Buck-boost升降压电路设计示例
- 格式:doc
- 大小:148.00 KB
- 文档页数:2
常熟理工学院电气与自动化工程学院《电力电子技术》课程项目制作说明书题目:Multisim仿真大作业升降压斩波电路仿真报告学号:Z********姓名:**一.电路工作原理升降压斩波电路(Buck-Boost Chopper)的基本工作原理是:当可控开关V处于通态时,电源E经V向电感L供电使其储存能量,此时电流为i1,方向如图所示。
同时,电容C维持输出电压基本恒定并向负载R供电。
此后,使V关断,电感L中储存的能量向负极释放,电流为i2,方向如图所示。
可见,负载电压极性为上负下正,与电源极性相反,所以该电路也被称为反极性斩波电路。
二.电路原理图三.参数计算与元器件选择输入直流电压U1=220V;IGBT型号:IRG4BC10U;电感L=3mH;二极管型号:1N4148;电容C=15uF;负载电阻R=10K欧姆四.仿真电路设计在了解了升降压斩波电路的工作原理后,我使用了multisim仿真软件做了电路仿真,利用了可调占空比的函数信号发生器来控制IGBT的开断,此处也可选用正弦波信号源,利用虚拟万用表来观察电压值随着占空比变化的规律.我们利用采样电阻来观察流经电感L的电流,原理图如下通过示波器发现电流基本无脉动,说明电感选择合适。
因为没有设计控制回路,所以通过手动修改函数发生器的占空比数值来控制IGBT的导通角度,同时观察万用表读取输出电压,与输入电压做比较。
通过修改占空比数值和虚拟万用表读数,可得:我们可以清楚的看到,当占空比小于50%时电路实现了降压斩波电路的功能,当占空比大于50%时电路实现了升压斩波电路的功能。
五.心得与总结通过这次升降压斩波电路仿真,让我更进一步的了解了升降压斩波电路的工作原理,也对该电路用到的IGBT的工作原理有了进一步的了解,在仿真过程中也遇到了一些问题,例如忘加地线,导致仿真频频报错,电容选择上出现问题,导致电压无法恒定,所以实际测得的电压值小于计算值,电力电子的Multisim仿真相较于以往的电路仿真和模电数电仿真最大的区别在于需要使用控制电路,但是出于简便,我并没有自己搭建控制电路,所以希望在以后的仿真中可以自己设计控制电路,升降压斩波电路的控制电路相较于整流电路的控制电路并不困难,所以希望可以尝试一下。
直流BUCK 和BOOST 斩波电路一、 B UCK 电路降压斩波电路(Buck Chopper)Q 为开关管,其驱动电压一般为PWM(Pulse width modulation 脉宽调制)信号,信号周期为Ts ,则信号频率为f=1/Ts ,导通时间为Ton ,关断时间为Toff ,则周期Ts=Ton+Toff ,占空比Dy= Ton/Ts 。
负载电压的平均值为:式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比(α=t on /T)。
由此可知,输出到负载的电压平均值U O 最大为U i ,若减小占空比α,则U O 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
工作原理为:当在t on 状态时,电源为这个电路供电,并对电感和电容充电,负载电压缓慢上升到电源电压。
当t off 状态时,电源电压为断开状态,系统供电依靠电感和电容的储能供电。
所以是一个递减的电压。
所以系统的这个工作流程为,周期性的电源供电方式,而输出的负载的电源大小取决于周期中的占空比。
(a)电路图 (b)波形图(实验结果 )图1降压斩波电路的原理图及波形二、 B OOST 电路开关管Q 也为PWM 控制方式,但最大占空比Dy 必须限制,不允许在Dy=1的状态下工作。
电感Lf 在输入侧,称为升压电感。
Boost 变换器也有CCM 和DCM 两种工作方式升压斩波电路(Boost Chopper)U i I 1t on =(U O -U i ) I 1t offii on i off on on o aU U TtU t t t U ==+=U GE U D t t tU Ot on t of fT U iVDL C -+-+U EGC R 11U D +-上式中的T/t off ≥1,输出电压高于电源电压,故称该电路为升压斩波电路。
工作原理当开关S 在位置a 时,如图2(a)所示电流iL 流过电感线圈L ,电流线性增加,电能以磁能形式储在电感线圈L 中。
buckboost电路参数设计1.引言1.1 概述概述部分的内容:引言部分将对buckboost电路的概念和工作原理进行简要介绍。
buckboost电路是一种常用的直流-直流(DC-DC)转换电路,能够实现电压降低(buck)或增加(boost)功能。
它通过在输入和输出之间使用一对开关器件和电感来实现对电压的变换。
相比于其他转换电路,buckboost电路具有更广泛的应用领域和更高的功率转换效率。
在本文中,将重点讨论buckboost电路的参数设计。
参数设计是指在设计过程中确定电路的元件数值,以满足给定的输入电压和输出电压条件,并确保电路的稳定性和可靠性。
参数设计是设计工程师需要考虑的关键问题,它直接影响到电路性能和工作效果。
本文将详细介绍buckboost电路的参数设计要点。
首先,将介绍电路的基本原理和工作模式,以便读者更好地理解参数设计的背景和需求。
其次,将分析参数设计中需要考虑的关键因素,如输入电压范围、输出电压稳定性、电感和开关器件的选取等。
此外,还将介绍一些常用的参数设计方法和技巧,以帮助读者更好地进行电路设计和优化。
通过本文的阅读和学习,读者将能够全面了解buckboost电路的参数设计要点,并具备进行实际设计工作的基础知识和技能。
本文的内容将为设计工程师提供有价值的参考和指导,促进buckboost电路设计的发展和优化。
1.2文章结构1.2 文章结构本长文旨在介绍和探讨buckboost电路参数设计的要点。
文章将分为引言、正文和结论三个部分。
引言部分将首先对文章进行概述,简要介绍buckboost电路的背景和应用。
接着,阐述文章的结构,即介绍各个章节的主要内容和目的。
正文部分将详细介绍buckboost电路的基本原理和工作方式。
同时,重点关注buckboost电路参数设计的要点,包括输入电压范围、输出电压范围、电流要求、效率要求等。
通过深入分析这些参数设计要点,读者将能够了解如何根据具体需求来优化buckboost电路的设计。
城市学院实验报告课程名称: 电力电子技术 指导老师:____唐益民______________ 成绩:实验名称: 直流斩波电路Buck 、Buck-Boost 开关电路实验实验类型:__________________同组学生姓名:_褚盼盼、周芳芳、林雅婷、鲁颖莹_________4-1 BUCK 电路实验 一、 实验目的1、掌握Buck 降压开关变换电路的工作原理及特点;2、掌握Buck 降压开关变换电路的调试方法。
二、实验线路及原理实验线路如图3-14所示:专业:__自动化________ 姓名:___陈园园_______ 学号:____30802297____ 日期:周五下午第二节__地点:___理五A-206___装订线图3-14实验线路图三、实验内容1、主电路电感电流处于连续导通状态时,电路各工作点波形的研究测量;2、主电路电感电流处于断续导通状态时,电路各工作点波形的研究测量;3、主电路电感电流处于临界连续导通状态时,电路各工作点波形的研究测量;4、研究频率变化对电路工作状态的影响;5、研究负载变化对电路工作状态的影响;6、研究主电路电感L的变化对电路工作状态的影响;7、占空比K与输出电压U O之间的的函数关系测试;8、输入滤波器的作用观测。
四、实验仪器与设备1、DDS01电源控制屏;2、DDS31“Buck、Buck—Boost”实验挂箱;3、DT14“直流电压、电流表”实验挂箱;4、示波器等。
五、实验方法1、主电路电感电流处于连续导通状态时,电路各工作点波形的研究测量打开DDS31掛箱右下角电源开关,断开Buck主电路单元S1电源开关。
按表8接线:表87 21 1719206134513141415接线完毕,仔细核对无误,千万不要将线错接在Buck——Boost单元上。
开启Buck单元S1电源开关,将频率开关S2拨向“通”,将RP1负载电位器调在中间适当位置。
用示波器测量“8”和“11”R S3两端波形,此波形即电感电流i L波形。
Buck_Boost变换器的设计及仿真Buck-Boost变换器是一种可以在同一电路内同时实现升压和降压的变换器。
这种变换器可以用于多种不同的应用,主要用于对电压进行放大和缩小,以达到正确的电压水平。
它总是能够将输入电压提高到所需的输出电压。
在本文中,将介绍Buck-Boost变换器的设计及其功能仿真工作。
Buck-Boost变换器的主要部件包括电感器,可变阻器,开关,振荡器和控制器。
电感器的设计是为了提供电流,形成负反馈环。
可变阻器的设计可以改变电路的过载,从而实现电流的调整。
开关的设计是为了实现升压和降压,允许电感器和可变阻器之间的能量交换。
振荡器的设计是为了控制电路内部的电流,以保证开关的实时响应。
通过控制器,可以实现输入和输出电压之间的转换,从而达到预期的电压水平。
为了对Buck-Boost变换器进行仿真,先进行输入,输出和负载之间的建模。
输入模型包括输入电压和要求的输出电压,其中输入电压可以在建模中任意调整。
负载建模通常是一个电阻和一个电容的组合。
输出模型则定义了电路的输出功率和输出电压水平。
接下来,可以对电感器和可变阻器进行建模。
由于电感器是一个电流源,故其建模需要考虑电流大小和电压偏移。
可变阻器建模则需要考虑其阻值和电压偏移。
最后,可以利用仿真软件进行仿真,探究Buck-Boost变换器的性能。
可以仿真该电路的输入和输出电压以及电流,从而分析改变输入电压对系统的影响。
此外,还可以分析负载的影响,比如负载变大时电路的输出能力会怎样受到影响。
这些仿真结果都能为设计者提供宝贵的启发,为确保电路的正常工作奠定基础。
Buck-Boost变化器是一种功能强大的电路,可以改变输入电压并生成预期的输出电压水平。
本文介绍了其设计原理和仿真过程,为设计者提供了宝贵的参考。
未来的研究将会探究更多的变换器类型,继续提高电路的性能和功效。
电流连续时Buck-Boost 升降压式PWM DC/DC 转换器
的工作原理
1 工作原理
1)开关模式1(0~TON,见此文《Buck-Boost 升降压式PWM DC/DC 转换器的主电路组成和控制方式》(a))
在t=0 瞬间,开关管V 导通,电源电压Ui 全部加到电感坛上,电感电
流iLf 线性增加。
二极管D 截止,负载由滤波电容Cf 供电。
当t=Ton 时,电感电流iLf 达到最大值ILf max。
在开关管V 导通期间,iLf 的增加量△iLf(+)为:
2)开关模式2(Ton~Ts,见图(b))
在t=Ton 瞬间,开关管V 关断,电流iLf 通过二极管D 续流,电感Lf
中的储能向负载和电容Cf 转移。
此时加在电感Lf 上的电压为-Uo,iLf 线性减小。
当t=Ts 时,电感电流iLf 达到最小值ILf min。
在开关管V 关断期时,iLf 的减小量△iLf(-)为:
在t=Ts 时,开关管V 又导通,开始下一个开关周期。
由此可知:电感Lf 是用来储存和转换能量的,在开关管V 导通时电感
Lf 储能,负载由电容Cf 供电;在开关管V 关断时,电感Lf 向负载供电。
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
500W Buck/Boost 电路设计与仿真验证一、主电路拓扑与控制方式Buck/Boost 变换器是输出电压可低于或高于输入电压的一种单管直流变换器, 其主电路与 Buck 或 Boost 变换器所用元器件相同,也有开关管、 二极管、电感和电容构成,如图1-1所示。
与 Buck 和 Boost 电路不同的是,电感L f 在中间,不在输出端也不在输入端,且输出电压极性与输入电压相反。
开关管也采用 PWM 控制方式。
Buck/Boost 变换器也有电感电流 连续喝断续两种工作方式, 本文只讨论电感电流在连续状态下的工作模式。
图 1-2 是电感电流连续时的主要波形。
图1-3 是 Buck/Boost 变换器在不同工作模态下的等效电路图。
电感电流连续工作时,有两种工作模态,图 1-3(a)的开关管 Q 导通时的工作模态,图1-3(b)是开关管 Q 关断、 D 续流时的工作模态。
QD LDR+-V in L fC fV o+-+图 1-1 主电路V bet onT ti LFi LfmaxI LFi Lfminti Qi Lfmaxi Lfminti DiLfmaxi LfmintV LfV inV ot图 1-2 电感电流连续工作波形QDR LDQDR LD+-+-C fC f V inL fi LfL f+V o V in i Lf+V o-+-+(a) Q 导通(b) Q 关断, D 续流图 1-3 Buck/Boost 不同开关模态下等效电路二、电感电流连续工作原理和基本关系电感电流连续工作时,Buck/Boost 变换器有开关管Q 导通和开关管Q 关断两种工作模态。
在开关模态 1[0~t on]:t=0 时, Q 导通,电源电压V in加载电感 L f上,电感电流线性增长,二极管 D 戒指,负载电流由电容 C f提供:di L fL f dt Vin (2-1)I o V o(2-2) R LDC f dV o I o (2-3)dtt=t on时,电感电流增加到最大值i L max,Q关断。
第32卷第3期2020年9月宁波工程学院学报JOURNAL OF NINGBO UNIVERSITY OF TECHNOLOGYVol.32No.3Sep.2020DOI:10.3969几i ssn.1008-7109.2020.03.003一种新型高效率四开关BUCK-BOOST电路设计陈张景宣,王峰,姚晓磊(宁波工程学院电子与信息工程学院,浙江宁波315211)摘要:针对传统开关电源精度低、效率低以及自适应能力差的问题,设计了一种基于LM5715电压转换器和DSP数字信号处理器的新型Buck-Boost电路。
LM5715在降压和升压模式下均采用电流模式控制,以实现出色的负载和线路调节°DSP处理器通过内部PWM电路实现四个开关管的导通控制,开关频率由外部电阻器进行反馈控制。
仿真结果表明,相比于传统的升压降压变换器,所设计的变换器具有较宽范围的输入电压、稳定的输出电压以及较高的电源转化效率,具有较好的实用性。
关键词:Buck-Boost电路;变换器;DSP;LM5715中图分类号:TP23文献标识码:A文章编号:1008-7109(2020)03-0014-06Design of a New High Efficiency Four Switch Buck-Boost CircuitCHEN-ZHANG Jingxuan,WANG Feng,YAO Xiaolei(School of Electronic and Information Engineering,Ningbo University of Technology,Ningbo,Zhejiang,315211,China)Abstracts:Aiming at the low precision,low efficiency and poor adaptive ability of traditional switching power supply,a new Buck-Boost circuit based on LM5715voltage converter and DSP digital signal processor was designed.The LM5715adopts current mode control in both buck and boost modes for excellent load and line adjustment.The DSP processor achieved the on-off control of four switching tubes through the internal PWM circuit,and the switching frequency is controlled by the feedback from an external resistor.The simulation results show that the designed converter has a wide range of input voltage,stable output voltage and higher power conversion efficiency and has better practicality compared with the traditional step-up and step-down converter.Keywords:Buck-Boost circuit,converter,DSP,LM57150引言Buck电路和Boost电路是直流电源变换中最常用的两种设计方案,这两种电路经常一起出现在电路设计当中,Buck电路的输出电压小于输入电压,Boost电路的输出电压大于输入电压。
Buck-boost升降压电路设计示例示例 1.
示例 2.
应用指南:
1) 电压计算:V OUT=1.27x(1+R3/R1),电流计算:I OUT=0.54V/R3
2) PWM/EN 端(3 脚)可以输入一个100~1000Hz 的低频PWN 信号进行亮度调节,如果不需调光则
此端接地。
3) 电感计算:一般来讲在输出相同电压的情况下,输出电流越小电感量要相对加大,而在输出相
同电流的情况下,输出电压越高电感量要相对加大。
电感量调整不适当会发生电感响的问题。
4) 输出电容C3的计算:输出电流小的情况下可以用220uF,输出电流为300mA以上建议用470uF或
者更大容量的电容,电容量小也会发生电感响的问题。