范例6地球磁场
- 格式:ppt
- 大小:2.97 MB
- 文档页数:33
地球磁场简介地球磁场,是指地球固有的磁场环绕整个地球的大气层。
它是地球自身外部大气层中的一部分,具有巨大的影响力和重要的地质学意义。
本文将简要介绍地球磁场的形成原理、结构特征以及其对地球生命和导航系统的重要性。
一、地球磁场的形成原理地球磁场的形成主要与地球内部的物理过程密切相关。
目前认为,地球磁场的主要形成原理可以归结为“地球发电机效应”。
具体而言,地球内部的液态外核和固态内核之间发生的对流和自转运动,以及地球自转产生的科里奥利力,共同作用下使得地球磁场得以维持。
液态外核通过电流环流产生磁场,形成地球的主磁场,而固态内核由于其高导电性质,可产生额外的磁场增长。
二、地球磁场的结构特征地球磁场的结构呈现出复杂而多样的特征。
一般来说,地球磁场可以分为地心磁场和地壳磁场。
地心磁场主要来源于地球内部液态外核产生的磁场,具有全球性和稳定性。
而地壳磁场则是地壳中磁性物质产生的磁场,其强度和方向有较大的变化。
地壳磁场的变动往往受到地壳构造和岩石磁性特征的影响,存在较强的地域性。
三、地球磁场的重要性地球磁场对地球和人类具有重要的意义。
1. 生命起源保护:地球磁场能够很好地抵挡来自太阳的带电粒子流,形成一个磁屏障,使地球上的生命得以保护。
这种保护作用对维持地球生物多样性和镀金健康都至关重要。
2. 导航系统依赖:地球磁场为导航系统的运作提供了基础。
现代航海、航空以及卫星导航系统都依赖地球磁场的信息来确定位置和导航方向。
因此,地球磁场对于人类航行和探索具有不可替代的作用。
3. 环境变化研究:地球磁场中的变化可以反映出地球内部和外部环境变化的信息。
地球磁场可以用来研究地震、火山活动、板块运动等地球动力学过程,以及太阳活动、宇宙射线等与地球相互作用的过程。
4. 地质学探索:地球磁场的测量和研究对于地质学家来说是一种重要的工具和手段。
地球磁场可以用来探测地下矿产资源、构造演化历史、地壳变形等地质学问题,对于研究地球深部结构和地球演化过程具有重要的科学价值。
地球磁场目录概述形成原因发现分布与变化规律倒转原因特性地球磁场The Earth magnetic field[编辑本段]概述地球磁场言是偶极型的,近似于把一个磁铁棒放到地球中心,使它的N极大体上对着南极而产生的磁场形状。
当然,地球中心并没有磁铁棒,而是通过电流在导电液体核中流动的发电机效应产生磁场的。
地球磁场不是孤立的,它受到外界扰动的影响,宇宙飞船就已经探测到太阳风的存在。
太阳风是从太阳日冕层向行星际空间抛射出的高温高速低密度的粒子流,主要成分是电离氢和电离氦。
因为太阳风是一种等离子体,所以它也有磁场,太阳风磁场对地球磁场施加作用,好像要把地球磁场从地球上吹走似的。
尽管这样,地球磁场仍有效地阻止了太阳风长驱直入。
在地球磁场的反抗下,太阳风绕过地球磁场,继续向前运动,于是形成了一个被太阳风包围的、彗星状的地球磁场区域,这就是磁层。
地球磁层位于地面600~1000公里高处,磁层的外边界叫磁层顶,离地面5~7万公里。
在太阳风的压缩下,地球磁力线向背着太阳一面的空间延伸得很远,形成一条长长的尾巴,称为磁尾。
在磁赤道附近,有一个特殊的界面,在界面两边,磁力线突然改变方向,此界面称为中性片。
中性片上的磁场强度微乎其微,厚度大约有1000公里。
中性片将磁尾部分成两部分:北面的磁力线向着地球,南面的磁力线离开地球。
1967年发现,在中性片两侧约10个地球半径的范围里,充满了密度较大的等离子体,这一区域称作等离子体片。
当太阳活动剧烈时,等离子片中的高能粒子增多,并且快速地沿磁力线向地球极区沉降,于是便出现了千姿百态、绚丽多彩的极光。
由于太阳风以高速接近地球磁场的边缘,便形成了一个无碰撞的地球弓形激波的波阵面。
波阵面与磁层顶之间的过渡区叫做磁鞘,厚度为3~4个地球半径。
地球磁层是一个颇为复杂的问题,其中的物理机制有待于深入研究。
磁层这一概念近来已从地球扩展到其他行星。
甚至有人认为中子星和活动星系核也具有磁层特征。
地球的磁场和指南针的使用地球是我们生活的家园,在宇宙中游荡。
它拥有许多神秘的力量和现象,其中地球的磁场是一项引人入胜的研究课题。
而指南针则是我们在利用地球的磁场时所依靠的工具。
本文将探讨地球的磁场以及指南针的使用。
一、地球的磁场地球的磁场是由地球内部的铁磁物质所产生的。
它类似于一片巨大的磁力场罩在地球的表面上。
磁场有两个重要的特点:方向和强度。
1.1 方向地球的磁场具有北极和南极之分,这与地球的自转方向有关。
北极位于地球南半球,而南极则位于地球的北半球。
这与地理上的北极和南极是相反的,因此我们常说指南针指向北方,实际上是指向地磁南极。
1.2 强度地球的磁场强度在不同的地方是不同的。
在赤道附近,地磁场强度较弱;而在地磁极附近,磁场强度较强。
这就是为何指南针在不同地方的指示也会有一定的偏差。
二、指南针的使用2.1 原理指南针是利用地球的磁场来寻找地理方向的一种工具。
它由一个悬浮在细绳上的磁针构成,磁针上的北极会指向地球的南磁极。
利用指南针的原理,我们可以辨别出地理上的北方、南方、东方和西方。
2.2 使用方法使用指南针并不复杂,但需要一定的技巧。
首先,将指南针平放在水平位置上,并且静置一段时间,让磁针自行摆正。
这样可以避免外部干扰对指南针的影响。
然后,将指南针持平举起,让磁针转动自由。
观察磁针的转动,其中北极会指向磁针的南端。
这样我们就可以确定北方的方向了。
在实际使用中,可以结合地理标志物或者其他工具进行辅助,以更加准确地确定方向。
2.3 应用指南针在我们的日常生活中有着广泛的应用。
在野外探险、远足、露营等活动中,指南针可以帮助我们不迷路,找到正确的方向。
在航海、航空等领域,指南针更是不可或缺的导航工具。
此外,指南针还被广泛应用于地质勘探、地图制作等专业领域。
三、结论地球的磁场和指南针的使用是我们认识地球、探索世界的重要工具。
地球的磁场为我们提供了方向,而指南针则是我们利用地磁的方式之一。
通过对地球磁场的研究和指南针的使用,我们可以更好地了解地球,更好地应对各种活动和挑战。
地球磁场成因新解临沂大学沂水分校陈维会地球磁场的起源现在仍然是个谜,地球磁场形成的机理有诸多解释,但都不能很好的解释地球磁场的一些现象。
本人经多年的数据检测采集,研究考察及论证,提出新的地磁成因理论,它不仅有可检测的大量的第三方数据佐证,还能解释地球磁场的所有现象,是目前最接近事实的地磁成因理论。
内容摘要:由于太阳的温度很高那里的物质被电离,电离的太阳物质在运动时受太阳磁场的作用,正电荷会上浮到太阳的最外层并被抛向太空,太阳会失去过多的正电荷而带负电,地球俘获了太阳抛出来的正电荷而带正电。
地球表面上的电荷分布是不均匀的,在太阳电场的作用下,地球表面的电荷绕地球运动形成了电流,地球磁场主要是由这电流产生的。
利用这一假设可以很好的解释地球磁场许多现象,包括以往的假设无法解释的现象,并且有大量的测量数据佐证。
一、地球磁场的特性宇宙中的天体大多数都有一定强度的磁场。
据科学家探测研究得知:我们居住的地球磁场强度约为(0.3-0.6)³10-4T;地球表面赤道上的磁场强度约为0.29~0.40高斯;地磁北极的磁场强度为0.61高斯;地磁南极的磁场强度为0.68高斯;南半球强北半球弱;南北磁极与地理的南北极不重合;地轴与地磁轴成11.50的交角;并且南北磁极的地理位置不断在变化,如下表所示。
磁北极(2001)81.3°N,110.8°W(2004 估计)82.3°N,113.4°W(2005 估计)82.7°N,114.4°W地理南极附近磁南极(1998)64.6°S,138.5°E(2004 估计)63.5°S,138.0°E地理北极附近地球磁场受太阳活动的影响较大,地磁场随时间作周期性变化,其中以一昼夜为周期的变化称为地磁场周日变化,简称日变(diurnal variation)。
日变的幅度因时间、季节和纬度而异,不同纬度地区日变规律不同。
地磁场:地球周围存在的磁场。
宏观上看,地球磁场与位于球心的磁偶极子磁场相似;地磁场有两个磁极,其极位于地理北极附近,极位于地理南极附近,但不重合,磁轴与地球自转轴的夹角现在约为78.2度、西经102.9度(加拿大北部),磁南极位于南纬65.5度,东京139.4度(南极洲)。
长期观测证实,地磁极围绕地理极附近进行着缓慢的迁移。
受地磁场作用,磁针的化第一章地球的磁场 地磁场:地磁场有大小和方向,它 描述地磁场大小和方向的物理量,称作地磁要素、地磁要素及其分布在直角坐标系下,地磁要素有:总磁场强度T、垂直磁场强度Z、水平磁场强度HHÎ水平X分量(北向)、水平Y分量(东向)H Xtan I H =tan D X =()T Xi Yj Zk =++K K K K地磁场由基本磁场、变化磁场和磁异常三个部分组成中心偶极子磁场和大陆磁场组成基本磁场Î来源地球内部,占地磁场主要部分(98%以上)主要指短期变化磁场,来源地球外部,占地磁场1%以下磁异常地壳浅部具有磁性的岩石或矿石所引起的局部磁场,它叠加在基本磁场之上。
测量地磁场中,研究对象所产生的磁场称作磁异常,其他部分称作正常场,或称背景场,也称基准场。
Î正常场和异常场是相对的概念地磁场是空间和时间的函数Î需要实际测量实际测量方式:地磁台地磁要素随时间变化所以,将不同时刻观测数据归算到某一特定日所成的地磁要素等值线图Î地磁图首先是天文学家哈雷于1701 年编度的等值线图于1827 年问世.地磁场是和时间的函数- 地磁场各要素随空间变化情况(体现出偶极子场特点)地磁场是空间和的函数- 地磁场各要素随时间变化情况-变化磁场分两类:一是由内部场源引起的缓慢的长期变化;一是来源于地球外部场源的短期变化。
通过世界各地地磁台长期连续观测(2)地球磁场向西漂移(地磁场偶极矩大约 其中,17 %是近400年来减小的.1835Î1980年为7.91x1022Am2Î2000年为7.78x10Am1835Î1980年为7.91x1022Am2Î2000年为7.78x10Am Î两千年后,接近0!Î磁极倒转(?)在测定岩石的剩余磁性时,发现相当一批岩石的磁化方向与现在的地磁场方向相的改则变成了磁北极。