中科大量子力学课件1
- 格式:ppt
- 大小:1.01 MB
- 文档页数:56
量子力学理论处理问题的思路① 根据体系的物理条件,写出势能函数,进而写出Schrödinger 方程; ② 解方程,由边界条件和品优波函数条件确定归一化因子及E n ,求得ψn ; ③ 描绘ψn , ψn *ψn 等图形,讨论其分布特点;④ 用力学量算符作用于ψn ,求各个对应状态各种力学量的数值,了解体系的性质;⑤ 联系实际问题,应用所得结果。
有人认为量子力学的知识很零碎,知识点之间好像很孤立,彼此之间联系不是很紧凑,其实不是这样的,我们可以将量子力学分成好几个小模块来学习的,但是每个模块之间都有一定的联系,都相互支持的,比如算符和表象,表面看二者之间好像不相关,实际上在不同的表象中算符的表示是不一样的:在坐标表象中动量算符ˆp和坐标算符ˆx 之间的关系是ˆx p i x∂=-∂,在动量表象中它们之间的关系为ˆˆx x i p ∂=∂,所以我们在解答一个题目的时候一定要明确所要解决的问题是在哪个表象下,当然一般情况下都是在坐标表象下的。
这里还有一点建议就是经典力学跟量子力学是相对应的,前者是描述宏观领域中物体的运动规律的理论而后者是反映微观粒子的运动规律的理论,所以量子学中的物理量都可以与经典力学中的物理量相对应:薛定谔方程与运动方程;算符与力学量;表象与参考系,所以我们在解答量子力学问题的时候不要单纯的把它当作一个题目来解决,而是分析一个“有趣”的物理现象!针对中科大历年的硕士研究生入学考试,我们可以将量子力学分为六个模块来系统学习:一、薛定谔方程与波函数;二、力学量算符;三、表象;四、定态问题(一维和三维);五、微扰近似方法;六、自旋,其实前三部分是后三部分的基础,后三部分为具体的研究问题提供方法。
所以在以后的学习中我们就从这几部分来学习量子力学,帮助大家将所有的知识系统起来。
第一部分 薛定谔方程与波函数在经典力学中我们要明确一个物体的运动情况,就需要通过解运动方程得到物体的位移与时间的关系、速度与时间的关系等等,同样的道理,在量子力学中我们要解薛定谔方程,得到粒子的波函数,也就明确了粒子的运动情况,然后再通过对波函数的分析就能得到一系列与之有关的力学量和整个体系的性质。
量子力学中科大课件一些自旋算符及它们组成的Hamiltonian讨论一些自旋算符及它们组成的Hamiltonian 讨论[问题I],单个12自旋向任一方向r r e r=的投影算符()r e σ⋅。
1) 算符()r e σ⋅为书上已研究过的(p.204-205)。
它满足()2r e I σ⋅=,所以其本征值为1±,其本征函数()()()()()()()()cos exp 2sin exp 222;sin exp 2cos exp 222r r i i e e i i θθϕϕχχθθϕϕ+-⎛⎫⎛⎫--- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以可将它写为它本身的谱表示:()()()()()()()()()r r r r r e e e e e σχχχχ++--⋅=-2) 计算对易子()(),1,2i r i e i σσ⋅=⎡⎤⎣⎦。
下面略去脚标1,2i =。
先计算(),r x e σσ⋅⎡⎤⎣⎦:()(),,222r x x x y y z z x z y y z r xe n n n i n i n i e σσσσσσσσσ⎡⎤⋅=++⎡⎤⎣⎦⎣⎦=-+=⨯于是有()(),2r r e i e σσσ⋅=⨯⎡⎤⎣⎦3) 再往算(),r e l σ⎡⎤⋅⎣⎦先算轨道角动量的z l 分量的对易子:[](),,r z x y z y x r z x y z e l i x y i e r r r σσσσσ⎡⎤⋅=-++∂-∂=-⨯⎢⎥⎣⎦于是有()(),r r e l i e σσ⎡⎤⋅=-⨯⎣⎦4) 再往算()(),,σσ⎡⎤⎡⎤⋅=⋅+⎣⎦⎣⎦r r e J e l S 总之有,,02r r e J e l σσσ⎡⎤⎡⎤⋅=⋅+=⎣⎦⎢⎥⎣⎦ 于是,这种()r e σ⋅算符将保持此费米子的总角动量不变。
5) 再往算()2,r e σσ⎡⎤⋅⎣⎦。
显然,由于单个12自旋的23σ=,有()2,0r e σσ⎡⎤⋅=⎣⎦6) 再往算()2,r e l σ⎡⎤⋅⎣⎦()()()()()()(){}()(){}2,,,r r r r r r r r re l e l l l e l i e l i l e i e l l e i e l l e σσσσσσσσ⎡⎤⎡⎤⎡⎤⋅=⋅⋅+⋅⋅⎣⎦⎣⎦⎣⎦=-⨯⋅-⋅⨯=-⋅⨯-⨯⋅=-⋅⨯-⨯ 为计算()r l e ⨯,先算它的x 分量:()()()()()223333112ryz x z y x x x z y x y zz y z y l e l l i z x x y r r r r x z z y x y i z x xz z x x xy y x y r r r r r r r r x z y i l l r r r⎧⎫⨯=-=-∂-∂-∂-∂⎨⎬⎩⎭⎧----⎫⎛⎫⎛⎫=---+∂-∂-+--∂-∂⎨⎬⎪ ⎪⎝⎭⎝⎭⎩⎭=+-于是有()()2rr r l e ie e l ⨯=-⨯最后得()(){}(){}(){}222,222r r rr r r r r r e l i e l i e re e e r e e r e σσσσ⎡⎤⋅=-⋅⨯-⎣⎦=-⋅⨯⨯∇+=-⋅⋅∇-∇+7) 再往算(),r e l s σ⎡⎤⋅⋅⎣⎦()()()222211,,,22r r r e l s e J l s e l σσσ-⎡⎤⎡⎤⎡⎤⋅⋅=⋅--=⋅⎣⎦⎣⎦⎣⎦即有()()(){}21,,2r r r r e l s e l i e l i e σσσ⎡⎤⎡⎤⋅⋅=-⋅=⋅⨯-⎣⎦⎣⎦ ※ ※ ※[问题II],两个12自旋算符()()()1212123r r S e e σσσσ≡⋅⋅-⋅的研究。
量子力学中科大课件 Q11讲稿第十一章含时问题与量子跃迁第三部分开放体系问题第十一章含时问题与量子跃迁本章讨论量子力学中的时间相关现象。
它们包括:含时问题求解的一般讨论、含时微扰论、量子跃迁也即辐射的发射和吸收问题。
如果说,以前各章主要研究量子力学中的稳态问题,本章则专门讨论非稳态问题。
根据第五章中有关叙述,由于我们所处时空结构的时间轴固有的均匀性,孤立量子体系的Hamilton量必定不显含时间,从而遵守不显含时间的Schrödinger方程。
因此,这里含时Schrödinger方程所表述的量子体系必定不是孤立的量子体系,而是某个更大的可以看作孤立系的一部分,是这个孤立系的一个子体系。
当这个子体系和孤立系的其他部分存在着能量、动量、角动量、甚至电荷或粒子的交换时,便导致针对这个子体系的各类含时问题。
在了解本章(以及下一章)内容的时候,有时需要注意这一点。
§11.1 含时Schrödinger方程求解的一般讨论1, 时间相关问题的一般分析量子力学中,时间相关问题可以分为两类:i, 体系的Hamilton量不依赖于时间。
这时,要么是散射或行进问题,要么是初始条件或边界条件的变化使问题成为与时间相关的现象。
“行进问题”例如,中子以一定的自旋取向进入一均匀磁场并穿出,这是一个自旋沿磁场方向进动的时间相关问题;258259“初始条件问题”比如,波包的自由演化,这是一个与时间相关的波包弥散问题。
更一般地说,初态引起的含时问题可以表述为:由于Hamilton 量中的某种相互作用导致体系初态的不稳定。
例如Hamilton 量中的弱相互作用导致初态粒子的β 衰变等;最后,“边界条件变动”也能使问题成为一个与时间相关的现象。
例如阱壁位置随时间变动或振荡的势阱问题等。
ii, 体系的Hamilton 量依赖于时间。
这比如,频率调制的谐振子问题或是时间相关受迫谐振子问题,交变外电磁场下原子中电子的状态跃迁问题等等。