九年级数学用配方法解一元二次方程
- 格式:pdf
- 大小:895.44 KB
- 文档页数:9
人教版九年级数学上册《解一元二次方程—配方法》优秀教学设计设计一. 教材分析人教版九年级数学上册《解一元二次方程—配方法》这一节,主要让学生掌握利用配方法解一元二次方程的方法。
教材通过引入具体的一元二次方程,引导学生发现解方程的规律,从而总结出配方法解一元二次方程的一般步骤。
教材内容由浅入深,逐步引导学生掌握解题技巧,培养学生的逻辑思维能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对一元二次方程有了初步的了解。
但在解一元二次方程方面,部分学生可能还停留在试错阶段,没有形成系统的解题方法。
因此,在教学过程中,需要关注学生的个体差异,引导他们发现解题规律,提高解题效率。
三. 教学目标1.知识与技能:使学生掌握配方法解一元二次方程的基本步骤和方法。
2.过程与方法:通过观察、分析、归纳,培养学生发现解题规律的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:配方法解一元二次方程的步骤及应用。
2.难点:如何引导学生发现配方法的解题规律。
五. 教学方法1.引导发现法:通过设置问题,引导学生观察、分析、归纳,发现解题规律。
2.案例教学法:以具体的一元二次方程为例,演示配方法解题过程。
3.小组合作学习:鼓励学生分组讨论,共同探索解题方法。
六. 教学准备1.准备相关的一元二次方程案例。
2.制作课件,展示解题过程。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用一个简单的一元二次方程,引导学生回顾已知的解题方法,为新课的学习做好铺垫。
2.呈现(15分钟)展示一个具体的一元二次方程,让学生尝试利用已知的解题方法进行求解。
在学生解题过程中,教师引导学生观察、分析,发现解题规律。
3.操练(15分钟)让学生分组合作,运用配方法解一元二次方程。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)呈现一组类似的一元二次方程,让学生独立运用配方法进行解答。
【本讲教育信息】一. 教学内容:用配方法和公式法解一元二次方程1. 知道配方法的意义及用配方法解一元二次方程的主要步骤,能够熟练地用配方法解系数较简单的一元二次方程.2. 理解用配方法推导出一元二次方程的求根公式,了解求根公式中的条件b 2-4ac ≥0的意义,知道b 2-4ac 的值的符号与方程根的情况之间的关系.3. 能熟练地运用求根的公式解简单的数字系数的一元二次方程.二. 知识要点:1. 形如x 2=p 或(mx +n )2=p (p ≥0)的方程用开平方法将一元二次方程降次转化为两个一元一次方程.2. 配方的原理及过程原理:完全平方公式a 2±2ab +b 2=(a ±b )2.过程:以方程2x 2-3x -1=0为例.第一步:二次项系数化为1,移项得x 2-32x =12,即x 2-2×x ×34=12; 第二步:方程两边同时加上(34)2,x 2-2×x ×34+(34)2=12+(34)2. 第三步:完成配方,(x -34)2=1716. 通过配方,方程的左边变形为含x 的完全平方形式(mx +n )2=p (p ≥0),可直接开平方,将一个一元二次方程转化为两个一元一次方程.这样解一元二次方程的方法叫做配方法.3. 用配方法解一元二次方程的步骤:(1)把二次项系数化为1;(2)移项,方程的一边为二次项和一次项,另一边为常数项;(3)方程两边同时加上一次项系数一半的平方;(4)用直接开平方法求出方程的根.4. 利用求根公式解一元二次方程的方法叫做公式法.求根公式是:x =-b ±b 2-4ac 2a(b 2-4ac ≥0).5. 利用求根公式解一元二次方程的步骤:(1)把方程化为一般形式,确定a 、b 、c 的值;(2)计算b 2-4ac 的值;(3)若b 2-4ac ≥0,则代入求根公式求解.6. 对于一元二次方程ax 2+bx +c =0(a ≠0),(1)当b 2-4ac >0时,方程有实数根:a2ac 4b b x ,a 2ac 4b b x 2221---=-+-=; (2)当b 2-4ac =0时,方程有实数根:x 1=x 2=-b 2a; (3)当b 2-4ac <0时,方程没有实数根.三. 重点难点:本讲重点是用配方法和公式法解一元二次方程,难点是配方的过程和对求根公式推导过程的理解.【典型例题】例1. 填上适当的数使下列各式成立.(1)x 2-4x +__________=(x -__________)2;(2)x 2-14x +__________=(x -__________)2; (3)x 2+23x +__________=(x +__________)2. 分析:(1)x 2-4x +(-42)2=x 2-4x +4=(x -2)2;(2)x 2-14x +(-14×12)2=x 2-14x +164=(x -18)2;(3)x 2+23x +(23×12)2=x 2+23x +19=(x +13)2. 解:(1)4,2;(2)164,18;(3)19,13. 评析:配方是学习配方法解一元二次方程的基本功,主要方法是二次项系数是1的式子加上“一次项系数一半的平方”,如(2)题中一次项系数为-14,其一半为-14×12=-18,(-18)2=164.例2. 用配方法解方程:(1)x 2+2x -5=0;(2)4x 2-12x -1=0;(3)(x +1)2-6(x +1)2-45=0.分析:方程(1)是一元二次方程的一般形式,且二次项系数为1,所以直接移项、配方、求解即可;方程(2)要先把二次项系数化为1;方程(3)不要急于打开括号,可把(x +1)2看成一个整体合并,可避免重复配方.解:(1)移项,得x 2+2x =5,配方,得x 2+2x +12=5+12,即(x +1)2=6,∴x +1=±6,原方程的解是x 1=-1+6,x 2=-1-6.(2)方程两边都除以4,得x 2-3x -14=0, 移项,得x 2-3x =14. 配方得x 2-3x +(-32)2=14+(-32)2=104, 即(x -32)2=104. ∴x -32=±102. 原方程的解是x 1=32+102,x 2=32-102. (3)将方程整理得(x +1)2-6(x +1)2=45,-5(x +1)2=45,(x +1)2=-9,由于x 取任意实数时(x +1)2≥0,则上式都不成立,所以原方程无实数根.评析:配方法作为一种求解的方法,与其他方法比显得复杂些,为此,除非题目有特别指明用配方法解外,一般不用这种方法,但配方法是一种重要的数学方法,应用很广,应力争掌握好.例3. 用公式法解下列方程:(1)4x 2+4x -1=-10-8x ;(2)t 2-22t +18=0 (3)(x +1)(x -1)=22x .分析:本题中的三个题目都不是一般形式,因此,首先要整理成一般形式后,再确定a 、b 、c 的值,然后代入公式求解.解:(1)将方程化为一般形式,得4x 2+12x +9=0,∵a =4,b =12,c =9,b 2-4ac =122-4×4×9=0,∴x =-12±02×4=-32. ∴原方程的根是x 1=x 2=- 32. (2)将方程去分母后整理成一般形式,得8t 2-42t +1=0.∵a =8,b =-42,c =1,b 2-4ac =(-42)2-4×8×1=0,∴t =42±02×8=24. ∴原方程的根是t 1=t 2=24. (3)将方程化为一般形式得:x 2-22x -1=0.∵a =1,b =-22,c =-1.b 2-4ac =(-22)2-4×1×(-1)=12>0,x =-(-22)±122×1=22±232=2±3, x 1=2+3,x 2=2-3.评析:用公式法解一元二次方程的一般步骤是:①把方程化为一般形式,确定a 、b 、c 的值;②求出b 2-4ac 的值;③若b 2-4ac ≥0,则把a 、b 、c 及b 2-4ac 的值代入一元二次方程的求根公式x =-b ±b 2-4ac 2a,求出x 1、x 2,若b 2-4ac <0,则方程没有实数根.例4. 不解方程判断下列方程根的情况.(1)4x 2-11x =2;(2)4x 2-x +5=0;(3)y 2+14y +49=0;(4)x 2+(m +2)x +m =0.分析:判断一元二次方程的根的情况应先把方程转化成一般形式,再计算b 2-4ac 的值. 解:(1)原方程化为4x 2-11x -2=0,a =4,b =-11,c =-2,b 2-4ac =(-11)2-4×4×(-2)=153>0,所以原方程有两个不相等的实数根.(2)a =4,b =-1,c =5,b2-4ac=(-1)2-4×4×5=-79<0,所以原方程没有实数根.(3)a=1,b=14,c=49,b2-4ac=142-4×1×49=0,原方程有两个相等的实数根.(4)a=1,b=m+2,c=m,b2-4ac=(m+2)2-4×1×m=m2+4m+4-4m=m2+4,无论m取何值,m2+4>0,∴b2-4ac>0,原方程有两个不相等的实数根.评析:(1)b2-4ac是对一元二次方程一般形式而言的,计算前必须把方程化成一般形式;(2)当讨论含有字母系数的方程根的情况时,通常把计算结果化成(通过配方)(m+n)2+p的形式,由平方数的非负性说明它的符号.例5.先用配方法说明:不论x取何值,代数式x2-5x+7的值总大于0.再求出当x取何值时,代数式x2-5x+7的值最小?最小值是多少?分析:准确配方,利用完全平方公式的非负性确定值的非负性及最小值.解:x2-5x+7=(x-2.5)2+0.75>0.当x=2.5时,代数式x2-5x+7的值最小,最小值是0.75.例6.某农场要建一个矩形的养鸭场,养鸭场的一边靠墙,墙长25m,另三边用竹栏围成,竹栏长为40m.(1)养鸭场的面积能达到150m2吗?能达到200m2吗?(2)能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.分析:根据题意列出方程,利用配方法或求根公式解方程,如果方程有解且符合实际意义,则满足要求,否则,不能满足要求.解:设与墙垂直的一边长为x m,则另一边长(40-2x)m.(1)当面积为150m2时,x(40-2x)=150,整理得:x2-20x+75=0,即(x-10)2=25.解得x1=5,x2=15.此时的设计方案为:与墙垂直的一边长为5m,另一边长为30m,或与墙垂直的边长为15m,另一边长为10m.而当面积为200m2时,x(40-2x)=200,解得x1=x2=10.此时的设计方案为:与墙垂直的边长为10m,另一边长为20m.(2)当面积为250m2时,x(40-2x)=250,此方程无解.所以养鸭场的面积不能达到250m2.【方法总结】1. 如果方程是x2=p(p≥0)或类似于(mx+n)2=p(p≥0)的形式,可得x=±p或mx+n=±p,要熟悉完全平方公式a2±2ab+b2=(a±b)2.2. 配方法解一元二次方程的主要步骤:(1)将方程化成ax2+bx=-c的形式;(2)二次项系数化成1,x2+ba x=-ca;(3)配方,两边都加上一次项系数一半的平方,将方程化成x2=p或(x+k)2=p(p ≥0)的形式,从而得x=±p或x+k=±p最终得出方程的根.3. 公式法解一元二次方程的主要步骤:(1)化成一般形式ax 2+bx +c =0(a ≠0)确定各项系数的值;(2)计算b 2-4ac 的值;(3)当b 2-4ac ≥0时,用求根公式求解,x =-b ±b 2-4ac 2a;当b 2-4ac <0时,原方程无实根.b 2-4ac 的值决定方程解的情况.当b 2-4ac >0时,有两个不等实根;当b 2-4ac =0时,有两个相等实根;当b 2-4ac <0时,没有实根.【预习导学案】(用因式分解法解一元二次方程)一. 预习前知1. 想一想,因式分解有几种方法?2. 分解因式:(1)25(7x -3)2-16;(2)5x (2x +7)-3(2x +7);(3)x 2-4x +4;(4)(x -1)2+2x (x -1).二. 预习导学1. 根据“ab =0,则a =0或b =0”解下列方程.(1)(x -1)(2x +3)=0;(2)x (x +1)=0;(3)(x -2)(x +1)=0.2. 用因式分解法解下列方程.(1)x 2+x =0;(2)(3x -1)2-1=0;(3)x 2-2x +1=0.反思:(1)用因式分解法适合解什么样的一元二次方程?(2)用因式分解法解一元二次方程的基本步骤是什么?【模拟试题】(答题时间:60分钟)一. 选择题1. 下列方程不能用开平方法求解的是( )A. x 2-6x +9=0B. (x -5)2=7C. 4x 2=1D. 2y 2+4y +4=02. 用直接开平方法解方程(x -3)2=8,得方程的根为( )A. x =3+2 2B. x =3-2 2C. x 1=3+22,x 2=3-2 2D. x 1=3+23,x 2=3-2 33. 用配方法解方程x 2+3=4x 时,这个方程可化为( )A. (x -2)2=7B. (x +2)2=1C. (x -2)2=1D. (x +2)2=2*4. 方程x 2+x -1=0的根精确到0.1的近似值是( )A. 0.6,1.6B. 0.6,-1.6C. -0.6,1.6D. -0.6,-1.65. 一元二次方程x 2-2x -3=0的根是( )A. x 1=1,x 2=3B. x 1=-1,x 2=3C. x 1=-1,x 2=-3D. x 1=1,x 2=-3*6. 用配方法解方程时,下列配方错误的是( )A. x 2+2x -99=0化为(x +1)2=100B. t 2-7t -4=0化为(t -72)2=654C. x 2+8x +9=0化为(x +4)2=25D. 3x 2-4x -2=0化为(x -23)2=109*7. 下列关于x 的一元二次方程中有两个不相等的实数根的是( )A. x 2+1=0B. x 2+2x +1=0C. x 2+2x +3=0D. x 2+2x -3=0**8. 若x 2-2(k +1)x +k 2+5是一个完全平方式,则k 等于( )A. -1B. 2C. 1D. -2二. 填空题1. 如果(x -2)2=9,则x =__________.2. 方程(2y +1)2-16=0的根是__________.3. 方程(x +m )2=n 有解的条件是__________.4. 填空:(1)x 2+10x +__________=(x +__________)2;(2)m 2-8m +__________=(m -__________)2;(3)x 2+3x +__________=(x +__________)2;(4)x 2+12x +__________=(x +__________)2; (5)x 2-mx +__________=(x -__________)2.*5. 把下列各式化为(x +m )2+n 的形式:(1)x 2-4x +7=__________;(2)x 2+2x -3=__________;(3)x 2+2x +1=__________;6. 方程x 2+5x +3=0中,b 2-4ac =_______,由求根公式可得方程的根是x 1=_______,x 2=_______.7. 如果关于x 的方程x 2+4x +a =0有两个相等的实数根,那么a =__________.三. 解答题1. 用直接开平方法解下列一元二次方程:(1)(x -1)2=4;(2)4m 2-4m =-1;(3)3(4x -1)2=48;(4)y 2-2y -8=0.2. 用配方法解方程:(1)x 2-6x -7=0;(2)x 2-2x -1=0;(3)2x 2+x =0;(4)(x +1)2=x -1.3. 关于x 的二次三项式x 2+2mx +4-m 2是一个完全平方式,求m 的值.4. 如图,一个5m 长的梯子斜靠在墙上,梯子的顶端距离地面3m ,如果顶端下滑1m ,那么,梯子的底端也将滑动1m 吗?请你用所学知识来解释.5. 若关于x 的方程x 2+(2k -1)x +k 2-74=0有两个相等的实数根,求k 的值.6. 方程x 2+kx -6=0的一个根是2,试求另一个根及k 的值.7. 用100m 长的铁丝围成一个长方形,面积是600m 2,长、宽分别是多少?能否再围成一个面积是800m 2的长方形呢?【试题答案】一. 选择题1. D2. C3. C4. B5. B6. C7. D8. B二. 填空题1. 5或-12. y 1=32,y 2=-523. n ≥04. (1)25 5;(2)16 4;(3)94 32;(4)11614;(5)m 24 m 2 5.(1)(x -2)2+3;(2)(x +1)2-4;(3)(x +22)2+12 6. 13,-5+132, -5-1327. 4三. 解答题1. (1)x 1=3,x 2=-1;(2)m 1=m 2=12;(3)x 1=54,x 2=-34;(4)y 1=4,y 2=-2 2. (1)x 1=7,x 2=-1;(2)x 1=1+2,x 2=1-2;(3)x 1=0,x 2=-12;(4)无实数根3. 原式=x 2+2mx +m 2-m 2+4-m 2=(x +m )2+(4-2m 2),因为其为完全平方式,所以4-2m 2=0,即m =±2.4. 梯子的底端不会滑动1m .设梯子底端下滑x 米,22+(x +4)2=52.即x 2+8x -5=0,解得x 1=21-4,x 2=-21-4(舍去).因为21<5,所以21-4<1.5. 根据题意(2k -1)2-4(k 2-74)=0,即-4k +1+7=0.解得k =2. 6. 把x =2代入得22+2k -6=0,即k =1.当k =1时,x 2+x -6=0,解之得x 1=-3,x 2=2.所以方程另一个根是x =-3,k =1.7. 设宽为xm ,则x (50-x )=600,解得x 1=20,x 2=30.所以当面积为600m 2时,长为30m ,宽为20m .不能围成面积为800m 2的长方形,理由:设长为xm ,则x (50-x )=800,由b 2-4ac <0知,方程无解.。
第二章一元二次方程2.用配方法求解一元二次方程(二)一、学生知识状况分析学生的知识技能基础:初二上学期,学生已经学习过开平方根的定义以及完全平方公式,在上节课学生初步学习了配方法解二次项系数为1的一元二次方程,这些为本节课学习解二次项系数不为1的方程打下较好的基础。
学生活动经验基础:上一课时,学生已经经历了二次项系数为1的方程的解的过程,已经体会到其中转化的思想方法,这些都成为完成本课任务的活动经验基础。
二、教学任务分析在课程安排上这节课的具体学习任务:用配方法解二次项系数不为1的一元二次方程以及利用一元二次方程解决实际问题。
这节课内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,为此,本节课的教学目标是:①经历配方法解一元二次方程的过程,获得解二元一次方程的基本技能;②经历用配方法解二次项系数不为1的一元二次方程的过程,体会其中的化归思想;③能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养分析问题、解决问题的意识和能力.三、教学过程分析本节课设计了七个教学环节:第一环节:复习回顾;第二环节:探究析疑;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小测;第六环节:课堂小结;第七环节:布置作业。
第一环节:复习回顾活动内容:1、将下列各式填上适当的项,配成完全平方式(口头回答).(1).x2+2x+________=(x+______)2(2).x2-4x+________=(x-______)2(3).x2+5x+________ =(x+______)2活动目的:回顾配方法解二次项系数为1的一元二次方程的基本步骤。
为本节课研究二次项系数不为1的二次方程的解法打下基础。
实际效果:学生对口答题的积极抢答,调动了各自的思维,进入了积极学习的状态;教学中为了便于学生回顾,可以通过举例的形式,帮助学生回顾并整理步骤,例如,x2-6x-40=0 移项,得 x2-6x= 40方程两边都加上32(一次项系数一半的平方),得x2-6x+32=40+32即(x-3)2=49开平方,得 x-3 =±7即 x-3=7或x-3=-7所以 x1=10,x2=-4学生一般都能整理出配方法解方程的基本步骤:移项,配方,开平方,求解及注意事项。
2.2用配方法求解一元二次方程第1课时用配方法解二次项系数为1的一元二次方程【学习目标】1.会用开平方法解形如(x+m)2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.3.会用配方法解二次项系数为1的一元二次方程.【学习重点】会用配方法解二次项系数为1的一元二次方程.【学习难点】用配方法解二次项系数为1的一元二次方程的一般步骤.一、情景导入生成问题1.如果一个数的平方等于4,则这个数是±2.2.已知x2=9,则x=±3.3.填上适当的数,使下列等式成立.(1)x2+12x+36=(x+6)2;x2-6x+9=(x-3)2.二、自学互研生成能力知识模块一探索用配方法解二次项系数为1的一元二次方程的方法先阅读教材P36“议一议”的内容.然后完成下列问题:1.一元二次方程x2=5的解是x1=5,x2=-5.2.一元二次方程2x2+3=5的解是x1=1,x2=-1.3.一元二次方程x2+2x+1=5,左边配方后得(x+1)2=5,此方程两边开平方,得x+1=±5,方程的两个根为x1=-1+5,x2=-1-5.用配方法解二次项系数为1的一元二次方程的一般步骤是:(以解方程x2-2x-3=0为例) 1.移项:将常数项移到右边,得:x2-2x=3;2.配方:两边同时加上一次项系数的一半的平方,得:x2-2x+12=3+12,再将左边化为完全平方形式,得:(x-1)2=4;3.开平方:当方程右边为正数时,两边开平方,得:x-1=±2(注意:当方程右边为负数时,则原方程无解);4.化为一元一次方程:将原方程化为两个一元一次方程,得:x-1=2或x-1=-2;5.解一元一次方程,写出原方程的解:x1=__3__,x2=-1.归纳结论:通过配成完全平方式的方法,将一元二次方程转化成(x+m)2=n(n≥0)的形式,进而得到一元二次方程的根,这种解一元二次方程的方法称为配方法.知识模块二应用配方法求解二次项系数为1的一元二次方程解答下列各题:1.填上适当的数,使等式成立.(1)x2+4x+4=(x+2)2;(2)x2-10x+25=(x-5)2.2.用配方法解方程:x2+2x-1=0.解:①移项,得x2+2x=1;②配方,得x2+2x+1=1+1,即(x+1)2=2;③开平方,得x+1=±2,即x+1=2或x+1=-2;④所以x1=-1+2;x2=-1-2.典例讲解:解方程:x2+8x-9=0.解:可以把常数项移到方程的右边,得:x2+8x=9.两边都加42(一次项系数8的一半的平方),得:即x2+8x+42=9+42,即(x+4)2=25.两边开平方,得:x+4=±5,即x+4=5,或x+4=-5.所以x1=1,x2=-9.对应练习:1.解下列方程:(1)x2-10x+25=7;(2)x2-14x=8;(3)x2+3x=1; (4)x2+2x+2=8x+4.2.用配方法解方程x2-2x-1=0时,配方后得的方程为(D)A.(x+1)2=0B.(x-1)2=0C.(x+1)2=2D.(x-1)2=23.方程(x-2)2=9的解是(A)A.x1=5,x2=-1 B.x1=-5,x2=1C.x1=11,x2=-7 D.x1=-11,x2=7三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一探索用配方法解二次项系数为1的一元二次方程的方法知识模块二应用配方法求解二次项系数为1的一元二次方程四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:_________________________________________2.存在困惑:_____________________________________第2课时用配方法解二次项系数不为1的一元二次方程【学习目标】1.理解配方法的意义,会用配方法解一般一元二次方程.2.通过探索配方法的过程,让学生体会转化的数学思想方法.3.学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣. 【学习重点】 用配方法解一般一元二次方程. 【学习难点】 用配方法解一元二次方程的一般步骤. 一、情景导入 生成问题1.用配方法解一元二次方程x 2-3x =5,应把方程两边同时( B ) A .加上32 B .加上94 C .减去32 D .减去942.解方程(x -3)2=8,得方程的根是( D )A .x =3+2 2B .x =3-2 2C .x =-3±2 2D .x =3±2 23.方程x 2-3x -4=0的两个根是x 1=4,x 2=-1.二、自学互研 生成能力知识模块一 探索用配方法解一般一元二次方程的方法先阅读教材P 38例2,然后完成下面的填空:用配方法解二次项系数不为1的一元二次方程的一般步骤是:(以解方程2x 2-6x +1=0为例)①系数化1:把二次项系数化为1,得x 2-3x +12=0;②移项:将常数项移到右边,得x 2-3x=-12;③配方:两边同时加上一次项系数的一半的平方,得:x 2-3x +⎝ ⎛⎭⎪⎫322=-12+94.再将左边化为完全平方形式,得:⎝ ⎛⎭⎪⎫x -322=74;;④开平方:当方程右边为正数时,两边开平方,得:x -32=±72(注意:当方程右边为负数时,则原方程无解);⑤解一次方程:得x =32±72,∴x 1=32+72,x 2=32-72.用配方法求解一般一元二次方程的步骤是什么?师生共同归纳结论:(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x +h)2=k 的形式;(4)用直接开平方法解变形后的方程.知识模块二 应用配方法解一般一元二次方程解答下列各题:1.用配方法解方程3x 2-9x -32=0,先把方程化为x 2+bx +c =0的形式,则下列变形正确的是( D )A .x 2-9x -32=0B .x 2-3x -32=0C .x 2-9x -12=0D .x 2-3x -12=02.方程2x 2-4x -6=0的两个根是x 1=3,x 2=-1.典例讲解:1.解方程3x 2-6x +4=0.解:移项,得3x 2-6x =-4;二次项系数化为1,得x 2-2x =-43;配方,得x 2-2x +12=-43+12;(x -1)2=-13.因为实数的平方不会是负数,所以x 取任何实数时,(x -1)2都是非负数,上式不成立,即原方程无实数根.2.做一做:一小球以15m /s 的初速度竖直向上弹出,它在空中的高度h(m )与时间t(s )满足关系:h =15t -5t 2,小球何时能达到10米的高度?解:根据题意得15t -5t 2=10;方程两边都除以-5,得t 2-3t =-2;配方,得t 2-3t +⎝ ⎛⎭⎪⎫322=-2+⎝ ⎛⎭⎪⎫322;⎝ ⎛⎭⎪⎫t -322=14;t -32=±12;t =2,t 2=1;答:当t =2s 或t =1s 时,小球达到10米的高度. 对应练习:1.解下列方程:(1)3x 2-9x +2=0; (2)2x 2+6=7x ; (3)4x 2-8x -3=0.2.方程3x 2-1=2x 的两个根是x 1=-13,x 2=1.3.方程2x 2-4x +8=0的解是无实数解.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探索用配方法解一般一元二次方程的方法知识模块二 应用配方法解一般一元二次方程四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________2.存在困惑:____________________________________________。