第五章 激光焊接
- 格式:ppt
- 大小:15.29 MB
- 文档页数:231
激光焊接工艺实践课程教学大纲讲解(五篇模版)第一篇:激光焊接工艺实践课程教学大纲讲解《激光焊接工艺实践》教学大纲学时:48 学分:3一、课程的地位与任务“激光焊接工艺实践”课属于光机电应用技术教学资源库核心课程体系之一的激光加工技术类。
光机电应用技术教学资源库建设规划的五门课程体系分别是激光原理及技术、激光设备机械设计基础、激光设备机电控制技术及应用、激光加工技术和激光3D打印技术。
“激光焊接工艺实践”是一门实训为主的专业主干课程,主要介绍不同激光焊接参数对常用金属材料焊接质量的影响和不同类型激光焊接设备在材料焊接领域的应用。
激光焊接工艺实践为面向光机电类专业学生开设的一门专业必修的基础实训类课程,课程设置为48学时,合计3学分。
学习本课程之前,学生应完成激光加工技术和工程材料基础等预备性课程的学习。
目标是使学生掌握不同激光焊接参数对常用金属材料焊接的影响规律和不同类型激光设备在材料焊接方面的选择应用,培养学生分析、解决生产实际问题的能力,为将来从事激光焊接设备操作打下基础,从而使其在掌握专业知识的基础上获得所需要的职业技能。
二、课程的基本内容第一章激光焊接设备的种类及应用通用激光焊接设备的构成CO2激光焊接设备介绍 YAG激光焊接设备介绍 DISK激光焊接设备介绍半导体激光焊接设备介绍光纤激光焊接设备介绍激光扫描振镜的应用准连续光纤激光器在焊接上的应用通快激光焊接工作站美国PRC激光焊接设备的特点PRC激光器的维护激光焊接设备的选用第二章激光焊接参数及其影响激光焊接工艺特点介绍激光焊接工艺参数介绍激光功率对焊接的影响焊接速度对激光焊接的影响离焦量对激光焊接的影响保护气体对激光焊接的影响等离子体对激光焊接的影响激光焊接光束焦点的常用测定方法高功率激光焊接的离焦量恒定问题材料吸收率对激光焊接的影响离焦量对激光焊缝成形的影响焊接速度对600MPaTRIP钢焊缝成形的影响焊接速度对600MPaDP钢焊缝成形的影响焊接速度对1000MPaTRIP钢焊缝成形的影响激光焊接熔池的动态观察激光功率对焊接熔池动态的影响激光焊接的脉冲波形激光焊接的脉冲频率焊接速度对奥氏体不锈钢激光焊接的影响功率对奥氏体不锈钢激光焊接的影响激光焊接参数对接头强度的影响焊接速度对1.2mm厚1200MPaTRIP钢接头性能的影响激光焊接速度对1000MPaTRIP钢接头性能的影响激光焊接速度对1000MPaTRIP钢接头性能的影响(He保护)激光焊接速度对800MPaTRIP钢焊缝成型的影响1mm不锈钢薄板的YAG激光焊接1.2mm不锈钢薄板的YAG激光焊接 2mm厚低碳钢板的CO2激光焊接 3mm厚低碳钢板的CO2激光焊接 4mm厚低碳钢板的CO2激光焊接第三章激光焊接设备操作及维护YAG脉冲激光焊接设备操作方法 DISC激光焊接系统操作规程Rofin二氧化碳激光焊接系统操作规程光纤激光焊接系统操作规程YAG激光焊接设备的维护DISC激光焊接设备的维护光纤激光焊接设备的维护二氧化碳激光焊接设备的维护半导体激光焊接设备的维护 IPG激光焊接设备的运行模式 IPG激光焊接设备的操作步骤 IPG激光焊接设备的非手动操作模式通快碟片激光器的操作通快碟片系列激光器的接口通快碟片激光器的操作程序TruControl 1000-2-第四章激光焊接实例第五章激光复合焊接技术塑料的激光焊接三光点激光钎焊工艺德国LIMO公司塑料激光焊接机激光半熔透焊接工艺介绍激光拼焊板工艺介绍激光熔焊在乘用车白车身上的应用激光钎焊在乘用车白车身上的应用传动齿轮的激光焊接传感器的激光焊接应用激光焊接金刚石锯片实例动力电池的激光焊接纳秒脉冲激光器的焊接应用光纤激光器在白车身焊接中的应用激光自体钎焊在医疗器械上的应用1mm厚低碳钢薄板的激光焊接 800MPaTRIP钢的激光焊接激光焊接与电阻点焊在白车生上应用对比SUS304L不锈钢的激光焊接薄壁件的激光脉冲焊接激光填丝焊接激光脉冲焊接传感器实例上海宝钢阿赛洛激光拼焊板介绍汽车座椅转角器的激光焊接实例激光电焊的特点激光点焊在白车身上应用铝合金的激光焊接长春三友激光拼焊板介绍汽车刹车盘的激光焊接实例阀门的激光焊接黄铜阀门的激光焊接钢铝异种材料的激光焊接钛合金板材的激光焊接奥氏体不锈钢波纹板的激光焊接600MPaTRIP钢的激光焊接600MPaDP钢的激光焊接1000MPaTRIP钢的激光焊接采用He保护的1000MPaTRIP钢的激光焊接600MPaPH钢的激光焊接采用He保护的600MPaPH钢的激光焊接华菱安赛乐米塔尔激光拼焊板介绍激光电弧复合焊技术介绍激光MIG复合焊接应用激光MIG复合焊接系统介绍激光等离子复合焊介绍激光电弧复合焊应用对比激光-TIG复合焊介绍激光电弧复合焊接接头化学成分均匀性的影响因素第六章能量负反馈激光焊接工艺第七章激光焊接缺陷及检验第八章激光焊接操作安全与防护激光自体复合焊介绍激光单热源焊接特点介绍激光复合热源焊接特点介绍激光-TIG复合焊介绍能量反馈式激光焊接原理激光焊接能量负反馈设备介绍激光拼焊板常见缺陷分析激光焊接接头的形式激光焊接接头坡口形核激光焊接的焊缝介绍激光焊缝中的气孔缺陷激光焊接中的冷裂纹缺陷激光焊接中的热裂纹缺陷激光焊缝缺陷的外观检验激光焊接接头的密封性检验激光焊接接头的金相检验激光焊接接头的耐压检验激光焊缝缺陷的RT检测激光焊缝缺陷的UT检测激光焊缝缺陷的MT检测激光焊缝缺陷的PT检测激光焊缝缺陷的ET检测激光焊接接头的耐腐蚀性能检验激光焊接接头的质量评定轿车白车身激光焊接质量的检验激光焊接奥氏体不锈钢薄板接头的缺陷激光焊接设备操作常用工程防护措施介绍激光焊接设备操作常用个人防护措施介绍激光焊接设备操作安全培训介绍激光焊接设备操作医学监督措施介绍气体激光焊接设备维护介绍半导体激光焊接设备维护介绍DISK 激光焊接设备维护介绍 YAG激光焊接设备维护介绍光纤激光焊接设备维护介绍激光辐射的危害激光焊接设备使用的安全防护现代封闭式激光焊接工作站介绍高功率激光焊接设备使用注意事项高功率光纤激光器维护与故障处置光纤激光器光纤的清洁处理罗芬板条系列激光器使用须知通快系列激光器的安全配置通快碟片激光器运行中断应对措施通快碟片系列激光器的标牌激光焊接设备的分级(国际标准)激光焊接设备的分级(国家标准)三、课程的基本要求1.本课程在注重学生基础理论知识理解的同时,要求更侧重对学生实践动手能力的培养;2.采取理论教学和实践观摩教学相结合的方式以增强课程学习的直观性和针对性;四、课程的实践环节安排根据系里实验室设备情况,安排实践观摩教学。
激光焊接技术激光焊接技术是一种新型的高精度、高效率的焊接技术,可以在材料表面形成高能量密度焊缝,并将材料熔化焊接在一起。
激光焊接技术的特点是焊接速度快、效率高,焊缝形状优美,自动化程度高,质量可靠,广泛应用于航空、航天、军工、汽车、电子等领域。
一、激光焊接技术原理激光焊接技术是利用激光器将高能量密度的激光束集中在焊缝上,使材料熔化、熔池形成、冷却凝固而实现焊接的一种先进的现代化焊接方法。
激光束是由半导体激光器或固体激光器通过电子控制系统控制光束形状和作用时间发射出来的。
激光焊接的过程主要包括:激光束的聚焦、能量传递、熔化和混合、物质传递、凝固、焊缝形成。
二、激光焊接技术的发展激光焊接技术的发展主要经历了三个阶段:第一阶段:激光器材料的发展阶段,20世纪60年代,激光器材料逐渐成熟,发展起了高质量的氦氖和二氧化碳激光器。
第二阶段:焊接技术发展阶段,20世纪70年代,随着激光器的发展和材料科学的进步,激光焊接技术出现并得到了发展。
激光焊接技术的应用范围不断扩展,新型激光器的发展也为激光焊接技术的发展提供了更加先进的技术支持。
第三阶段:新技术的发展阶段, 20世纪80年代,多光子激光焊接技术、激光力学碎片技术、光纤激光传输技术等激光技术新技术的产生,为激光焊接技术的提升和发展提供了新的方向和思路。
三、激光焊接技术的应用激光焊接技术广泛应用于各种材料的焊接中,如金属材料、塑料材料、陶瓷材料等。
特别是对于高难度、高要求的应用领域,如修复设备、航空、航天、军工、汽车、电子、仪器、5G通信等领域的应用,激光焊接技术具有独特的优势。
四、激光焊接技术的优点1、激光焊接技术的焊缝成型放心,无需表面处理,可以达到密封、抗剪强度高等特点。
2、激光焊接技术的深度可以向内渗透,从而保证长时间有效的连接,无需二次处理。
3、激光焊接技术的低热影响区,焊接过程中的热量非常集中,对焊接件的影响很小,可以减轻变形。
4、激光焊接技术的可靠性高,通过电脑控制,可以达到一定的自动化程度。
激光焊接的原理及应用论文1. 引言激光焊接是一种常用的焊接方法,它利用高能量密度的激光束将焊接区域加热到熔化或蒸发的温度,从而实现材料的连接。
由于其高精度、高效率和非接触性的特点,激光焊接在许多领域得到了广泛的应用。
本论文将介绍激光焊接的原理、工艺参数以及具体的应用领域。
2. 激光焊接原理激光焊接的原理主要涉及以下几个方面:2.1 激光的特性激光是一种特殊的光源,具有单色、相干和定向性等特点。
其中,激光的单色性使得其能够集中能量,从而实现高温加热;激光的相干性使得其能够形成高质量的焊接缝;激光的定向性使得其能够精确照射到焊接区域。
2.2 激光与材料的相互作用激光束与材料相互作用时,会发生吸收、反射、散射和透过等过程。
其中,吸收是激光焊接中最重要的过程,通过调节激光能量密度、波长和工艺参数等因素,可以实现材料的熔化并形成焊缝。
2.3 激光焊接工艺参数激光焊接的工艺参数包括激光功率、扫描速度、焦距和光斑大小等。
不同的工艺参数会对焊接效果产生明显的影响,需要根据具体材料和焊接要求进行合理调节。
3. 激光焊接的应用激光焊接在许多领域都有广泛的应用,以下列举了几个常见的应用领域:3.1 汽车制造激光焊接在汽车制造中用于焊接车身零部件、发动机组件等。
由于激光焊接可以实现高精度和高速度的焊接,因此可以提高汽车的结构强度和整体质量。
3.2 电子设备激光焊接在电子设备制造中应用广泛,可以焊接电路板、电子元件等。
激光焊接具有非接触性的特点,可以避免热量对电子元件的损害,同时可以实现高精度的焊接。
3.3 医疗器械激光焊接在医疗器械制造中常用于焊接手术工具、人工关节等。
由于激光焊接可以实现无接触和高精度的焊接,可以确保医疗器械的结构安全和使用舒适度。
3.4 航空航天激光焊接在航空航天领域被广泛应用于焊接航空发动机、航天器壳体等。
激光焊接可以实现高强度的焊接,同时可以减少材料的应力和变形,提高航空航天器的安全性和可靠性。
激光焊接技术激光焊接技术是一种新兴的高技术制造方法,它采用高能量密度激光束对接头进行加热,使其局部熔化并迅速冷却,从而将接头快速连接在一起。
激光焊接技术在制造业中广泛应用,如汽车、飞机、船舶、电子、医疗设备等领域都在使用该技术,其具有高效、高精、高质、环保等特点,成为制造业中的瑰宝。
一、激光焊接技术的原理与类型激光焊接技术利用激光束对材料进行加热和熔化,使其在一定条件下完成接头连接的工艺。
激光焊接的过程,由于激光具有高能密度的特点,可以使材料迅速加热到熔点以上,以此实现对接头的定向加热和熔化,然后通过激光束的移动来控制熔池形成和接头连接。
在激光焊接加工的过程中,为了保证焊缝质量,需要对激光束精度、聚焦系统、感应监测系统等进行精细调整。
根据激光模式、工作方式和加工过程等不同,激光焊接技术可分为以下类型。
1.传统激光焊接技术传统激光焊接技术采用CO2激光精细加工和Nd:YAG固体激光器,它们主要是对金属材料进行加工,如钢、铝、铜等。
其特点是高功率密度、高效率、高能量集中度和高精度,但由于光束质量较低,聚焦距离较大,限制了其在微小尺寸加工上的应用。
2.光纤激光焊接技术光纤激光焊接技术是一种新型的激光加工技术,主要用于薄板和材料的激光加工。
与其他激光系统相比,光纤激光器具有低成本、高效率、低能耗、低维护成本等优势,其光束具有较高的光斑质量和聚焦能力,在焊接中具有更好的稳定性。
3.激光多炮焊接技术激光多炮焊接技术是一种利用多个激光源同时对工件进行焊接的技术。
该技术可通过并联或串联不同功率激光源实现工件在短时间内的大面积快速加热,从而实现快速焊接工艺。
激光多炮焊接技术相比传统激光焊接技术更加高效和灵活,可大大提高工作效率。
二、激光焊接技术的应用激光焊接技术在汽车、电子、医疗器械、管道、压力容器、船舶、航空航天、军事等领域都有着广泛的应用。
1.汽车制造激光焊接技术被广泛应用于汽车板材焊接,主要用于车身、车门、引擎等部件的连接和维修。
激光焊接技术原理及工艺分析激光焊接技术是一种高能量密度焊接方法,通过将激光束集中在焊缝上,使焊材处于激光的高温作用下,从而使焊材迅速融化,并通过凝固形成焊缝的一种焊接方法。
激光焊接技术具有焊接速度快、变形小、热影响区小、焊缝质量高等优点,已广泛应用于汽车制造、航空航天、电子设备等行业。
激光焊接技术的原理与传统焊接方法有所不同。
传统焊接方法通常通过火焰、电弧等热源对焊接材料进行加热,而激光焊接则是将激光能量直接作用在焊缝上,实现瞬间高温加热。
激光束在焊接材料上的作用可以分为三个阶段:吸收和传输、熔池形成和溶质混合、焊接接头凝固。
在吸收和传输阶段,激光束通过与焊接材料的相互作用,将能量迅速传递给焊接材料。
焊接材料中的光能转化为热能,使其温度上升。
激光束对不同材料的吸收率不同,一般来说,黑色材料的吸收率较高,白色材料的吸收率较低。
在熔池形成和溶质混合阶段,焊接材料因激光束的高温作用迅速融化,形成熔池。
激光焊接技术具有小熔深、小熔宽的特点,可以实现焊接材料的局部加热,减小热影响区。
激光束的能量密度高,焊缝的冷速度快,熔池凝固后可以得到细小的晶粒结构,提高焊接接头的强度。
在焊接接头凝固阶段,熔池中的焊材开始凝固,形成焊缝。
激光焊接技术可以实现非接触式焊接,焊接速度快,凝固时间短,凝固形态好。
激光焊接技术适用于焊接薄板、高强度材料等对焊接质量要求较高的工艺。
激光焊接技术的工艺分析需要考虑多个因素。
首先是激光参数的选择。
激光的功率、光斑大小、焦距等参数会影响焊接效果。
功率过高或光斑过大可能导致过热和过度挤压,影响焊接质量;功率过低或光斑过小可能导致无法达到融合深度的要求。
所以在工艺分析中需要根据焊接材料的特点和焊接要求来确定激光参数。
其次是焊接速度的选择。
焊接速度直接影响焊缝的形成和焊接质量。
过快的焊接速度可能导致焊缝没能形成或形成不完整,过慢则会产生过大的热影响区和变形。
在工艺分析中需要综合考虑焊接速度和激光功率,使焊接过程更加稳定和高效。
激光焊接光路设计第一章:激光焊接技术概述1.1 激光焊接的基本原理激光焊接是利用高能激光束对工件进行熔化和连接的技术。
它利用激光的高能特性,通过选择性吸收并转换为热能,实现材料熔化和连接。
1.2 激光焊接的特点与优势激光焊接具有热输入小、热影响区域小、焊缝质量高等特点。
与传统焊接方法相比,激光焊接具有高效、灵活、精确的优势。
1.3 激光焊接光路设计的重要性光路设计是激光焊接技术中至关重要的一环。
合理的光路设计可以提高激光能量的利用率,确保焊接质量和效率。
第二章:激光光源选择与特性分析2.1 激光光源的种类常见的激光光源包括氩离子激光器、半导体激光器、纤维激光器等。
不同类型的激光光源具有不同的特点和适用范围。
2.2 激光光源的参数与特性激光光源的参数对光路设计和焊接效果具有重要影响。
光源功率、波长、激光束质量等参数需要根据具体应用进行选择。
2.3 选择合适的激光光源根据焊接工件的材料、厚度和加工要求等因素,选取适当的激光光源是光路设计的重要环节。
第三章:光学系统设计原理3.1 光学元件的分类与选择光学元件包括透镜、反射镜、光束分束器等。
根据焊接任务要求,选择合适的光学元件进行光线调制和聚焦。
3.2 激光光路的光学元件排列原则光学元件的排列顺序对激光光路的稳定性和焦点调制有重要影响。
按照一定原则进行光学元件的排列,可以优化焊接质量。
3.3 光学系统的光线追迹分析通过光学系统的光线追迹分析,可以了解光线在光学元件中的传输规律,为光路设计提供理论依据。
第四章:光路组件设计与优化4.1 激光传输系统的概念与结构激光传输系统包括激光光源、光纤、光学元件等组件。
合理设计传输系统的结构对提高焊接效率和质量至关重要。
4.2 激光传输系统中的光学元件设计光学元件的设计需要考虑能量损失、光路稳定性以及对焊接效果的影响。
通过光学元件的优化设计,可以提高焊接效率和质量。
4.3 光学元件的优化方法与实例分析根据具体需求,采用光学优化方法进行组件设计和排列,可以提高光学能量传输效率和焊接质量。