换元法求不定积分
- 格式:ppt
- 大小:2.35 MB
- 文档页数:67
不定积分的第一换元积分法不定积分的第一换元积分法也称为凑微分法,这部分内容在解题过程中不易灵活运用。
下面我们把这个方法以及在解题过程的一些技巧简单地向大家介绍一下。
一、第一换元积分法运用的前提条件由于第一换元积分法是由复合函数求导法导出的,所以当被积函数的形式为f(u(x))·g(x),即被积函数为某个复合函数与某个基本初等函数的乘积时,我们可以想到用第一换元积分法来求此不定积分。
二、第一换元积分法的基本解题思路首先利用g(x)dx凑出微分形式du(x),然后换元(令u=u(x)) 使复合函数转化为基本初等函数后再利用积分公式来求积分,求出积分后再还原。
其中关键的一步是凑成微分形式du(x),也是大家感觉最困难的一步,因为题中需要有u′(x)dx才能凑成微分形式du(x),而u′(x)在题中不易被观察出,也就无法凑出微分形式了。
但反过来如已知u(x),那么它的微分很容易被求出:du(x)=u′(x)dx,只要在原题中凑出u′(x)dx,就可以写出它的微分形式了。
因此找到u(x)成为灵活运用第一换元积分法的关键。
如何找到u(x)呢?u(x)是一个怎么样的函数呢?其实u(x)就是被积函数中复合函数的中间变量。
三、第一换元积分法的具体求解步骤被积函数一般都可以看成由两部分组成:一部分是一个复合函数f(u(x)),另一部分是某个函数g(x),即求∫f(u(x))g(x)dx。
其次找出复合函数的中间变量u(x),求这个中间变量的微分du(x)=u′(x)dx。
将题中的g(x)写成ku′(x),即∫f(u(x))g(x)dx=∫f(u(x))ku′(x)dx=k∫f(u(x))u′(x)dx最后根据第一换元积分法的公式求出积分:k∫f(u(x))·u′(x)dx=kF(u(x))+c四、举例例1、∫x(1-3x2)10dx解:观察此被积函数有两部分组成:x和(1-3x2)10,其中(1-3x2)10是一个复合函数,中间变量u(x)=1-3x2,求中间变量的微分du=u′dx=-6xdx,然后就需要在题中凑这个微分,∫x(1-3x2)10dx=-■∫(1-3x2)10(-6xdx)=-■∫u10du=-■·■u10+1+C=-■u11+C=-■(1-3x2)11+C例2、∫■dx解:观察此被积函数有两部分组成:■和ln3x其中ln3x是一个复合函数,中间变量u(x)=lnx,求中间变量的微分d(lnx)=(lnx)′dx=■dx,然后就需要在题中凑这个微分,∫■dx=∫ln3x(■dx)=∫u3dx=■u4+C=■(lnx)4+C=■ln4x+C例3:∫tanxdx解:此题被积函数为tanx,似乎不能用第一换元积分法来解,但是利用同角三角函数的关系式有tanx=■,就是由两部分组成:sinx和■。
用换元法求不定积分
用换元法求不定积分的方法如下:
换元积分法可分为第一类换元法与第二类换元法。
第一类换元法也叫凑微分法,通过凑微分,最后依托于某个积分公式,进而求得原不定积分。
第二类换元法的变换式必须可逆,并且Φ(x)在相应区间上是单调的。
第二类换元法经常用于消去被积函数中的根式。
当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。
常用的换元手段有两种:根式代换法,三角代换法。
两种换元法例题如下:
第一类换元积分法
原式=∫(x-1+1)/根号下(x-1)dx
=∫[根号下(x-1)+1/根号下(x-1)]d(x-1)
=(2/3)*(x-1)^(3/2)+2根号下(x-1)+C,其中C是任意常数。
第二类换元积分法
令t=根号下(x-1),则x=t^2+1,dx=2tdt
原式=∫(t^2+1)/t*2tdt
=2∫(t^2+1)dt
=(2/3)*t^3+2t+C
=(2/3)*(x-1)^(3/2)+2根号下(x-1)+C,其中C是任意常数。
关于不定积分换元法的处理方法
不定积分换元法有利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果;把复杂的换成简单,如反三角函数,根式,倒数等技巧。
不定积分换元法技巧
用凑微分法求解不定积分时,要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。
当实在看不清楚被积函数特点时,可以从被积函数中拿出部分算式求导、尝试。
使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量取值范围对应于原变量的取值范围,不能缩小也不能扩大。
可以先观察算式,可发现这种需换元法之算式中总含有相同的式子,然后把它们用一个字母替换,推演出答案,然后若在答案中有此字母,即将该式带入其中,遂可算出。