定比、定比分点公式讲解学习
- 格式:doc
- 大小:301.00 KB
- 文档页数:7
平面向量定比分点定理1. 引言大家好,今天咱们要聊聊一个数学中非常有趣的话题——平面向量定比分点定理。
听上去是不是有点高大上?别担心,咱们会把它说得简单易懂,甚至还有点幽默,让你轻松get到这个知识点。
毕竟,数学也可以很有趣,不是吗?1.1 什么是定比分点定理?先来捋捋,这个定理到底是个什么东西。
简单来说,定比分点定理就是告诉我们,如何通过某些特定的比例来确定一个点在两点之间的位置。
想象一下,假如你在一个超市里,想要在两排货架之间找到一个完美的购物位置,你就可以用这个定理来帮助你,当然,前提是你得知道你要的东西在哪儿,对吧?1.2 公式与例子那具体的公式是什么呢?假设你有两个点A(x1, y1)和B(x2, y2),如果我们希望找一个点P,按照比例m:n来分割AB线段,P的坐标就可以用这个公式表示:P(x, y) = ((mx2 + nx1) / (m + n), (my2 + ny1) / (m + n))。
听起来复杂?其实不然,我们来举个例子。
比如说,有两位朋友A和B,A在(1, 2)的位置,B在(3, 4)的位置。
如果你想找一个P点,使得它在A和B之间,比例是1:3,那么用公式计算一下,你就能找到P在(2.5, 3)的位置。
就像是找到朋友聚会的最佳位置,嘿嘿!2. 应用场景2.1 生活中的实际应用说到这儿,你可能会问:“这跟我的生活有什么关系?”其实还真有!想象一下,你在一个公园里散步,突然发现两个大树之间有个超级适合拍照的地方。
你可以用定比分点定理来判断这个地方的最佳位置,分出一段合理的距离。
生活中,许多设计、建筑、甚至是游戏开发,都离不开这个定理的支持,简直是个“万能钥匙”!2.2 动手实践而且,定比分点定理还可以用来做一些小实验。
比如说,你可以带着朋友们去外面,找两个标志性的位置,然后用比例来确定一个新位置,看看是不是大家都觉得这个位置最合适。
就像你们在决定去哪吃饭时,总得有人说:“咱们去那个小店吧,它的蛋糕好吃得不得了!”这种分点定理的思路,恰好就适合用来做决策,嘿!3. 总结与感悟3.1 直观与趣味总之,平面向量定比分点定理并不是个冷冰冰的公式,它其实可以为我们的生活增添一些乐趣和便利。
定比点差法及其应用解说一、定比分点若,则称点为点、的定比分点.当时,点在线段上,称为内分点;当()时,点在线段的延长线上,称为外分点.定比分点坐标公式:若点,,,则点的坐标为二、点差法点差法其实可以看作是方程的相减,是对方程的一个巧妙的处理。
若点在有心二次曲线上,则有两式作差得此即有心二次曲线的垂径定理,可以解决与弦的中点相关的问题.1、弦的中点点差法一个妙用:例1 已知椭圆,直线交椭圆于两点,为的中点,求证:为定值。
分析用常规方法设直线也可以解决,但是计算就很繁杂,在这里使用点差法。
解设,,在椭圆上:,作差得:即:,因为所以,为定值。
以上结论与弦的中点有关,也称为垂径定理。
考虑当椭圆为圆的时候,,则,,正好也符合圆的“垂径定理”。
在双曲线中同样有类似的结论,但定值为,在这里就不再推导了。
2、弦上的定比分点当弦上的点不再是中点时,就成了定比分点:设,,,则点坐标可以表示为:,证明设,,化简可得:,同理这时候就出现了这样形式的式子。
如果再凑出,可能大家就会有点感觉了:可以将椭圆的方程乘上一个再作差,得到这样的式子。
因此我们想到了“定比点差法”这样的技巧。
例2 已知椭圆,在椭圆外,过作直线交椭圆于两点,在线段上且满足:,求证:点在定直线上。
分析按照以上思路,要出现和这样的式子,很容易想到设的坐标,再表示出的坐标。
解设,,,则,结合图形得:则,在椭圆上:①,②得:即,所以在定直线上。
下面介绍定比点差法:若点在有心二次曲线上,则有两式作差得这样就得到了例7、过异于原点的点引椭圆的割线,其中点在椭圆上,点是割线上异于的一点,且满足.求证:点在直线上.证明:直接运用定比点差法即可.设,则有,设,则有又因为点在椭圆上,所以有两式作差得两边同除以,即可得到命题得证.例8、已知椭圆,过定点的直线与椭圆交于两点(可以重合),求的取值范围.解析:设,,则.于是,于是又因为点在椭圆上,所以有两式相减得将(1)代入(2)中得到由(1)(3)解得从而解得的取值范围为,于是的取值范围为.例9、设、为椭圆的左、右焦点,为椭圆上任意一点,直线分别交椭圆于异于的点、,若,,求证:.证明:设,,,则于是有又由点在椭圆上得到两式相减得从而有结合(4)式可解得同理可得结合(5)式得到于是有整理得,命题得证.例10、已知椭圆,点,过点作椭圆的割线,为关于轴的对称点.求证:直线恒过定点.解析:因为三点共线,三点也共线,且三点都在椭圆上,我们用定比点差法去解决这个问题.设,,则,设与轴的交点为,,,则于是有由点在椭圆上得两式相减得将(2)代入(3)得。
三角形的定比分点公式及应用设在三角形ABC的边AB上,有两个点D和E,使得AD:DE:EB=m:n:p,其中m、n、p为正实数,且满足m+n+p=1、则称点D和点E是边AB上的定比分点。
应用:1.线段分点定比问题:已知两点A、B,找到两点之间的一个点P,使得AP:PB=m:n。
这个问题可以通过将线段AB看作三角形的一条边,然后应用定比分点公式来解答。
2.定比分点的证明:如果在三角形的边上有一个点是边的中点,则此点与边两端的点成1:1:1的定比分点。
证明如下:设在三角形ABC的边AB上有一点D是边AB的中点,即AD=BD,则AD:DE:EB=AD:AD:BD=1:1:1同理,三角形的另外两条边上也存在中点,可以利用定比分点公式得到其它的定比分点。
3.相似三角形的性质:如果在两个相似三角形的相应边上分别取定比分点,则这两个定比分点所确定的线段也是相似三角形的定比分点。
例如,在相似三角形ABC和DEF中,AB:DE=BC:EF=a,如果在边AB上取定比分点D和E,使得AD:DE:EB=m:n:p,则有BC:EF=AD:DE:EB=m:n:p=a。
即在三角形DEF中,BC是EF的定比分点。
4.解决长度比例问题:通过应用定比分点公式,可以解决与长度比例有关的数学问题。
例如,在已知等腰直角三角形ABC中,如果AD是边AC上的定比分点,即AD:DC=m:n,则可以根据定比分点公式求出在边AC上的偏距AD和线段AB、BC的长度。
5.解决面积比例问题:通过应用定比分点公式,可以解决与面积比例有关的数学问题。
例如,已知三角形ABC中,面积为S,若点D是边AB 上的定比分点,即AD:DB=m:n,则可以根据定比分点公式求出三角形ABD 和三角形ACD的面积,并据此计算出三角形ABC的面积。
总结起来,三角形的定比分点公式是一个重要的几何定理,它可以在解决线段或面积比例问题中起到重要的作用,能够推导出一些三角形的性质和关系。
(3)定比、定比分点公式一、教学内容分析本节是的第三节课,是学习向量坐标表示及运算、向量的模与平行之后的又一个新的知识点.它既是对前两节内容复习与巩固,又是对向量知识的进一步深化与拓展,如式子 12PP PP λ=中的λ由实数推广到定比.同时,经历定比分点公式的推导过程,让学生领悟定比分点的多元化表示方法.本节的教学重点是定比分点公式的形成、深化、拓展与应用.难点是定比λ的理解、确定及定比分点公式中分点、始点、终点坐标位置的识别.根据本节特点,教师采取启发、提问为主的教学方法;学生则进行自主学习.即课前进行主动预习,课中进行讨论与交流,课后进行探索研究. 二、教学目标设计1理解定比的概念,掌握定比分点公式;2通过定比分点公式的推导过程,巩固向量的运算方法; 感悟定比分点的几种表达方式;3通过本节的学习,提升发现能力、推理能力,渗透数形结合思想. 三、教学重点及难点定比的概念,定比分点公式的推导和应用. 四、教学流程设计五、教学过程设计一、 情景引入观察思考,引入新课问题1:设)1,2(A ,)1,2(--B ,)2,4(C 三点共线,可知BA ∥AC ,即存在实数λ,使BA = λAC ??,那么实数λ= . 而若?BC CA λ=,则λ= .[说明](1)本问题由共线三点坐标求实数λ,它既是对前一节向量平行的复习与巩固,同时又为定比λ的产生作好铺垫(2)通过本题可以看出使两向量平行的实数λ的取值可正可负. 问题2:设1P (1,1),2P (4,4), λ=1.当12PP PP λ=时,你能求出点P的坐标吗(引出课题)[说明]问题2是由共线三点中的两点坐标和定比λ的值求第三点坐标,本题给出的点具有一定的特殊性,这样便于学生利用数形结合思想猜出结果,尝试成功的快乐. 二、学习新课 1.定比分点公式一般地,设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 12PP PP λ=,求点P 的坐标.解:由12PP PP λ= ,可知{)()(2121x x x x y y y y -=--=-λλ,因为λ≠-1, 所以⎩⎨⎧++=++=λλλλ112121x x x y y y ,这就是点P 的坐标.师生通过上面的结论共同解决(一)中的问题2.[说明]此例题的结论可作为公式掌握,此公式叫线段21P P 的定比分点公式. 2.小组交流(1)定比分点公式中反映了那几个量之间的关系当λ=1时,点P的坐标是什么 (2)满足式子12PP PP λ=的点P 称为向量 12PP 的分点.思考:上式中正确反映 P 1,P ,2P 三点位置关系的是( ) A 、 始→分,分→终.B 、始→分,终→分.C 、终→分,分→始 (3)关于定比λ和分点P 叙述正确的序号是1)点P 在线段21P P 中点时,λ=1;2)点P 在线段21P P 上时,λ≥0 3)点P 在线段21P P 外时,λ﹤0; 4)定比λR ∈[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=222121x x x y y y ,此公式叫做线段21P P 的中点公式. 此公式应用很广泛.3.例题辨析例1、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标.解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB 的中点,于是点D 的坐标是(2,22121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =则由定比分点公式得 ⎪⎩⎪⎨⎧+++=+++=21222122213213x x x x y y y y ,整理得 ⎪⎩⎪⎨⎧++=++=3332121x x x x y y y y 这就是△ABC 的重心G 的坐标.[说明]本题难度不大,但综合性却比较强.不仅涉及到定比的概念,而且用到了中点公式、定比分点公式.(2)此结论可作为三角形重心的坐标公式.例2、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值.解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15), 所以定比λ=-32.解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式得12=λλ+-⨯+1)3(2 解出实数λ=-32.解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又21PP PP = 32,所以λ=-32 .[说明] 本题已知三点坐标求定比λ的值,学生往往偏爱第一种解法;解法二是定比分点公式的一个应用,其前提是三点共线,代公式时要注意始点、终点、分点坐标的位置;解法三是求定比λ的有效方法,简洁方便,鼓励学生大胆去尝试.三、演练反馈,巩固知识1设12PP PP λ= ,21P P PPλ'= ,则下列正确的是( ) (A )λλ'= (B )λλ'=- (C ) 1λλ=' (D )1λλ=-'2、△ABC 中,A (2,3),B (-3,4),重心G (-)34,32,求C 点的坐标.3、已知:A (3,-1),B (-4,-2),点P 在直线AB 上,且2AP =3BP ,求P 点坐标.四、知识梳理,提升思维1知识与技能小结:(1)主要的知识点有定比λ的概念,中点公式、定比分点公式,及定比分点公式的多元化表示.(2)主要的应用有定比λ的意义与范围,三点共线问题,三角形重心公式及综合应用.2 学生的体会和感悟:对本节学习过程的认识、理解和体会;提出新的疑点和问题.五、作业布置,课后探究 1、填空题(1)已知三点A 、B 、C 满足AB =2BC ,设1AC CB λ=2BA AC λ=则=•21λλ(2)△ABC 中,A (1,2),B (-2,3),C (4,-1),D 为BC 中点,且 3= ,则G 点坐标是 2、选择题(1)若 2143PP P -=,则下列各式中不正确的是( ) (A ) 12P P =P P 131 (B )P P 1234= (C ) 2113P P P -= (D )1224P PP =(2) 设点P 是12PP 反向延长线上任意一点且12PP PP λ=,则实数λ的范围是( )(A )(-∞,0) (B )(—∞,-1) (C )(-1,0) (D )[-1,0)3、解答题(1)△ABC 中,已知A (3,1),AB 的中点D (2,4),△ABC 的重心G (3,4),求B 、C 两点的坐标.(2)已知设1P (3,2),2P (-8,3) , P (12,y ),若12PP PP λ=,求λ与y 的值.。
定比分点公式证明过程
标题,定比分点公式的证明过程。
在数学中,定比分点公式是一个非常重要的定理,它用于确定一条线段上的任意一点与两个端点的比例关系。
这个定理的证明过程非常有趣,让我们来看看它是如何被证明的。
首先,我们假设有一条线段AB,我们要找到一点P,使得AP与PB的比例为m:n。
我们将这个比例表示为m/n。
接下来,我们假设P点的坐标为(x, y),A点的坐标为(x1,
y1),B点的坐标为(x2, y2)。
根据定比分点公式,我们有以下关系式:
x = (mx2 + nx1) / (m + n)。
y = (my2 + ny1) / (m + n)。
现在,让我们来证明这些关系式。
首先,我们知道P点与A点的横坐标的比例为m:n,即(x x1) / (x2 x1) = m/n。
解方程可得x = (mx2 + nx1) / (m + n)。
同理,P点与A点的纵坐标的比例也为m:n,即(y y1) / (y2 y1) = m/n。
解方程可得y = (my2 + ny1) / (m + n)。
因此,我们得到了点P的坐标与m:n的比例关系,证明了定比分点公式。
通过这个证明过程,我们可以清楚地看到定比分点公式是如何被推导出来的。
这个定理在数学和几何中有着广泛的应用,它帮助我们理解线段上点的比例关系,为我们解决实际问题提供了重要的数学工具。
定比、定比分点公式
8.1(3)定比、定比分点公式
一、教学内容分析
本节是8.1的第三节课,是学习向量坐标表示及运算、向量的模与平行之后的又一个新的知识点.它既是对前两节内容复习与巩
固,又是对向量知识的进一步深化与拓展,如式子 12PP PP λ=u u u r u u u r
中的λ由实数推广到定比.同时,经历定比分点公式的推导过程,让学生领悟定比分点的多元化表示方法.
本节的教学重点是定比分点公式的形成、深化、拓展与应用.难点是定比λ的理解、确定及定比分点公式中分点、始点、终点坐标位置的识别.
根据本节特点,教师采取启发、提问为主的教学方法;学生则进行自主学习.即课前进行主动预习,课中进行讨论与交流,课后进行探索研究. 二、教学目标设计
1理解定比的概念,掌握定比分点公式;
2通过定比分点公式的推导过程,巩固向量的运算方法; 感悟定比分点的几种表达方式;
3通过本节的学习,提升发现能力、推理能力,渗透数形结
合思想. 三、教学重点及难点
定比的概念,定比分点公式的推导和应用. 四、教学流程设计
五、教学过程设计
一、 情景引入
观察思考,引入新课
问题1:设)1,2(A ,)1,2(--B ,)2,4(C 三点共线,可知BA u u u r
∥AC u u u r ,即存
在实数λ,使BA u u u r
= λAC u u u r ,那么实数λ= .
而若 BC CA λ=u u u r u u u r
,则λ= .
[说明](1)本问题由共线三点坐标求实数λ,它既是对前一节向量平行的复习与巩固,同时又为定比λ的产生作好铺垫(2)通过本题可以看出使两向量平行的实数λ的取值可正可负.
问题2:设1P (1,1),2P (4,4), λ=1.当12PP PP λ=u u u r u u u r
时,你能求出点
P 的坐标吗?(引出课题)
[说明]问题2是由共线三点中的两点坐标和定比λ的值求第三点坐标,本题给出的点具有一定的特殊性,这样便于学生利用数形结合思想猜出结果,尝试成功的快乐. 二、学习新课
1.定比分点公式
一般地,设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一
点,且满足 12PP PP λ=u u u r u u u r
,求点P 的坐标.
解:由12PP PP λ=u u u r u u u r
,可知
{
)
()(2121x x x x y y y y -=--=-λλ,因为λ≠-1, 所以⎩⎨⎧++
=++=λ
λλ
λ112
121x x x y y y ,这就是点P 的坐标.
师生通过上面的结论共同解决(一)中的问题2.
[说明]此例题的结论可作为公式掌握,此公式叫线段21P P 的定比分点
公式. 2.小组交流
(1)定比分点公式中反映了那几个量之间的关系?当λ=1时,
点P 的坐标是什么?
(2)满足式子12PP PP λ=u u u r u u u r 的点P 称为向量 12PP u u u u r
的分点. 思考:上式中正确反映 P 1,P ,2P 三点位置关系的是( )
A 、 始→分,分→终.
B 、始→分,终→分.
C 、终→分,分→始 (3)关于定比λ和分点P 叙述正确的序号是
1)点P 在线段21P P 中点时,λ=1;2)点P 在线段21P P 上时,λ≥0 3)点P 在线段21P P 外时,λ﹤0; 4)定比λR ∈
[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=2
2
2
121x x x y y y ,此公式叫做线
段21P P 的中点公式. 此公式应用很广泛.
3.例题辨析
例1、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标. 解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB 的中
点,于是点D 的坐标是(
2,22
121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =u u u r u u u r
则由定比分点公式得 ⎪⎩
⎪⎨⎧+++=+++=2
12221222
13213x x x x y y y y ,整理得 ⎪⎩⎪⎨⎧++=++=333
2121x x x x y y y y 这就是△ABC 的重心G 的坐标.
[说明]本题难度不大,但综合性却比较强.不仅涉及到定比的概念,而且用到了中点公式、定比分点公式.(2)此结论可作为三角形重心的坐标公式.
例2、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=u u u r u u u r
求实数λ的值. 解1: 由已知可求 1(10,10)PP =u u u r ,2(15,15)PP λλ=--u u u r 故10=λ .(-
15),
所以定比λ=-32
.
解2: 因为12PP PP λ=u u u r u u u r
,所以P 1,P ,2P 三点共线,由定比分点公式
得12=
λλ+-⨯+1)3(2 解出实数λ=-3
2
.
解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又21
PP PP u u u r
u u u
r = 32
, 所以λ=-3
2 .
[说明] 本题已知三点坐标求定比λ的值,学生往往偏爱第一种解法;解法二是定比分点公式的一个应用,其前提是三点共线,代公式时要注意始点、终点、分点坐标的位置;解法三是求定比λ的有效方法,简洁方便,鼓励学生大胆去尝试.
三、演练反馈,巩固知识
1设12PP PP λ=u u u r u u u r ,21P P PP
λ'=u u u r u u u r
,则下列正确的是( ) (A )λλ'= (B )λλ'=- (C ) 1λλ=
' (D )1
λλ=-'
2、△ABC 中,A (2,3),B (-3,4),重心G (-)3
4
,32,求C 点的
坐标.
3、已知:A (3,-1),B (-4,-2),点P 在直线AB 上,且
2AP u u u r =3BP u u u r
,求P 点坐标.
四、知识梳理,提升思维
1知识与技能小结:(1)主要的知识点有定比λ的概念,中点公式、定比分点公式,及定比分点公式的多元化表示.(2)主要的应用有定比λ的意义与范围,三点共线问题,三角形重心公式及综合应用.
2 学生的体会和感悟:对本节学习过程的认识、理解和体会;提出新的疑点和问题.
五、作业布置,课后探究 1、填空题
(1)已知三点A 、B 、C 满足AB u u u r
=2BC uuu r ,设1AC CB λ=u u u r u u u r
2BA AC λ=u u u r u u u r
则=•21λλ
(2)△ABC 中,A (1,2),B (-2,3),C (4,-1),D 为BC 中点,且 3= ,则G 点坐标是 2、选择题
(1)若 214
3PP P -=,则下列各式中不正确的是( ) (A ) 12P =P 13
1
(B )P P 123
4= (C ) 2113P P P -= (D )1224P PP =
(2) 设点P 是12PP u u u r 反向延长线上任意一点且12PP PP λ=u u u r u u u r
,则实数λ
的范围是( )
(A )(-∞,0) (B )(—∞,-1) (C )(-1,0) (D )[-1,0)
3、解答题
(1)△ABC 中,已知A (3,1),AB 的中点D (2,4),△ABC 的重心G (3,4),求B 、C 两点的坐标.
(2)已知设1P (3,2),2P (-8,3) , P (1
2
,y ),若12PP PP λ=u u u r u u u r ,求λ与y 的值.。