A x02 v0 2 0.12m
x0 Acos
cos 2
2
π
4
v0Asin0
π
4
振动方程: x0.102co2st (簧,弹性系数分别为k1和k2,两滑块 质量分别为M和m ,叠放在光滑的桌面上,M与两弹簧
x0Acos0
π
2
18
v A sin 0 π
2
机械能守恒:
1(Mmv)2 1kA2
2
2
A0.05m
振动方程: x0.05co(4s 0 tπ) m 2
19
6-1-3 简谐运动的旋转矢量表示法
旋转矢量A在 x 轴上的投 影点 M 的运动规律:
第6章
振动
1
机械振动: 物体在一定的位置附近做来回往复的运动。
振动:任何一个物理量在某个确定的数值附近作周期性的 变化。 波动:振动状态在空间的传播。
任何复杂的振动都可以看 做是由若干个简单而又基 本的振动的合成。这种简 单而又基本的振动形式称 为简谐运动。
2
§6-1 简谐运动
6-1-1 简谐运动的基本特征
注意: 满足上式的初相位可能有两个值,具体取哪个值
应根据初始速度方向确定。
14
例1 如图,在光滑的水平面上,有一弹簧振子,弹簧的 劲度系数为1.60N/m,振子质量0.40kg,求在下面两种 初始条件下的振动方程.(1)振子在0.10m的位置由静 止释放;(2)振子在0.10m处向左运动,速度为0.20m/s.
加速度与位移反相位。
11
比较: a 2A co t s
xA co ts
a2x
即
d2x dt 2
2