MC34063升压、降压、负压
- 格式:ppt
- 大小:1.81 MB
- 文档页数:57
MC34063锂电池充电降压这东东原来是Motorola搞的, 后来转让给了 OnSemi电路原理振荡器通过恒流源对外接在TimingCapacitor管脚(3脚)上的定时电容不断地充电和放电以产生振荡波形, 充电和放电电流都是恒定的, 所以振荡频率仅取决于外接定时电容的容量. 与门的C输入端在振荡器对外充电时为高电平, D 输入端在比较器的输入电平低于阈值电平时为高电平, 当C和D输入端都变成高电平时, 触发器被置为高电平, 输出开关管导通, 反之当振荡器在放电期间C输入端为低电平, 触发器被复位使得输出开关管处于关闭状态Sense检测端(7脚)通过检测连接在Vcc和7脚之间电阻上的压电流限制Ipk降来完成功能, 当检测到电阻上的电压降接近超过300mV时电流限制电路开始工作, 这时通过TimingCapacitor管脚(3脚)对定时电容进行快速充电以减少充电时间和输出开关管的导通时间, 结果是使得输出开关管的关闭时间延长.利用MC34063制作的锂电池充电板,可对3.6V、7.2V锂电池进行恒压恒流充电,电路采用开关式DC-DC变换。
使用MC34063芯片,具有功耗低、发热量小、带有短路保护功能、静态工作电流小等特点,做成恒流恒压充电器非常实用。
有以下几个优点:a.电流尚可,34063可以通过调那个2K的电阻把电流调大到600MA(332G是160MA)如果不是很心急的调到最大也就够用了b.自带指示电路,34063的板子冲到恒压阶段指示灯会熄灭,c.电压可调范围大,按照东明提供的资料,34063的充电截止电压可以在3.6-8.4之间调节,322G只适合3.9-4.2的范围,这样34063就可以通吃锂铁和锂聚d.发热较低,因为34063是DC-DC芯片,效率为80%,缺点:a.由于截止电压可调范围比较大,输入端压差要大于输出端3V,通过计算如果截止电压4.2V,充电电流600MA,那么一般需要9V,250MA以上的开关电源,计算方法(如输入为9V输出为4.2V效率为80%则变化比为(9/4.2/0.8=2.68)如输出设定为600MA则输入为(600/2.68=223MA))In my opinion,初始阶段的恒流, 其实是带不起负载而导致电压跌落, 当然还有RP1的电流检测限制的因素, 后期进入恒压阶段则是因为负载减小,输出端能够保持稳定电压. 充满电以后因所需电流极小, LED会熄灭. 有观点认为: 34063 的输出纹波偏大, 达不到锂电所要求的0.1%的精度范围.后发现实物与附带说明书及原理图明显不符,图纸上元器件编号与实物标号也不一样,图纸上线路也有画错,说明书中讲P2、P1调整功能应该是相反。
MC34063 或MC33063 接成标
1:极性反转。
2:升压。
3:降压。
三种典型电路时,外围元件参数的自动计算
使用方法:只要在左中部框中输入你想要的参数,然后点击“进行计算并且刷新电路图”按钮,它就可以自动给所有相关的外围元件参数和相对应的标准电路图纸,使设计DC—DC 电路实现智能化高效化。
关于警告:如果您输入的参数超过了34063 的极限,它会自动弹出警告窗口提醒您更改它们。
特殊输入:要设计极性反转电路请在输入或输出电压数字的前面加上负号,比如-5V。
这是一种用于DC-DC 电源变换的集成电路,应用比较广泛,通用廉价易购。
极性反转效率最高65%,升压效率最高90%,降压效率最高80%,变换效率和工作频率滤波电容等成正比。
MC34063应用之升压电路
MC34063升压使用时,一般设定是输入输出电压的绝对值之和要低于40V,否则工作不稳定。
但是实际却看到很多输出50V、60V的电路,性能应该也是可以接受的。
看电路应该是Q1的耐压不够,采用扩流的方式同时把电感移到1脚和输出之间后,见方案五,升压的电压就可以不受40V的限制了,实际测试结果也很理想。
升压电路一
这是个很标准的升压电路,PCB上考虑了两种芯片的安装方式,使用起来比较方便。
MC34063的升压电路图
MC34063的升压电路PCB图
MC34063的升压电路元件布置示意图
MC34063的升压电路实物图
采用SMD封装芯片的实物图
升压电路的元件数值选择可以通过计算得到,作为参考也很方便,下面是连接:/Program/MC34063/MC34063A%20design%20tool.htm
原文连接:/new_page_22.htm
MC34063的升压电路图
MC34063的升压电路设计草图
MC34063的升压电路布线示意图
MC34063的升压电路实物图升压电路三
MC34063的升压电路图
MC34063的升压电路PCB参考
MC34063的升压电路实物图升压电路四:
MC34063的升压电路图
MC34063的升压电路实物图1
MC34063的升压电路实物图2
升压电路五:
MC34063的升压电路成品机通电实验
元件清单
MC34063的升压实物图1
MC34063的升压电路实物图2
MC34063的升压电路PCB元件布置
MC34063的升压电路PCB铜箔面
←↑→↓。
mc34063升压电路及原理
MC34063集成电路主要特性:
输入电压范围:2.5~40V
输出电压可调范围:1.25~40V
输出电流可达:1.5A
工作频率:最高可达180kHz
低静态电流
短路电流限制
可实现升压或降压电源变换器
MC34063的基本结构及引脚图功能
1脚:开关管T1集电极引出端;
2脚:开关管T1发射极引出端;
3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz 范围内变化;
4脚:电源地;
5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;
6脚:电源端;
7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;
8脚:驱动管T2集电极引出端。
mc34063升压电路
MC34063升压电路:从5V升到12V
图四:MC34063大电流降压变换器电路
图三:MC34063大电流升压变换器电路
图五:MC34063反向变换器电路图二:MC34063降压变换器电路图一:MC34063升压变换器电路。
|MC34063 中文资料PDF及MC34063应用:2007年09月16日星期日下午12:281. MC34063DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。
片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。
它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。
特点:*能在3.0-40V的输入电压下工作*短路电流限制*低静态电流*输出开关电流可达1.5A(无外接三极管)*输出电压可调*工作振荡频率从100HZ到100KHZ2.MC34063引脚图及原理框图3 MC34063应用电路图:3.1 MC34063大电流降压变换器电路3.2 MC34063大电流升压变换器电路3.4 MC34063降压变换器电路3.5 MC34063升压变换器电路mc34063中文资料应用原理资料2009-06-09 17:45MC34063A(MC33063)芯片器件简介该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。
它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。
该器件可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。
主要应用于以微处理器(MPU)或单片机(MCU)为基础的系统里。
MC34063集成电路主要特性:输入电压范围:2、5~40V输出电压可调范围:1.25~40V输出电流可达:1.5A工作频率:最高可达100kHz低静态电流短路电流限制可实现升压或降压电源变换器MC34063的基本结构及引脚图功能:1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;6脚:电源端;7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;8脚:驱动管T2集电极引出端。
MC34063是一個低價位的DC-DC交換式轉換IC,使用上非常方便,除了穩壓、降壓、升壓,甚至還可以轉成負向電壓。
雖然它的效率還不算很高,但電路簡單、成本低廉、溫升低,所以被廣泛應用在許多電源轉換用途上。
由於在站上有介紹過這個IC,並在站上提供了線上計算程式,所以有關低電流的升壓、降壓、反電壓變得非常方便,而且經過多次的運用,效果很滿意。
我最常用的方式是用來把7.2V或7.4V的鋰電升壓成12V以上的電壓來提供電路電源,由於有些同好多次來信問及製作時發生的一些問題,往往發生在接線錯誤、使用錯誤零件等…..為了減少製作時發生的錯誤,特把升壓電路的電路板Layout出來分享大家。
下圖為MC34063的升壓電路圖:零件參數及計算的方式各位可以查一下它的Data sheet,為了方便使用站上的計算程式來作示範。
比如設定為輸入7.4V;輸出12.V,輸出電流400mA,蓮波電壓30mA,振盪頻率為30Khz,依上述的值在線上計算網頁上填到相關的欄位,然後點選計算鈕,程式就會自動的把相關的零件值算出,如下圖:※有時你設定的輸出電流太大,致使Ipk大於1500mA時,程式會提醒你,超出MC34063的最大電流。
依照出現的答案套入電路中的電阻、電容值就OK了。
但依網友失敗的經驗中得知,大部的問題是:1. 用錯電感,由於需較大的電流,所以電感不要使用色碼電感,應使用電流較大的線繞鉄粉芯電感。
2. 二極體用錯,不要使用一般的1N4001~4007,要使用速度較快的schottky(簫基特二極體),如1N 5820,1N 5819,1N 5818等…3. Rsc由於電阻較低,也許較不好找,但不能不用,找不到時還可用並的方式達成〈差一點數值沒關係,比如我就常用0.5歐姆並聯0.3歐姆。
低成本DC/DC转换器34063的应用34063由于价格便宜,开关峰值电流达1.5A,电路简单且效率满足一般要求,所以得到广泛使用。
在ADSL 应用中,34063的开关频率对传输速率有很大影响,在器件选择及PCB设计时需要仔细考虑。
线性稳压电源效率低,所以通常不适合于大电流或输入、输出电压相差大的情况。
开关电源的效率相对较高,而且效率不随输入电压的升高而降低,电源通常不需要大散热器,体积较小,因此在很多应用场合成为必然之选。
开关电源按转换方式可分为斩波型、变换器型和电荷泵式,按开关方式可分为软开关和硬开关。
斩波型开关电源斩波型开关电源按其拓扑结构通常可以分为3种:降压型(Buck)、升压型(Boost)、升降压型(Buck-boost)。
降压型开关电源电路通常如图1所示。
图1中,T为开关管,L1为储能电感,C1为滤波电容,D1为续流二极管。
当开关管导通时,电感被充磁,电感中的电流线性增加,电能转换为磁能存储在电感中。
设电感的初始电流为iL0,则流过电感的电流与时间t的关系为:iLt= iL1 (Vi-Vo-Vs)t/L,Vs为T的导通电压。
当T关断时,L1通过D1续流,从而电感的电流线性减小,设电感的初始电流为iL1,则则流过电感的电流与时间t的关系:iLt=iL1-(Vo Vf)t/L,Vf为D1的正向饱和电压。
图1 降压型开关电源基本电路34063的特殊应用● 扩展输出电流的应用DC/DC转换器34063开关管允许的峰值电流为1.5A,超过这个值可能会造成34063永久损坏。
由于通过开关管的电流为梯形波,所以输出的平均电流和峰值电流间存在一个差值。
如果使用较大的电感,这个差值就会比较小,这样输出的平均电流就可以做得比较大。
例如,输入电压为9V,输出电压为3.3V,采用220μH 的电感,输出平均电流达到900mA,峰值电流为1200mA。
单纯依赖34063内部的开关管实现比900mA更高的输出电流不是不可以做到,但可靠性会受影响。
MC34063应用电路图大全(升压电路/降压电路)描述MC34063是一个单片集成电路,是一个包含了DC/DC变换器的控制电路。
该集成电路的主要构成部分是具有温度补偿的电压源、占空比可控的振荡器、驱动器、比较器、大电流输出开关电路和R-S触发器。
MC34063可用极少的开关元器件,构成升压变换开关、降压变换开关和电压反向电路,这种开关电源相对线性稳压电源来说,效率较高,而且当输入输出电压降很大时,效率不会降低,电源也不需要大的散热器,体积较小,使得其应用范围非常广泛,主要应用于以微处理器或单片机为基础的系统里。
mc34063应用电路图(一):降压变换电源原理图如下图所示是用芯片MC34063制作的+25/+5V降压变换电源原理图。
该降压电路的工作过程如下:1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2监视输出电压。
其中,输出电压U。
=1.25(1+R2/R1)由公式可知输出电压。
仅与R1、R2数值有关,因1.25V为基准电压,恒定不变。
若R1、R2阻值稳定,U。
亦稳定。
2.脚5电压与内部基准电压1.25V同时送人内部比较器进行电压比较。
当脚5的电压值低于内部基准电压(1.25V)时,比较器输出为跳变电压,开启R—S触发器的S脚控制门,R—S触发器在内部振荡器的驱动下,Q端为“1”状态(高电平),驱动管T2导通,开关管T1亦导通,使输入电压Ui向输出滤波器电容Co充电以提高U。
,达到自动控制U。
稳定的作用。
3.当脚5的电压值高于内部基准电压(1.25V)时,R—S触发器的S脚控制门被封锁,Q端为“0”状态(低电平),T2截止,T1亦截止。
4.振荡器的Ipk输入(脚7)用于监视开关管T1的峰值电流,以控制振荡器的脉冲输出到R—S触发器的Q端。
5.脚3外接振荡器所需要的定时电容Co电容值的大小决定振荡器频率的高低,亦决定开关管T1的通断时间。
mc34063应用电路图(二):MC34063升压电路MC34063组成的降压电路原理如图8,当芯片内开关管(T1)导通时,电源经取样电阻Rsc、电感L1、MC34063的1脚和2脚接地,此时电感L1开始存储能量,而由C0对负载提供能量。
MC34063A,MC33063A,SC34063A,SC33063A, NCV33063A1.5A, 升压、降压转换用开关调整器。
MC34063A系列是包含DC-DC转换器基本功能的单片集成控制电路。
该器件的内部组成包括带温度补偿的参考电压、比较器、带限流电路的占空比控制振荡器、驱动器、大电流输出开关。
该器件专用于降压、升压以及电压极性反转场合,可以减少外部元件的使用数量。
获取更详细的设计参考信息,可参阅应用笔记“AN920A/D”或“AN954/D”.特性●工作输入电压3.0V-40V●低静态电流●具有限流功能●输出开关电流可达1.5A●输出电压可调●工作频率可至100kHz●参考电压精度2%●支持无铅封装封装印记说明:x = 3或4A = 封装地区L,WL = 晶片批号Y,YY = 年份W,WW = 周次G或■ = 无铅封装本手册封装尺寸部分有关于订货、包装的详细信息。
“”(底部视图)该器件包含79个有源晶体管图1 等效原理图MC34063A,MC33063A,SC34063A,SC33063A,NCV33063A图2 引脚分布强制性地超出极限参数将损坏器件。
极限参数只是强制性参数,不代表正常工作要超出推荐工作条件,长期超出推荐工作条件的操作将影响器件的可靠性。
1.必须注意封装的最大功耗限制。
2.该系列器件具备静电放电防护,并通过了以下试验:人体放电模式4000V,美军标MIL-STD-883,3015方式.机械模式400V.3.NCV前缀系列用于汽车电子。
电气特性(VCC=5.0V,T=T至T【注4】,除非另有说明。
)4.对于MC34063,SC34063,Tlow=0℃;对于MC33063,SC33063,MC33063V,NCV33063,Tlow=-40℃;对于MC34063,SC34063,Thigh =+70℃;对于MC33063,SC33063,Thigh=+85℃;对于MC33063V,NCV33063,Thigh =+125.℃5.测试时采用了低占空比以保证结温尽可能接近环境温度。
DC/DC变换器控制电路34063产品说明书1、简介34063单片双极型线性集成电路,是专用于直流-直流变换器的控制芯片。
片内包含温度补偿带隙基准源、占空比周期控制器、功率驱动和大电流输出开关,最大峰值电流可达1.5A。
特点:○1工作电压范围宽,可在3.0V~40V的电压下工作;○2短路电流限制保护功能;○3静态功耗低;○4输出峰值电流可达1.5A(无外接三极管);○5输出电压可调;;○6工作振荡频率从100Hz到100KHz;○7可构成升压,降压和反向电源变换器。
2.内部框图及工作原理2.1内部框图图1 TY34063内部框图2.2工作原理振荡器通过恒流源对外接在CT管脚(3脚)上的定时电容不断地充电和放电,以产生振荡波形,充电和放电的电流都是恒定的,所以振荡频率决定于外接定时电容的容量。
与门的C输入端在振荡器对外充电时为高电平,D输入端在比较器的输入电平低于阈值电平时为高电平。
当C和D的输入端都变成高电平时,触发器被置为高电平,输出开关管导通。
反之,到振荡器在放电期间,C输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。
电流限制检测端Is通过检测连接在V+和7脚之间电阻上的压降来完成功能。
当检测到电阻上的电压降接近超过300mV时,电流限制电路开始工作。
这时通过CT管脚(3脚)对定时电容进行快速充电,以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的开关时间延长。
3.参数及测试条件:3.1极限参数表1.极限参数3.2电参数表2. 电参数(除非特殊说明:V+=5V,Ta=25℃)4.典型应用电路:图2 .升压变换器图3 .降压变换器图4 .反向变换器图5 .升压变换器(大电流)图6 .降压变换器(大电流)5.封装形式:封装采用DIP8和SOP8两种封装形式,如下图所示。
图7 DIP8封装图8 SOP8封装。