
⑬一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
⑭小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
⑮百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
⑯分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
⑰百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(五)数的整除 1、整除的意义整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b 能整除a 。
除尽的意义甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
2、约数和倍数⑪如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
⑫一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
⑬一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
3、奇数和偶数⑪自然数按能否被2 整除的特征可分为奇数和偶数。
①能被2整除的数叫做偶数。
0也是偶数。
②不能被2整除的数叫做奇数。
⑫奇数和偶数的运算性质:①相邻两个自然数之和是奇数,之积是偶数。
②奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。