4.2直线射线线段第一课时公开课)
- 格式:ppt
- 大小:2.54 MB
- 文档页数:34
4.2 直线、射线、线段(第一课时)
武汉市人民中学方巧玲
教学任务分析
教学流程安排
教学过程设计
问题与情境师生行为设计意图
[活动1] 创设情境,导入新
课。
问题:
(1)观察下列图片,你能抽象出哪些图形
给出笔直的公路、探
照灯发出一束光、天安
门前的旗杆三幅图片,
学生会发现笔直的公路
可以抽象成直线,探照
灯发出的一束光可以抽
象成射线,国旗的旗杆
可以抽象成线段,使学
生体会到数学知识来源
于实际生活,激发学生
的学习兴趣。
教学活动必
须要和学生的生
活实际相联系,在
这些学生很熟悉
的生活例子中开
展教学,既可以集
中学生的注意力,
又可激发学生主
动参与的动机,创
设良好的教学情
境,这也是课改的
理念之一。
通过观察抽
象出直线、射线、
线段的几何形象,
让学生体验图形
B。
42直线、射线、线段(第1课时)-公开课-优质课(人教版教学设计)4.2直线、射线、线段(第1课时)一、内容和内容解析1.内容两点确定一条直线;直线、射线、线段的表示方法.2.内容解析“两点确定一条直线”是人们在长期生产生活实践中总结出来的基本事实,这个事实很好地刻画了直线的特性,是数学知识抽象性与实用性的典型体现.“两点确定一条直线”是图形与几何领域首次用“公理”的方式确定一个结论,是公理化思想的起点.直线、射线、线段都是重要而基本的几何图形,它们之间既有密切的联系,又有着本质区别.它们的概念、性质、表示方法、画法、计算等,都是重要的几何基础知识,是研究后续图形与几何以及其他数学知识必备的基础.直线、射线、线段的表示方法,其本质是几何语言的运用,蕴含了从具体事物中抽象出几何模型,再用“图形文字符号”层层抽象简化的数学语言来表示这一模型的思想方法,是学好图形与几何知识的必备条件.基于以上分析,可以确定本课的教学重点:探究“两点确定一条直线”;直线、射线、线段的表示方法.二、教材分析学生在前一学段已经认识了线段、射线和直线,所以本课直接从探究“两点确定一条直线”这一基本事实展开研究.在学生经过动手实践、抽象概括得到这一结论后,又经由过程举出应用实例来表现图形多少知识与现实生活的密切联系和应用价值.本课的另一个教学重点是直线、射线、线段的表示方法,教材着重介绍了“用一个小写字母表示直线”“用两点表示直线”两种方法,表现了符号语言的合理性和简洁性.在此基础上,教材又综合运用图形语言、文字语言、符号语言来介绍点与直线、直线与直线的位置干系.对直线的研究完成当前,紧接着介绍了射线、线段的概念和表示方法,实现了知识的类比迁移,以给学生一个完整、系统的认识.教学中,要注重学生对几何语言的研究,这是本课的重点和难点.要让学生基本做到能懂、能画、能说,为此要将学生的自主研究与教师的讲授示范有机结合,要给学生以规范地使用数学语言的示范.13、教学目标和目标解析1.教学目标(1)掌握“两点确定一条直线”的基本事实;(2)进一步认识直线、射线、线段,掌握直线、射线、线段的表示方法;(3)初步体会多少语言的应用.2.目标解析(1)学生通过动手实践,可以自主探索得出这一事实,并且理解“确定”含义中的存在性与唯一性,经过两点肯定有一条直线,而经过两点只有一条直线;能举出一些实例,说明这一事实在生产生活中的应用.(2)学生可以按照表示方法精确画出直线、射线、线段,端点及延长情况表达准确;恰被挑选大写或小写字母表示直线、射线、线段,并能感受到这样表示的合理性.(3)学生能够根据图形选择恰当的文字或符号,准确描述点与直线、直线与直线的位置关系;能够理解文字或符号所表达的图形及关系,并将它们用图形直观表示出来,化“无形”为“有形”.四、教学问题诊断分析虽然在小学阶段,学生对于直线、射线、线段已经有了初步的感性认识,但比较粗浅,需要通过进一步研究提高到理性认识.其中直线、射线、线段的表示方法是首次用符号来表示几何图形,学生没有相关经验,再加上直线、射线、线段的表示方法多,要求不一,容易混淆,学生会感到困难.几何语言的研究,学生要经历“几何模型图形文字符号”逐步加深的过程,尤其符号语言是对文字语言的简化和再次抽象,是七年级学生未曾经历过的体验.除此以外,本节课学生还会经历“符号文字图形”的转换,既要理解几何语句的意义并能建立几何语句与图形之间的联系,又要将它们用图形直观的表示出来,也是比较困难的研究任务.教学中,教师通过讲解示范并安排形式多样的练,帮助学生在解决问题的过程中,达到“符号文字图形”三种数学语言的自如转换,融会贯通.基于以上分析,本节课的教学难点:直线、射线、线段的表示方法及三种几何语言之间的转换.五、教学支持条件分析画图是本课教学的重要内容之一,除采用信息技术(PPT)提高课堂效率外,教师要多演示、多示范,起到良好的示范作用.2六、教学过程设计1.以旧悟新,探究新知上节课我们研究了平面图形、立体图形、体等概念,让我们对周围世界有了新的认识.这节课,我们将从直线、射线、线段开始深入研究常见的几何图形,研究它们的表示方法、性质特点、实际应用等,可以让我们对图形的认识更加深刻,从而更科学地利用几何知识从事生产生活.比如,建筑工人砌墙时,常常在两个墙脚的位置划分插一根木桩,然后拉一条直的参照线.工人徒弟为何这样做?有甚么道理呢?问题1结合以上情境,探究并回答下面的问题:(1)如图,经过一点O画直线,能画几条?经过两点A,B 呢?动手试一试.(2)对比两个结果,你发现经过两点画直线有什么现象?怎样用简炼的语言概括呢?学生画图后在小组内讨论交流,然后派学生代表在全班交流,教师点评.师生共同归纳:经过两点有且只有一条直线.简单说成:两点确定一条直线.【设计意图】通过动手实践,由学生自主发现“两点确定一条直线”的基本事实,有利于学生对这一基本事实的理解和接受;让学生经历“动手实践将感性认识上升到理性认识,体会知识的产生和发展.(3)如果经过两点任意画曲线或折线,试一试能画几条?想一想这又说明什么?学生画图后相互交流.【设计意图】与“两点确定一条直线”形成鲜明对比,让学生理解这个基本事实是对“直线”特性的刻画,从而更准确把握直线的性质.(4)怎样理解“确定”一词的含义?学生自力思考后讨论交流,并尝试阐述.教师明确:“确定”可以解释为“有且唯一”,“有”意味着存在;“唯一”意味着唯独.【设计意图】“确定”是具有特定数学意义的词汇,要让学生准确把握它的双重意义:“存在”且“唯一”.3抽象概括”的认知过程,(5)想一想,生产生活中还有哪些应用“两点确定一条直线”原理的例子,与同学交流一下.教师参与学生讨论交流,举出生活中的实例:用两个钉子可以将木条固定在墙上;把墨盒两端固定,木工师傅就可以弹出一条笔直的墨线;植树时只要定出两个树坑的位置,就能使同一行树坑在一条直线上……【设计企图】加深学生对“两点确定一条直线”的理解,并体会这一事实的实用价值.2.研究语言,丰富新知问题2为了便于申明,多少图形一般都要用字母来表示.用字母表示图形,要符合图形自身的特性,并且要规范.经由过程以往的研究,我们知道可以用一个大写字母表示点.那末结合直线自身的特性,请同学们想一想,该怎样用字母表示一条直线呢?结合以上问题,请同学们阅读教材,然后独立完成下面的任务:(1)用分歧的方法表示下面这条直线.(2)判断下列语句是否正确,并把错误的改正过来:①一条直线可以表示为“直线A”;②一条直线可以表示为“直线ab”;③一条直线既可以记为“直线AB”又可以记为“直线BA”,还可以记为“直线m”.(3)归纳出直线的表示方法.学生独立完成后,进行小组内讨论、纠正,教师参与学生讨论,并明确直线的表示方法.本环节教师应关注:要强调大小写字母的区别使用.【设计意图】自主探索与合作交流相结合得出直线的表示方法,教师再结合学生易犯的错误加以规范,利于学生准确掌握.(4)想一想,用两个点表示直线合理吗?为何?学生独立思考后讨论交流,并尝试阐述:因为符合“‘两点’确定一条直线”的基本事实,所以是合理的.【设计意图】使学生理解表示方法的合理性.问题3研究图形与多少知识,不仅要认识图形的外形,还要研究图形之间的位置干系.4图1图2(1)观察图1,然后选择恰当的词汇填空:①点O在直线l____________(上、外);直线l____________(经过、不经过)点O.②点P在直线l____________(上、外);直线l____________(经过、不经过)点P.(2)总结出点与直线的位置关系,与同学交流一下.学生完成后尝试回答;教师点评纠正,并明确点与直线的位置关系.练1用恰当的语句描述图中点与直线的位置关系:练2按照以下语句画出图形:①直线EF经过点C;②点A在直线l外.学生相互纠正,教师点评.(3)如图2,尝试描述直线a和直线b的位置干系,与同学交流一下.学生讨论交流;教师在点评的基础上明确:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点.(4)根据下列语句画出图形:①直线AB与直线CD相交于点P;②三条直线m,n,l 相交于一点E.学生完成画图并彼此纠正;教师板书示范.练3用恰当的语句描述图中直线与直线的位置关系:本环节教师应关注:几何语言的研究,既要让学生动手画,又要让学生开口说,由模仿逐步过渡到自发运用,在亲身体验中学会语言,掌握概念.【设计意图】发挥学生的主体作用,自主探索并掌握点与直线的位置关系、直线与直线5相交的概念;通过及时练,研究图形语言、文字语言和符号语言的转化,培养学生几何语言的运用能力.3.类比迁移,拓展新知问题4射线和线段都是直线的一部分,类比直线的表示方法,想一想应怎样表示射线、线段?学生阅读教材,自主探索射线、线段的表示方法,然后回答以下问题:(1)用适当的方法表示下图中的射线和线段:(2)“一条射线既可以记为射线AB又可以记为射线BA”的说法对吗?为什么?(3)怎样由线段AB得到射线AB和直线AB?教师检验学生的研究成果,强调表示射线时应注意字母的顺序.【设计意图】以直线的表示方法为认知基础进行类比迁移,明确射线、线段的表示方法.问题(3)揭示了直线、射线、线段的联系.4.综合练,巩固提高(1)判断下列说法是否正确:①线段AB与射线AB都是直线AB的一部分;②直线AB与直线BA是同一条直线;③端点相同的两条射线一定是统一条射线;④把线段向一个方向无限延伸可得到射线,把线段向两个方向无限延伸可得到直线.(2)按以下语句画出图形:①点A在线段MN上;②射线AB不经过点P;③经过O点的三条线段a,b,c;④线段AB,CD相交于点B.学生独立完成,教师点评纠正.【设计企图】经由过程综合练,巩固学生对直线、射线、线段表示方法的掌握;着重练文字语言向图形语言的转化,提高多少语言的理解与运用能力.5.回忆小结,自我完善6回顾本节课的研究,回答下列问题:(1)你掌握了关于直线的那一个基本事实?(2)简单叙述一下直线、射线、线段的表示方法.【设计企图】引导学生对本节课的重点和难点进行回忆,以凸起重要的知识技能;帮助学生把握知识要点,理清知识脉络,以利于良好研究气的养成.布置作业:题4.2第3,4题.七、目标检测设计1.下列语句准确规范的是( ).A.直线a,b相交于一点mC.延长射线AO到点B(A是端点)B.延长直线ABD.直线AB,CD相交于点M【设计意图】规范表示方法;考查学生对直线、射线、线段延伸情况的理解.2.如图,A,B,C三点在一条直线上(1)图中有几条直线,怎样表示它们?(2)图中有几条线段,怎样表示它们?(3)射线AB与射线AC是同一条射线吗?(4)图中共有几条射线,写出以点B为端点的射线.【设计企图】考查学生对直线、射线、线段概念的认识和表示方法.3.在统一平面内有三个点A,B,C,过其中任意两个点画直线,可以画出( )条直线.A.1B.2C.1或3D.无法确定【设计意图】提示学生分情况考虑同一平面内三个点的位置关系.4.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画直线AB,CD交于E点;(2)连接线段AC,BD交于点F;(3)连接线段AD,并将其反向延长;。
4.2线段、直线、射线、(第一课时)
教学流程安排
教学过程设计
猜谜:千条线,万条线,掉在地上看线,点动成线不见。
(打一自然现象)
1、观察下列图片,你能抽象出哪些图形?
给出天安门前的旗杆、灯光发出一束光、笔直的铁路、三幅图片,学生会发现笔直的公路可以抽象成直线,灯光发出的一束光可以抽象成射线,国旗的旗杆可以抽象成线段,使学生体会到数学知识来源于实际生活,激发学生的学习兴趣。
学生独立思考或相互交流,举出生活中实例。
2、生活中有哪些关于线段、射线、直线的形象,试举例说明?
线段:琴弦、直尺、笔
射线:手电筒射出的光、
汽车的车前灯发出的光
直线:公路、铁轨
教学活动必须要
和学生的生活实际
相联系,在这些学生
很熟悉的生活例子
中开展教学,既可以
集中学生的注意力,
又可激发学生主动
参与的动机,创设良
好的教学情境,这也
是课改的理念之一。
通过观察抽象
出线段、射线、直线
的几何形象,让学生
体验图形是描述现
实世界的重要工具。
人教版七年级上册数学公开课优秀教案《直线、射线、线段》教学设计与反思人教版七年级上册数学公开课优秀教案《直线、射线、线段》教学设计与反思4.2 直线、射线、线段第1课时直线、射线、线段1.理解直线、射线、线段的联系和区别,掌握它们的表示方法;(重点)2.结合实例,了解两点确定一条直线的性质,并能初步应用.一、情境导入我们生活在一个丰富多彩的图形世界里,生活中处处都有图形,如笔直的铁轨、手电筒发出的光、一根铅笔等等,你能用图形表示以上现象吗?二、合作探究探究点:直线、射线、线段【类型一】线段、射线和直线的概念如图所示,A、B、C、D四个图形中各有一条射线和一条线段,它们能相交的是( )解析:线段是不延伸的,而射线只是向一个方向延伸.故选C.方法总结:本题主要考查了线段、射线的延伸性,特别要注意射线是向一个方向无限延伸的,我们作图时只是作出了其中的一部分.【类型二】线段、射线和直线的表示方法下列说法:(1)直线AB与直线BA是同一条直线;(2)射线AB与射线BA是同一条射线;(3)线段AB与线段BA是同一条线段;(4)射线AC在直线AB上;(5)线段AC在射线AB上,其中正确的有( )A.2个B.3个C.4个D.5个解析:(1)直线AB与直线BA是同一条直线,正确;(2)射线AB与射线BA是同一条射线,错误;(3)线段AB与线段BA是同一条线段,正确;(4)射线AC在直线AB上,错误;(5)线段AC在射线AB上,错误;综上所述,正确的有(1)(3),共2个.故选A.方法总结:本题考查了直线、射线、线段的表示方法,熟记概念是解题的关键.【类型三】判断直线交点的个数观察下列图形,并阅读图形下面的相关文字:两条直线相交,最多有一个交点;三条直线相交,最多有3个交点;四条直线相交,最多有6个交点;猜想:(1)5条直线相交最多有几个交点?(2)6条直线相交最多有几个交点?(3)n条直线相交最多有几个交点?解析:先观察图形,找出交点的个数与直线的条数之间的关系,然后进行计算即可.解:(1)5条直线相交最多有5×(5-1)2=10个交点;(2)6条直线相交最多有6×(6-1)2=15个交点;(3)n条直线相交最多有n×(n-1)2个交点.方法总结:解题关键是观察图形,找出规律,总结出同一平面内n条直线相交最多有n×(n-1)2个交点.【类型四】线段条数的确定如图所示,图中共有线段( )A.8条B.9条C.10条D.12条解析:可以根据线段的定义写出所有的线段即可得解;也可以先找出端点的个数,然后利用公式n×(n-1)2进行计算.解:方法一:图中线段有:AB、AC、AD、AE;BC、BD、BE;CD、CE;DE;共4+3+2+1=10条;方法二:共有A、B、C、D、E五个端点,则线段的条数为5×(5-1)2=10条.故选C.方法总结:找线段时要按照一定的顺序,做到不重不漏,如果记住公式会更加简便准确.【类型五】线段、射线和直线的应用由郑州到北京的某一次往返列车,运行途中停靠的车站依次是:郑州——开封——商丘——菏泽——聊城——任丘——北京,那么要为这次列车制作的火车票有( )A.6种B.12种C.21种D.42种解析:从郑州出发要经过6个车站,所以要制作6种车票,从开封出发要经过5个车站,所以要制作5种车票,从商丘出发要经过4个车站,所以要制作4种车票,从菏泽出发要经过3个车站,所以要制作3种车票,从聊城出发要经过2个车站,所以要制作2种车票,从任丘出发要经过1个车站,所以要制作1种车票,再考虑是往返列车,起点与终点不同,则车票不同,乘以2即可.即共需制作的车票数为:2×(6+5+4+3+2+1)=2×21=42种.故选D.方法总结:可以结合线段条数的确定方法,也可以用公式n(n -1),将n=7代入即可.三、板书设计1.线段、射线、直线的表示(1)线段:两端点,有长度.(2)射线:一端点,无长度.(3)直线:无端点,无长度.2.直线的性质(1)两点确定一条直线.(2)两条直线相交只有一个交点.本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象.教师在教学时要体现新课程的三维目标,通过观察分析认识直线、射线和线段,掌握它们之间的联系与区别,有效地利用学生已有的旧知来引导学生学习新知,并在此基础上引出射线.接着由射线引入直线,并比较三者之间的关系.为后面学习新知做好了铺垫.1.进一步认识直线、射线、线段的联系和区别,逐步掌握它们的表示方法.2.结合实例,了解两点确定一条直线的性质,并能初步应用这一性质表述点与直线的关系.3.会画一条等于已知线段的线段.4.能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.教学重点:认识直线、射线、线段的区别与联系;学会正确表示直线、射线、线段,能够判断点与直线的关系,逐步使学生懂得几何语句的意义,并能建立几何语句与图形之间的联系.教学难点:能够把几何图形与语句表示、符号书写很好地联系起来.教学过程:一、创设情境1.观察课本P125图4.2-1.2.学校总务处为解决下雨天学生雨伞的存放问题,决定在每个班级教室外钉一根2米长的装有挂钩的木条.本校三个年级,每个年级八个班,问至少需要买几颗钉子?你能帮总务处的师傅算一算吗?二、探索实践,自主归纳学生利用打好小洞的10 cm长,1 cm宽的硬纸条和撒扣进行实践活动.小组之间交流实践成果,相互补充完善,并解决课本P127思考,得到直线性质:两点确定一条直线.由直线性质推导出表示直线的方法,进而引出点与直线的位置关系,如课本P125图4.2-3,同时提出交点的概念.你画我说要求学生分别画一条直线、射线、线段,教师给出规范表示方法.要求一组学生随意画出一点与一条直线,另一组学生判断点与直线的关系,教师加以指正.三、议一议结合自己所画图形,寻找直线、射线、线段的特征,说说它们之间的区别与联系并交流.思考:怎样由一条线段得到一条射线或一条直线?举出生活中一些可以看成直线、射线、线段的例子.设计意图:在自己动手画好直线、射线和线段的基础上,要求学生说出它们的区别与联系,目的是使学生进一步认识线段、射线、直线.四、我说你画完成课本P128练习,使学生逐步懂得几何语句的意义并能建立几何语句与图形之间的联系.五、数学活动独立探究:画一条线段等于已知线段a,说说你的想法.小组交流补充.教师边说边示范尺规作图并要求学生写好结论.设计意图:慢慢让学生读清题意,并学会按照要求正确画出图形,并让学生自己说出想法,培养学生独立操作、自主探索的数学实践能力.六、课时小结七、课堂作业课本P129习题4.2第2、3、4题.。