微电子封装资料
- 格式:ppt
- 大小:4.42 MB
- 文档页数:71
微电子封装技术第一章绪论1、封装技术发展特点、趋势。
(P8)发展特点:①、微电子封装向高密度和高I/O引脚数发展,引脚由四边引出向引出向面阵列排列发展;②、微电子封装向表面安装式封装(SMP)发展,以适合表面安装技术(SMT);③、从陶瓷封装向塑料封装发展;④、从注重发展IC芯片向先发展后道封装再发展芯片转移。
发展趋势:①、微电子封装具有的I/O引脚数将更多;②、应具有更高的电性能和热性能;③、将更轻、更薄、更小;④、将更便于安装、使用和返修;⑤、可靠性会更高;⑥、性价比会更高,而成本却更低,达到物美价廉。
2、封装的功能(P19)电源分配、信号分配、散热通道、机械支撑和环境保护。
3、封装技术的分级(P12)零级封装:芯片互连级。
一级封装:将一个或多个IC芯片用适宜的材料(金属、陶瓷、塑料或它们的组合)封装起来,同时在芯片的焊区与封装的外引脚间用如上三种芯片互连方法(WB、TAB、FCB)连接起来使之成为有实用功能的电子元器件或组件。
二级封转:组装。
将上一级各种微电子封装产品、各种类型的元器件及板上芯片(COB)一同安装到PWB或其它基板上。
三级封装:由二级组装的各个插板或插卡再共同插装在一个更大的母板上构成的,立体组装。
4、芯片粘接的方法(P12)只将IC芯片固定安装在基板上:Au-Si合金共熔法、Pb-Sn合金片焊接法、导电胶粘接法、有机树脂基粘接法。
芯片互连技术:主要三种是引线键合(WB)、载带自动焊(TAB)和倒装焊(FCB)。
早期有梁式引线结构焊接,另外还有埋置芯片互连技术。
第二章芯片互连技术(超级重点章节)1、芯片互连技术各自特点及应用引线键合:①、热压焊:通过加热加压力是焊区金属发生塑性形变,同时破坏压焊界面上的氧化层使压焊的金属丝和焊区金属接触面的原子间达到原子引力范围,从而使原子间产生引力达到键合。
两金属界面不平整,加热加压可使上下金属相互镶嵌;加热温度高,容易使焊丝和焊区形成氧化层,容易损坏芯片并形成异质金属间化合物影响期间可靠性和寿命;由于这种焊头焊接时金属丝因变形过大而受损,焊点键合拉力小(<0.05N/点),使用越来越少。
1、微电子封装技术中常用封装术语英文缩写的中文名称:DIP:双列直插式封装double in-line packageQFP(J):四边引脚扁平封装quad flat packagePGA:针栅阵列封装pin grid arrayPLCC:塑料有引脚片式载体plastic leaded chip carrierSOP(J):IC小外形封装small outline packageSOT:小外形晶体管封装small outline transistor packageSMC/D:表面安装元器件surface mount component/deviceBGA:焊球阵列封装ball grid arrayCCGA:陶瓷焊柱阵列封装C eramic Column Grid ArrayKGD:优质芯片(已知合格芯片)Known Good DieCSP:芯片级封装chip size packageWB:引线键合wire bondingTAB:载带自动焊tape automated bondingFCB:倒装焊flip chip bondingOLB:外引线焊接Outer Lead BondingILB:内引线焊接C4:可控塌陷芯片连接Controlled Collapse Chip ConnectionUBM:凸点下金属化Under Bump MetalizationSMT:表面贴装技术THT:通孔插装技术Through Hole TechnologyCOB:板上芯片COG:玻璃上芯片WLP:晶圆片级封装Wafer Level PackagingC:陶瓷封装P:塑料封装T:薄型F:窄节距B:带保护垫2、微电子封装的分级:零级封装:芯片的连接,即芯片互连级一级封装:用封装外壳将芯片封装成单芯片组件和多芯片组件二级封装:将一级封装和其他组件一同组装到印刷电路板(或其他基板)上三级封装:将二级封装插装到母板上3、微电子封装的功能:1)电源分配:保证电源分配恰当,减少不必要的电源消耗,注意接地线分配问题。
微电子封装技术的发展趋势本文论述了微电子封装技术的发展历程,发展现状和发展趋势,主要介绍了几种重要的微电子封装技术,包括:BGA 封装技术、CSP封装技术、SIP封装技术、3D封装技术、MCM封装技术等。
1.微电子封装的发展历程IC 封装的引线和安装类型有很多种,按封装安装到电路板上的方式可分为通孔插入式(TH)和表面安装式(SM),或按引线在封装上的具体排列分为成列、四边引出或面阵排列。
微电子封装的发展历程可分为三个阶段:第一阶段:上世纪70 年代以插装型封装为主,70 年代末期发展起来的双列直插封装技术(DIP)。
第二阶段:上世纪80 年代早期引入了表面安装(SM)封装。
比较成熟的类型有模塑封装的小外形(SO)和PLCC 型封装、模压陶瓷中的CERQUAD、层压陶瓷中的无引线式载体(LLCC)和有引线片式载体(LDCC)。
PLCC,CERQUAD,LLCC和LDCC都是四周排列类封装,其引线排列在封装的所有四边。
第三阶段:上世纪90 年代,随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI,VLSI,ULSI相继出现,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大,因此,集成电路封装从四边引线型向平面阵列型发展,出现了球栅阵列封装(BGA),并很快成为主流产品。
2.新型微电子封装技术2.1焊球阵列封装(BGA)阵列封装(BGA)是世界上九十年代初发展起来的一种新型封装。
BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是:I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。
这种BGA的突出的优点:①电性能更好:BGA用焊球代替引线,引出路径短,减少了引脚延迟、电阻、电容和电感;②封装密度更高;由于焊球是整个平面排列,因此对于同样面积,引脚数更高。
微电子封装的概述和技术要求
近年来,各种各样的电子产品已经在工业、农业、国防和日常生活中得到了广泛的应用。
伴随着电子科学技术的蓬勃发展,使得微电子工业发展迅猛,这很大程度上是得益于微电子封装技术的高速发展。
当今全球正迎来以电子计算机为核心的电子信息技术时代,随着它的发展,越来越要求电子产品要具有高性能、多功能、高可靠、小型化、薄型化、便捷化以及将大众化普及所要求的低成等特点。
这样必然要求微电子封装要更好、更轻、更薄、封装密度更高,更好的电性能和热性能,更高的可靠性,更高的性能价格比。
一、微电子封装的概述
1、微电子封装的概念
微电子封装是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出连线端子并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。
在更广的意义上讲,是指将封装体与基板连接固定,装配成完整的系统或电子设备,并确定整个系统综合性能的工程。
2、微电子封装的目的
微电子封装的目的在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使电路具有稳定、正常的功能。
3、微电子封装的技术领域
微电子封装技术涵盖的技术面积广,属于复杂的系统工程。
它涉及物理、化学、化工、材料、机械、电气与自动化等各门学科,也使用金属、陶瓷、玻璃、高分子等各种各样的材料,因此微电子封装是一门跨学科知识整合的科学,整合了产品的电气特性、热传导特性、可靠性、材料与工艺技术的应用以及成本价格等因素,以达到最佳化目的的工程技术。
在微电子产品功能与层次提升的追求中,开发新型封装技术的重要性不亚于电路的设计与工艺技术,世界各国的电子工业都在全力研究开发,以期得到在该领域的技术领先地位。
晶圆:由普通硅砂熔炼提纯拉制成硅柱后切成的单晶硅薄片微电子封装技术特点:1:向高密度及高I/O引脚数发展,引脚由四边引出趋向面阵引出发展2:向表面组装示封装(SMP)发展,以适应表面贴装(SMT)技术及生产要求3:向高频率及大功率封装发展4:从陶瓷封装向塑料封装发展5:从单芯片封装(SCP)向多芯片封装(MCP)发展6:从只注重发展IC芯片到先发展封装技术再发展IC芯片技术技术微电子封装的定义:是指用某种材料座位外壳安防、固定和密封半导体继承电路芯片,并用导体做引脚将芯片上的接点引出外壳狭义的电子封装技术定义:是指利用膜技术及微细连接技术,将半导体元器件及其他构成要素在框架或基板上布置、固定及连接,引出接线端子,并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺技术。
(最基本的)广义的电子封装技术定义:是指将半导体和电子元器件所具有的电子的、物理的功能,转变为能适用于设备或系统的形式,并使之为人类社会服务的科学与技术。
(功能性的)微电子封装的功能:1:提供机械支撑及环境保护;2:提供电流通路;3:提供信号的输入和输出通路;4:提供热通路。
微电子封装的要点:1:电源分配;2:信号分配;3:机械支撑;4:散热通道;5:环境保护。
零级封装:是指半导体基片上的集成电路元件、器件、线路;更确切地应该叫未加封装的裸芯片。
一级封装:是指采用合适的材料(金属、陶瓷或塑料)将一个或多个集成电路芯片及它们的组合进行封装,同时在芯片的焊区与封装的外引脚间用引线键合(wire bonding,WB)、载带自动焊(tape automated bonding,TAB)、倒装片键合(flip chip bonding,FCB)三种互联技术连接,使其成为具有实际功能的电子元器件或组件。
二级封装技术:实际上是一种多芯片和多元件的组装,即各种以及封装后的集成电路芯片、微电子产品、以及何种类型元器件一同安装在印刷电路板或其他基板上。
微电子封装资料范文
一、微电子封装技术介绍
微电子封装是一种将微电子器件封装在外壳中,以便将它们固定在芯片上并形成一个完整系统的技术。
它的优势在于能将不同的电子器件,如电阻、电容器、变压器、集成电路、芯片、计算机接口、LED等集中在一起,并对其进行统一的封装,使整个系统更加紧凑、集成、模块化。
此外,微电子封装也可以使用特殊的冷焊技术、激光焊技术、熔喷技术等,来满足不同的应用需求。
另外,还可以使用传统的焊点技术,将器件固定在基板上,以确保其牢固可靠的结构。
二、微电子封装的优缺点
①优点:
1、微电子封装能够将不同的电子器件集成成一个模块,使其紧凑、集成,便于系统安装和使用;
2、使用特殊的焊技术以及冷焊技术等,可以确保器件牢固可靠的结构,以及质量的稳定性和可靠性;
3、微电子封装可以防止器件热老化,减少器件老化的可能性,从而提高器件的使用寿命;
4、微电子封装技术可以提高产品的尺寸,这样可以节省空间,提高形式效率,并降低成本。
②缺点:。
现代微电子封装技术课程复习内容第一章1、什么是电子封装“集成电路(IC)”是指微小化的或微电子的器件,它将这样的一些元件例如三极管、电阻、介电体、电容等集成为一个电学上的电路,使致具有专门的功能”“封装”是指连接集成电路和其他元件到一个系统级的基板上的桥梁或手段,使之形成电子产品”2、电子封装和IC技术发展的关系封装是芯片和电子系统之间的桥梁,集成电路封装技术的发展既受微电子技术中芯片设计和制造技术的推动,同时,封装技术的发展又有力地支撑和推动了整个微电子技术的发展在过去几十年里,为适应集成电路向小型化、高速化、大功率发展的需要,集成电路封装技术得到了不断的提高和改进。
朝着小尺寸、多I/O、高密度、高可靠性、高散热能力、自动化组装的方向发展3、IC芯片发展的特征每块芯片上的元器件数逐年增加特征尺寸不断减小芯片功耗不断增加门的功耗逐年减少4、电子封装的发展特征从插孔式封装到表面贴装从双列式封装经四面有脚的QFP形式发展到球栅阵列BGA以及多芯片MCM封装封装的密度和I/O大大增加封装的尺寸由大尺寸发展到芯片大小的CSP封装5、微电子封装的作用信号的输入、输出端向外界的过渡手段电源的输入、输出端同外界的过渡手段散热保护器件不受外界环境的影响6、微电子封装的分类一级封装一级封装是指芯片级封装,即将芯片封装以形成器件,所以又称器件封装二级封装二级封装是指将元器件连接在印刷电路板上三级或更高级封装7、一般一级封装的互连方式有那些(a) TAB packaging(b) Wire bonding connection(c) Flip-Chip packaging8、二级封装的互连方式有那些(a) THT组装(b) SMT组装(c) BGA组装(d) CSP 组装9、简述IC芯片的制造过程单晶硅碇的形成(单晶成长)硅片加工过程芯片制造:增层,光刻和刻蚀,掺杂,热处理硅片制备测试/拣选封装第二章1、简述引线键合的工艺过程引线键合技术(WB)是将半导体芯片焊区与微电子封装的I/O引线或基板上的金属布线焊区用金属丝连接起来的工艺技术在较低的温度下,通过施加压力,使金属丝发生塑性变形,来完成固相结合。
第一章绪论1、微电子封装技术的发展特点是什么?发展趋势怎样?●特点:(1)微电子封装向高密度和高I/O引脚数发展,引脚由四边引出向面阵排列发展。
(2)微电子封装向表面安装式封装发展,以适合表面安装技术。
(3)从陶瓷封装向塑料封装发展。
(4)从注重发展IC芯片向先发展后道封装再发展芯片转移。
●发展趋势:(1)微电子封装具有的I/O引脚数将更多。
(2)微电子封装应具有更高的电性能和热性能。
(3)微电子封装将更轻、更薄、更小。
(4)微电子封装将更便于安装、使用和返修。
(5)微电子封装的可靠性会更高。
(6)微电子封装的性能价格比会更高,而成本却更低,达到物美价廉。
2、微电子封装可以分为哪三个层次(级别)?并简单说明其内容。
(1)一级微电子封装技术:用封装外壳将芯片封装成单芯片组件(SCM)和多芯片组件(MCM)。
(2)二级微电子封装技术:一级封装和其他组件一同装到印刷电路板(PWB)或其他基板上。
(3)三级微电子封装技术:将二级封装插装到母板上。
3、微电子封装有哪些功能?(1)电源分配(2)信号分配(3)散热通道(4)机械支撑(5)环境保护4、芯片粘接方法分为哪几类?粘接的介质有何不同(成分)?(1)Au-Si合金共熔法(共晶型)成分:芯片背面淀积Au层,基板上也要有金属化层(一般为Au或Pd-Ag)。
(2)Pb-Sn合金片焊接法(点锡型)成分:芯片背面用Au层或Ni层均可,基板导体除Au、Pd-Ag外,也可用Cu(3)导电胶粘接法(点浆型)成分:导电胶(含银而具有良好导热、导电性能的环氧树脂。
)(4)有机树脂基粘接法(点胶型)成分:有机树脂基5、简述共晶型芯片固晶机(粘片机)主要组成部分及其功能。
主要组成部分及功能:(1)机械系统:原料供给、取晶固晶(包括:焊头机构、送料机构、晶圆供送机构、点胶/蘸胶机构等)(2)电控系统:运动控制、温度控制、开关动作(包括:运控部分、温控部分、检测部分等)(3)机器视觉系统:位置检测(用于定位控制)、缺陷检测(包括:图像获取、光源控制、图像识别等)6、和共晶型相比,点浆型芯片固晶机(粘片机)在各组成部分及其功能的主要不同在哪里?点浆工序,进烤箱7、名词解释:取晶、固晶、焊线、塑封、冲筋、点胶取晶:以化学腐蚀的方法将晶粒从封装中取出,以利下一步拍照评估,层次去除或其他分析的进行。
微电子工艺基础封装技术微电子工艺基础封装技术是将集成电路芯片封装在封装芯片上的一种技术。
封装技术的主要目的是保护芯片免受环境的污染、机械损坏和电磁干扰,并提供适当的电气和机械连接,以便将芯片与其他系统进行连接。
在微电子工艺中,封装技术起着至关重要的作用。
首先,封装工艺是封装技术的核心。
封装工艺主要包括准备工作、芯片粘接、线路连接和密封等步骤。
准备工作包括清洗芯片和封装材料,以去除表面污染和保证粘接的质量。
芯片粘接是将芯片粘贴在封装基板上的过程,通常使用金属焊接、电浆喷涂等技术,确保芯片与基板之间有良好的接触。
线路连接是将芯片的输入/输出端子与封装基板上的插针或导线连接起来的过程,通常使用微焊接、球限制连接等技术。
密封是将芯片和线路连接部分用封装材料密封起来,通常使用环氧树脂、胶水等材料。
其次,封装材料的选择是封装技术的关键。
封装材料要具备良好的导电、隔热、防腐蚀和尺寸稳定性等性能。
常用的封装材料有金属基板、陶瓷基板和有机基板等。
金属基板具有良好的导热性能和机械强度,但价格较高;陶瓷基板具有良好的导热性能和电绝缘性能,但脆性较大;有机基板具有较低的价格和机械强度,但导热性能较差。
根据芯片的性能和应用需求,选择合适的封装材料是非常重要的。
最后,封装结构设计是实现封装技术的关键。
封装结构设计要满足芯片的功能需求和尺寸要求,同时考虑材料选择、封装工艺和成本等因素。
常见的封装结构有双面封装、单面封装和多芯片封装等。
双面封装是将芯片粘贴在基板的两面,以提高封装密度和集成度。
单面封装是将芯片粘贴在基板的一面,适用于封装较少的芯片。
多芯片封装是将多个芯片封装在一个基板上,以提高系统集成度和性能。
综上所述,微电子工艺基础封装技术是微电子领域中至关重要的一环。
通过合理的封装工艺、封装材料的选择和封装结构设计,可以保护芯片并提供良好的电气和机械连接,使芯片能够稳定可靠地运行。
在现代电子产品的不断发展和追求更高集成度的背景下,封装技术也在不断创新和进步,为微电子工艺的发展提供了强有力的支持。
微电子封装的关键技术及应用前景论文1. 微电子封装的概述1.1微电子封装的概念微电子封装是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出连线端子并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。
在更广的意义上讲,是指将封装体与基板连接固定,装配成完好的系统或电子设备,并确定整个系统综合性能的工程【1】。
1.2微电子封装的目的微电子封装的目的在于爱护芯片不受或少受外界环境的影响,并为之供应一个良好的工作条件,以使电路具有稳定、正常的功能。
1.3微电子封装的技术领域微电子封装技术涵盖的技术面积广,属于冗杂的.系统工程。
它涉及物理、化学、化工、材料、机械、电气与自动化等各门学科,也使用金属、陶瓷、玻璃、高分子等各种各样的材料,因此微电子封装是一门跨学科学问整合的科学,整合了产品的电气特性、热传导特性、牢靠性、材料与工艺技术的应用以及本钱价格等因素。
2 微电子封装领域中的关键技术目前,在微电子封装领域中,所能够采纳的工艺技术有多种。
主要包括了栅阵列封装〔BGA〕、倒装芯片技术〔FC〕、芯片规模封装〔CSP〕、系统级封装〔SIP〕、三维〔3D〕封装等〔以下用简称代替〕【2】。
下面对这些微电子封装关键技术进行一一介绍,详细如下:2.1 栅阵列封装BGA是目前微电子封装的主流技术,应用范围大多以主板芯片组和CPU等大规模集成电路封装为主。
BGA的特点在于引线长度比较短,但是引线与引线之间的间距比较大,可有效避开精细间距器件中常常会遇到的翘曲和共面度问题。
相比其他封装方式,BGA的优势在于引线见巨大,可容纳更多I/0;牢靠性高,焊点坚固,不会损伤引脚;有较好的点特性,频率特性好;能与贴装工艺和设备良好兼容等。
2.2 倒装芯片关键技术倒装芯片技术,即:FCW。
其工艺实现流程就是将电路基板芯片上的有源区采纳相对的方式,将衬底和芯片通过芯片上的焊料凸点进行连接,需要说明的是,这些凸点是呈阵列的方式排列。
微电子封装与封装材料研究在现代电子制造业中,封装技术起着至关重要的作用。
微电子封装是指将芯片、器件或电路连接到载体上,并给予保护、隔离和连接功能的一系列工艺过程。
封装材料则是用于微电子封装中的材料,包括封装基板、封装胶粘剂、导波板、金属线与焊料等。
微电子封装与封装材料的研究是为了提高电子器件的性能、可靠性和制造效率。
一、微电子封装的重要性微电子封装是将芯片封装至外围环境中,以提供保护和连接功能。
微电子封装可以保护芯片免受环境的恶劣条件,例如温度变化、湿度、尘埃和机械冲击。
此外,封装还提供电路连接功能,将芯片内部电路与外部电路可靠地连接起来。
微电子封装还能为芯片提供散热功能。
随着集成度的不断提高,芯片功耗也越来越高,因此需要良好的散热设计。
合适的封装材料能够提高芯片的热传导性能,有效降低芯片工作温度,提高芯片的可靠性和性能。
二、微电子封装材料的研究方向1. 封装基板材料研究封装基板是承载和连接芯片、器件和电路的关键组件。
常用的封装基板材料有有机材料(如FR-4)、金属基板和陶瓷基板。
目前,研究人员致力于开发具有更高导热性能、低介电常数和低耗散因子的封装基板材料,以满足高性能和高可靠性要求。
2. 封装胶粘剂和密封材料研究封装胶粘剂用于固定芯片和器件,密封材料用于将封装材料密封。
目前,研究人员正在改进封装胶粘剂和密封材料的导热性能、机械强度和耐高温性能,以满足高集成度芯片的封装需求。
3. 高频封装材料研究随着无线通信和雷达技术的发展,高频电子器件的需求越来越高。
高频封装材料的导电性能、损耗因子和介电常数是关键指标。
目前,研究人员正致力于开发导电性能更好、损耗因子更低和介电常数更小的高频封装材料。
4. 先进封装技术材料研究先进封装技术包括三维封装、芯片与基板的直接连接和高密度互连技术。
这些技术需要先进的封装材料支持。
研究人员正在研究和开发适用于先进封装技术的新型材料,以实现更高的集成度和更小的尺寸。
三、微电子封装材料研究的挑战和展望封装材料的研究面临着许多挑战。