第2讲:代数式与代数式的值(教案)
- 格式:docx
- 大小:204.88 KB
- 文档页数:5
2.3 代数式的值【知识与技能】1。
让学生领会代数式值的概念。
2.了解求代数式值的解题过程及格式。
3。
初步领悟代数式的值随字母的取值变化而变化的情况。
【过程与方法】通过学习使学生了解求代数式的值在日常生活中的应用.【情感态度】培养学生的探索精神和探索能力.【教学重点】求代数式的值的含义及如何求代数式的值.【教学难点】求代数式的值的含义理解及一些应用.一、情景导入,初步认知通过上节课的学习,我们了解了什么?它的概念是什么?【教学说明】通过复习最近学过的知识,使学生尽快进入学习状态.二、思考探究,获取新知1.动脑筋:今年植树节时,某校组织305位同学参加植树活动,其中有25的同学每人植树a棵,其余同学植树2棵。
你用代数式表示他们共植树的总棵数吗?如果a=3,那么他们共植树多少棵?如果a=4,那么他们共植树又是多少棵?根据题意,他们共植树:2 5×305a+(1-25)×305×2=(122a+366)棵;当a=3时,代数式122a+366=122×3+366=732(棵);当a=4时,代数式122a+366=122×4+366=854(棵);我们将上面问题中的计算结果732和854,称为代数式122a+366当a=3和当a=4时的值。
【归纳结论】如果把代数式里的字母用数代入,那么计算出的结果叫做代数式的值。
注意:(1)代数式的值不是固定不变的值,它是随着代数式中字母取值的变化而变化的.所以,求代数式的值时,要明确“当……时",一定要按照代数式指明的运算进行。
(2)代数式里的字母可以取各种不同的数值,但所取的数值必须使代数式和它表示的实际数量有意义.例如,上述问题中,代数式122a+366中的字母a不能取负数,又如代数式ab中的字母b 不能取零。
2。
思考:结合上述例题,回答下列问题:(1)求代数式的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的?【教学说明】引导学生回答:代数式的值是由代数式里字母的取值的确定而确定.3.(1)当x=-3时,求出代数式x 2—3x+5的值;(2)当a=0。
3.2代数式的值【教学目标】1.了解代数式的值的定义,能熟练地求代数式的值,理解代数式求值可以为一个转换过程或一个算法.2.在代数式求值过程中,初步感受函数的对应思想.3.会用代数式解决简单的实际问题.【重点难点】重点:会求代数式的值并解释代数式值的实际意义.难点:应用求代数式的值解决实际问题.【教学过程】一、创设情境为了开展体育活动,学校要购置一批排球,每班配备5个,学校另外留20个.(1)学校总共需要购置个排球.(2)如果学校有15个班级,那么需要购置的排球数是;(3)如果学校有20个班级,那么需要购置的排球数是.你是如何计算的?二、探究归纳探究点1:求代数式的值问题1:上述代数式的值是由谁的取值确定的?总结:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.问题2:根据下列x,y的值,你能求出代数式2x+3y的值吗?.(1)x=15,y=12;(2)x=1,y=-12总结:1.代入时,将相应的字母换成已给定的数值,其他的运算符号、原来的数及运算顺序都不能改变.2.当字母取不同数值时,代数式的值一般也不同.3.如果字母的取值是负数或分数,乘方时应加括号.【典例探究】例1:教材P79【例2】【针对性训练】教材P80练习总结:(1)求代数式的值的步骤:第一步:代入,用具体数值代替代数式里的字母;第二步:计算,按照代数式中指明的运算,计算出结果.(2)注意事项:①一个代数式中的同一个字母,只能用同一个数值去代替;②如果代数式里省略乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号;③代入时,不能改变原式中的运算符号及数字;④运算时,要注意运算顺序,即先算平方,再算乘除,最后算加减,有括号的要先算括号里面的.【拓展探究】问题3:代数式x2+x+3的值为7,则代数式2x2+2x-3的值是多少?你是如何计算的?探究点2:应用代数式的值解决实际问题问题4:填空:(1)路程=×;(2)工作量=×;(3)总价=×;(4)长为a,宽为b的长方形面积=;(5)边长为a的正方形面积=;(6)底为a,高为h的三角形面积=;(7)上底为a,下底为b,高为h的梯形面积=;(8)半径为r的圆的面积=;(9)长为a,宽为b,高为c的长方体的体积=;(10)棱长为a的立方体的体积=.【典例探究】例2:教材P80例3分析:跑道的周长是两段直道和两段弯道的长度的和.根据圆的周长求出弯道的长度.教师示范解答步骤.例3:教材P81例4分析:三角尺的面积=三角形的面积-圆的面积.总结:涉及不规则图形面积问题时,可以通过割补法把不规则图形转化为规则图形的和或者差来进行求解.【针对性训练】教材P81练习三、检测反馈(一)基础训练:1.当a=b=3时,x,y互为倒数,1(a+b)-3xy的值是()2A.0B.3C.-3D.62.当x=1,y=6时,代数式x2+y2的值是.3.当x=1,y=6时,求下列代数式的值:(1)x2+y2;(2)x2-2xy+y2.4.小亮从家出发乘汽车行驶了a千米用了1小时,又步行了0.5千米,又用了0.1小时到达某地.(1)用代数式表示小亮从家到某地的平均速度.(2)当a=80时,求此平均速度.5.如图,一个直角三角形ABC的直角边BC=a,AC=b,三角尺的厚度为h,三角形内部圆的半径为r.(1)用式子表示阴影部分体积V(结果保留π);(2)当a=10,b=6,r=2,h=0.2时,计算V的值.(π取3.14.结果精确到0.1)(二)拓展训练1.已知|A|=5,|B|=3,且AB<0,则A-B的值是()A.2或8B.1或-8C.±2D.±82.当x=1时,ax4+bx2+2=-3;当x=-1时,ax4+bx2-2=()A.3B.-3C.-5D.-73.我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y时,x★y=y.则当z=-3时,代数式(-2★z)-(-4★z)的值为.4.某商城销售某品牌运动鞋和袜子,运动鞋每双定价为300元,袜子每双定价为40元,十一期间商城决定开展促销活动,活动期间向顾客提供两种优惠方案:方案一:买一双运动鞋送一双袜子;方案二:运动鞋和袜子都按定价的九折付款;现某顾客要到该商城购买10双运动鞋,x(x>10)双袜子.(1)若该客户按照方案一购买,需付款元(用含x的代数式表示);若该客户按照方案二购买,需付款元(用含x的代数式表示);(2)若x=30,①通过计算说明按照方案一、方案二购买,哪种方案较为合算?②请你设计一个最优惠的购买方案,使得该客户花费最少,并写出你的购买方案和所需的费用.四、本课小结会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值一般也不同,所以在求代数式的值时,要注意解题步骤:(1)指出字母的取值;(2)抄写代数式;(3)代入;(4)计算.五、布置作业P82T3,5,7六、板书设计七、教学反思1.通过导入“代数式的值”概念时,情境导入,达到了激发学生兴趣的成效,让学生感受到了数学的生活化,营造了轻松的学习气氛.进一步理解代数式和代数式值的概念,为本节应用代数式的值解决实际问题作铺垫.在教学中注意引导学生体验字母取值和代数式值的对应思想.2.本节课一开始就直奔主题,提出如何求代数式的值,并要求学生根据两个不同类型的方法(直接代入法与整体代入法)求值,并求相同字母下代数式的值.通过计算,再次巩固了代数式的求值,突出重点.让学生经历探究、讨论、合作、交流的进程,明确符号所代表的数量关系,发展符号意识,熟练掌握求代数式值的方法,升华学生对概念的理解,并锻炼学生的计算能力.通过对实际问题的解决,学生熟悉到数学来源于生活,应用于生活,在问题解决中运用代数式求值的知识,通过实际背景帮学生明白代数式值的实际意义,调动学生的实践意愿.。
《代数式的值》教案设计第一章:代数式的基础知识1.1 代数式的定义介绍代数式的概念,理解代数式是由数字、变量以及运算符号组成的表达式。
举例说明代数式的不同形式,如整式、分式等。
1.2 代数式的变量解释变量的概念,变量是代表未知数的符号。
介绍变量的命名规则,如何使用字母表示变量。
1.3 代数式的运算复习基本的算术运算规则,包括加法、减法、乘法、除法。
讲解代数式中的运算顺序,掌握整式的乘法和除法法则。
第二章:代数式的值2.1 代数式的求值解释代数式的求值是指将变量替换为具体的数值后计算表达式的结果。
举例说明如何求解代数式的值,如将变量的值代入表达式中进行计算。
2.2 代数式的化简介绍代数式的化简,即简化表达式的形式,减少冗余的项或因子。
讲解如何进行代数式的化简,包括合并同类项、分解因式等方法。
2.3 代数式的值的应用探讨代数式的值在实际问题中的应用,如解决方程和不等式问题。
举例说明如何将实际问题转化为代数式的求值或化简问题。
第三章:代数式的求值方法3.1 代数式的代入法介绍代入法求解代数式的值,即将变量的值直接代入表达式中进行计算。
举例说明代入法的具体步骤和应用。
3.2 代数式的替换法解释替换法求解代数式的值,即将代数式中的变量替换为其他表达式。
讲解如何使用替换法求解复杂的代数式问题。
3.3 代数式的图像法介绍使用图形方法求解代数式的值,通过绘制函数图像来观察变量的取值范围。
举例说明如何利用图像法求解代数式的值。
第四章:代数式的化简方法4.1 合并同类项讲解合并同类项的规则,即将具有相同字母和指数的项进行合并。
举例说明如何合并同类项,简化代数式的表达形式。
4.2 分解因式解释分解因式的概念,即将代数式写成乘积的形式,提取公因数或应用公式。
讲解如何使用分解因式的方法化简代数式,如提取公因数、应用完全平方公式等。
4.3 应用完全平方公式介绍完全平方公式的概念,即(a+b)^2 = a^2 + 2ab + b^2,(a-b)^2 = a^2 2ab + b^2。
代数式的值教案七年级数学教案一、教材分析1:教材地位《代数式的值》选自华东师大版数学七年级上册第三章第二节,这一节的主要内容是用数值代替代数式中的字母,按照代数式的运算方法计算结果,在前面的学习中,我们已经学习了代数式,这为我们这一节的学习打下了基础,而我们这一节的学习也为我们后面学习整式和方程等做好了准备。
2:教学目标:知识与能力:1、了解代数式的值的概念,会求代数式的值。
2、会利用代数式的值解决简单的实际问题3、培养学生准确地运算能力,并适当地渗透对应的思想、数形结合思想及整体代换的思想。
过程与方法:1、通过传数游戏,增加学生代值计算的意识。
2、通过例题教学,引导学生提出问题,去比较,去分析,去猜想,有意识培养学生的探索精神和探索能力。
3、加强学科间的联系,让学生体验到邻近学科中的应用。
情感态度与价值观:1、通过传数游戏、生活中的实例、邻近学科的应用、阅读材料等激发学生学习数学的兴趣,并主动参与谈论、探索、思考与操作。
2、通过所学知识,让学生初步体验到数学中抽象概括的思维方法和事物的特殊性与一般性可以互相转化的辨证关系,从而形成正确的世界观。
●二:教法、学法分析本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。
教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。
而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。
重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式。
难点:正确地求出代数式的值。
“对应”思想和“整体代换”思想的渗透。
●三、教学过程:●一、试一试传数游戏1、规则:班级同学按4位同学一组进行分组,做一个传数游戏。
3.3代数式的值(2)教学目标: 1、了解代数式的值的意义,会计算代数式的值。
2、在计算代数式的值的过程中感受数量的变化及其联系,感悟整体代入的思想。
3、在探索规律的过程中感悟从具体到抽象的归纳思想方法。
教学重点:求代数式的值教学难点:一般到特殊,具体到抽象的归纳思想教学准备:配套课件,三角板教学过程:一.情境创设:实际问题引入二.例题分析:摆放餐桌和椅子问题:(分组讨论)餐桌横放:(1)1X2X餐桌可人。
(2)按照上图的方式继续排列餐桌,完成下表:(3)探索餐桌X数n与可坐人数w之间的关系。
(4)15X餐桌这样排,可坐多少人?(1)2X桌子拼在一起可坐人,3X桌子可坐人,n X桌子可坐人。
(2)一家餐厅有40X这样的长方形桌子,按照上图方式每5X拼成1X大桌子,则40X桌子可拼成8X大桌子,共可坐人(3)在(2)中,若改成每8X桌子拼成1X大桌子,则共可坐多少人?计算过程:三.课堂练习:A 组某种药品的数量与总价关系如下表:写出药品数量x(克)与总价y(元)之间的关系。
B 组1、已知a+b=3,求代数式(a+b)2+a+6+b的值.思路点拨:本例中字母 a,b的值并不知道,如果根据已知a+b=3来求出a,b是不可能的。
观察代数式发现,其中a+b是以整体出现的,所以可将a+b直接代入原代数式求值。
2、若代数式2a2+3a+1的值为5,求代数式4a2+6a+8的值.C 组一根弹簧,原长为12 cm,当弹簧受到拉力F时(F在一定X围内),弹簧的长度用L表示。
测得的有关数据如下表所示:(1)写出用拉力F表示弹簧长度L的关系式;(2)当弹簧受到6kg的拉力是,长度是多少?。
数学教案-代数式的值教学目标1.使学生把握代数式的值的概念,能用详细数值代替代数式中的字母,求出代数式的值;2.培育学生精确地运算力量,并适当地渗透特别与一般的辨证关系的思想。
教学建议1.重点和难点:正确地求出代数式的值。
2.理解代数式的值:(1)一个代数式的值是由代数式中字母的取值而打算的.所以代数式的值一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈代数式的值时,必需指明在什么条件下.如:对于代数式;当时,代数式的值是0;当时,代数式的值是2.(2)代数式中字母的取值必需确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如:中不能取1,由于时,分母为零,式于无意义;假如式子中字母表示长方形的长,那么它必需大于0.3.求代数式的值的一般步骤:在代数式的值的概念中,实际也指明白求代数式的值的方法.即一是代入,二是计算.求代数式的值时,一要弄清晰运算符号,二要留意运算挨次.在计算时,要留意按代数式指明的运算进展.4。
求代数式的值时的留意事项:(1)代数式中的运算符号和详细数字都不能转变。
(2)字母在代数式中所处的位置必需搞清晰。
(3)假如字母取值是分数时,作乘方运算必需加上小括号,将来学了负数后,字母给出的值是负数也必需加上括号。
5.本节学问构造:本小节从一个应用代数式的实例动身,引出代数式的值的概念,进而通过两个例题叙述求代数式的值的方法.6.教学建议(1)代数式的值是由代数式里的字母所取的值打算的,因此在教学过程()中,留意渗透对应的思想,这样有助于培育学生的函数观念.(2)列代数式是由特别到一般, 而求代数式的值, 则可以看成由一般到特别,在教学中,可结合前一小节,适当渗透关于特别与一般的辨证关系的思想.教学设计例如代数式的值(一)教学目标1使学生把握代数式的值的概念,能用详细数值代替代数式中的字母,求出代数式的值;2培育学生精确地运算力量,并适当地渗透特别与一般的辨证关系的思想。
第2讲:代数式与代数式的值(教案)
一:代数式
通过上一节的学习,我们已经知道了,在数学中可以使用字母来表示数。
并且由这些表示数的字母结合在一起可以表示一些数量关系。
比如圆的面积可以表示为πr 2,三角形的面积可以表示为ah 2
1
=S ,梯形的面积可以表示为h )b a (21+=
S 等等。
像πr 2、ah 21=S 、h )b a (2
1+=S 的式子,在数学中称为代数式。
代数式:用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式。
(注意:单独的一个数或
者一个字母也是代数式,例如0、2、x 、h 等都是代数式。
) 例题1:用代数式表示:
(1)比a 的3倍还多2的数; (2)b 的3倍的相反数;
(3)x 的平方的倒数减去2的差; (4)9减去y 的3倍的差; (5)x 的立方与2的和;
例题2:设甲数是m ,乙数是n ,用代数式表示: (1)甲乙两数的和的5倍;
(2)甲减去乙的差与甲的相反数的积; (3)甲乙两数平方的和; (4)甲乙两数和的立方;
例题3:如图所示,一个长方体的高为h ,底面是一个边长为a 的正方形,用代数式表示这个长方体的体积。
例题4:用代数式表示:
(1)比a 的2倍还少3的数; (2)a 与b 的差的平方; (3)x 的2倍与y 的的差; (4)m 与n 的平方差; 例题5:小明妈妈买了国库券a 元,年利率为p%,则一年到期利息是多少?本利和是多少?
例题6:铅笔的单价是a 元,钢笔的单价是b 元,小明买了x 支铅笔和y 支钢笔,问总共应付多少元?
例题7:某商场进行换季打折销售,上衣按原价a 元的3折销售,长裤按原价b 元的对折销售,小明的妈妈买了3套打折服装,共要付多少元?
二:代数式的值
例题:当a 分别取下列值时,求代数式
2
)
1a (a 3+的值。
(1)a=2; (2)a=3-; (3)a=2
1;
通过上面的例题,我们可以看出当代数式中的字母取不同的值时,整个代数式的值也是不同的。
像这样用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。
例题1:当x=2-,y=2
1
-
时,求下列各代数式的值。
(1)22y 4xy 6x 3+-; (2)|x y 6|+;
例题2:如图所示是一个长、宽分别是a 米、b 米的长方形绿化地,中间圆形区域计划做成花坛,它的半径是r 米,其余部分种植绿草。
(1)需种植绿草的面积是多少平方米?
(2)当a=10,b=4,r= 时,求需种植绿草的面积。
(π取3.14,精确到0.01平方米)
例题3:当x 分别取下列值时,求代数式1x 2x 2
-+的值。
(1)x=3; (2)x=2
1
例题4:当a=
2
1
,b=3-时,求下列各代数式的值。
(1)2a+b (2)2
2
b a 4-; (3)2
2
b ab 2a +-;
例题5:如图所示,一个田径场由两个半圆和一个正方形组成。
(1)用a 表示该田径场的面积;
(2)当a=80米时,求这个田径场的面积。
(π取3.14,精确到0.01平方米)
随堂训练
一:填空题
1、“a 的一半加上b 的2倍的和”用代数式表示为____________;
2、“x 的倒数减去y 的差”用代数式表示为____________;
3、“a 、b 两数和的平方”用代数式表示为________________;
4、“a 、b 两数的平方和”用代数式表示为_________________;
5、“x 减去b 的2倍的差”用代数式表示为_________________;
6、“x 减去b 的差的2倍”用代数式表示为_________________; 二:选择题
1、“a 、b 两数的倒数和”用代数式表示为:
A.
b 1a 1+ B. b 1a + C. b a 1+ D. b a 1+ 2、“a 与b 的倒数的和”用代数式表示为:
A.
b 1a 1+ B. b 1a + C. b a 1+ D. b
a 1+ 三:解答题
1、根据下列条件,求代数式3
a 9
a 2+-的值。
(1)a=3 (2)a=3
1
(3)a=6-
2、当x=2,y=2
1
-
时,求下列各代数式的值。
(1)2)y x (- (2)xy
y
x -
(3)y 2xy x 2-- (4)2
2y x -
3、已知A、B两地相距m千米,甲乙两车同时从A、B两地出发,相向而行,如果甲乙两车的行驶速度分别为每小时a千米和每小时2b千米,那么多少小时后两车在途中相遇?此时,甲乙两车各行驶了多少千米?
4、某班有男生20人和女生x人,在一次数学测验中,男生平均分为86分,女生平均分为85分,求全班的数学平均分是多少?
5、如图所示,用一张长为12厘米,宽为10厘米的硬纸片,将它的四角各剪去一个边长为x厘米的正方形(阴影部分),然后做成一个无盖的长方体纸盒,求这个纸盒的表面积是多少?
6、如图所示的阴影部分是由边长为a的正方形挖去圆心角为90°,半径为a的扇形形成的图形。
(1)用含a的代数式表示阴影部分的面积;
(2)当a=4时,求阴影部分的面积;。