(完)电力系统中性点的运行方式详解
- 格式:ppt
- 大小:3.67 MB
- 文档页数:26
电力系统中性点运行方式电力系统中性点运行方式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。
我国电力系统目前所采用的中性点接地方式主要有三种:即不接地、经消弧线圈接地和直接接地。
小电阻接地系统在国外应用较为广泛,我国开始部分应用。
1、中性点不接地(绝缘)的三相系统各相对地电容电流的数值相等而相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一致。
这时中性点接地与否对各相对地电压没有任何影响。
可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运行状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。
这种现象的产生,多是由于架空线路排列不对称而又换位不完全的缘故造成的。
在中性点不接地的三相系统中,当一相发生接地时:一是未接地两相的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘水平应根据线电压来设计。
二是各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这是这种系统的最大优点。
但不许长期接地运行,尤其是发电机直接供电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行时间过长可能会造成两相短路。
所以在这种系统中,一般应装设绝缘监视或接地保护装置。
当发生单相接地时能发出信号,使值班人员迅速采取措施,尽快消除故障。
一相接地系统允许继续运行的时间,最长不得超过2h。
三是接地点通过的电流为电容性的,其大小为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发生电弧。
弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场而产生过电压,损坏电气设备或发展成相间短路。
故在这种系统中,若接地电流大于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。
2、中性点经消弧线圈接地的三相系统上面所讲的中性点不接地三相系统,在发生单相接地故障时虽还可以继续供电,但在单相接地故障电流较大,如35kV系统大于10A,10kV系统大于30A时,就无法继续供电。
电力系统中性点运行方式电力系统中性点是指星形接线的变压器或发电机的中性点。
电力系统中性点的运行方式是一个复杂的系统工程问题,它涉及到短路电流的大小、供电的可靠性、过电压的大小、继电保护的配置及动作状态、通信的干扰、系统稳定等许多方面的综合技术问题,所以在确定一个电力系统中性点运行方式之前,须经合理的技术经济比较后确定。
电力系统中性点的分类:(1)电力系统的中性点有效接地,即中性点直接接地。
(2)电力系统的中性点非有效接地,其中包括中性点不接地、中性点经消孤线圈接、中性点经电阻接地。
各种中性点运行方式的特点:1、中性点不接地系统:在正常运行时,网络各相对地电压是对称的,其大小为相电压。
线路经过完整换位后,三相对地电容相等,则各相对地电容电流对称且平衡,无电容电流流入地中,所以中性点对地电压为零。
当发生单相接地故障时,接地相的电压变为零,未接地两相对地电压升高根号3倍。
变为线电压。
但在中性点不接地系统中,发生单相接地时,线电压不变,三相用电器工作不受影响,系统可继续供电。
但此时应发出信号,工作人员应尽快查清消除故障,一般允许继续运行时间不超过2小时,但我认为在中性点不接地运行的发电机,中性点不接地的高压大型电动机在发生单相接地,特别是在发生定子中的单相接地时,应采取立即停机检查。
因为,在定子槽中一般都用很薄的绝缘隔离着两相的线圈,即使在电机的端部也是这样的,如果线圈发生单相接地,很可能接地相对定子铁芯进行放电,而使相邻的另一相线圈绝缘损坏,造成相间短路的大事故。
2、中性点经消孤线圈接地系统:为了解决中性点不接地系统单相接地电流大、电孤不能熄灭的问题,最常用的方法是在中性点装设消孤线圈,利用消孤线圈中的电感电流和接地的电容电流相位相反进行补偿、抵消,使接地点电流变小,甚至为零,这样接地点的电流就能很快熄灭。
根据补偿程度的不同,有三种补偿方式:(1)会补偿:接地点电流为零。
从消孤的观点来看,全补偿最好,但实际上并不采用这种补偿方式,因为在正常运行中,由于各种原因造成电网三相电压不对称,中性点出现一定的电压时,可能引起串联谐振过电压。
电力系统中性点运行方式在三相交流电力系统中,作为供电电源的发电机和变压器的中性点有三种运行方式:1,电源中性点不接地。
2,中性点经阻抗接地。
3,中性点直接接地。
我国220/380v低压配电系统,广泛采用中性点直接接地的运行方式,而且引出有中性线(neutral wire 代号N ),保护线(protective wire 代号PE)或保护中性线(PEN wire 代号PEN)。
中性线(N线)的功能,1,用来接额定电压为相电压的单相用电设备。
2,用来传导三相系统中的不平衡电流和单相电流。
3,减小负荷中性点的电位偏移。
保护线(PE线)的功能,为保障人身安全,防止触电事故用的接地线。
系统中所有设备的外露可导电部分(指正常不带电压,但是故障情况下能带电压的易被触及的导电部分,如金属外壳,金属架结构等),通过保护线的接地,可在设备发生直接故障时减少触电危险。
保护中性线(PEN wire 代号PEN)兼有中性线(N线)和保护线(PE线)的功能。
这种保护中性线在我国通称为“零线”,俗称“地线”。
低压配电系统的分类,按照接地形式分为:TN系统,TT系统,和IT系统。
TN系统中所有设备的外露可导电部分均接公共的保护线(PE线)或公共的保护中性线(PEN线)。
这种接公共PE线或PEN线也称“接零”。
如果系统中的N线和PE线全部合并为PEN线,则称该系统为“TN-C”系统,如果系统中的N线和PE线全部分开,则此系统称为“TN-S”系统。
如果系统的前一部分,其N线与PE线合为PEN线,而后一部分线路的N线与PE线则全部或部分的分开,则此系统称为“TN-C-S”系统。
TT系统中的所有设备的外露可导电部分均各自经PE线单独接地。
IT系统中的所有设备的外露可导电部分也都各自经PE线单独接地,与TT系统不同的是,其电源中性点不接地或经1000欧姆的阻抗接地,且通常不引出中性线。
引出有中性线的三相系统,包括TN系统,TT系统,属于三相四线制系统。
电力系统中性点运行方式电力系统中性点的运行方式正确与否,对电力系统的安全运行有很大的意义。
它关系到绝缘水平、通信干扰、继电保护及自动装置的正确动作等方面。
下面从电力系统运行的角度说明中性点的运行方式及所对应的电压等级。
一、电力系统中性点的运行方式发电机和变压器星形连接的结点称之为电力系统的中性点。
中性点的运行方式对电力系统的运行十分重要,是涉及到电力系统许多方面的综合性问题。
我国电力系统中性点运行方式有3种,直接接地(有效接地),不接地(中性点绝缘)和从属于不接地方式的经消弧线圈接地(非有效接地)。
二、中性点不接地系统对 中性点不接地系统,当一相发生故障接地时,不能构成短路回路,系统中点没有短路电流,系统仍可继续运行。
正常情况下三相对称,线间和相对地组成的等值电容 相等,中性点为地电位。
如果中性点与地向连,连线中没有电流,A相、B相、C相对地都是相电压,各相对地电容电流超前各相电压90°,通常树值不大。
若发生C相接地,C相自然成为地电位,C相与地之间形成的回路中的电压方程为U’c= Uc+Uo=0此时中性点对地电压Uo= -Uc其他两相对地电压Ua ,Ub为U’a= Ua+Uo= Ua-Uc=1.732 Uc∠-150°U’b= Ub+Uo= Ua-Uc=1.732 Uc∠150可以看出,当C相发生接地时,中性点对地电压升高为相电压,而非故障相对地电压升高为线电压;但三相线电压不变。
因此,只要各相对地绝缘能承受线电压,发生 单相接地时对三相用电设备的运行没有影响。
这是中性点不接地系统的一大优点。
按规程规定,在此情况下电网仍可运行2h。
但此时应发出单相接地的预告信号, 告之值班员并采取相应的措施。
在正常运行条件下,三相对地电容对称,三相电容电流之和为零。
发生单相接地的情况下,如C相接地,流过接地点的接地电流应为A、B两相对地电容电流之和,即Id= -(Ica+Icb)= -(jωCUa+jωCUb )Id=j3ωCUc可见Id在相位上超前向量Uc90°,为容性电流,是正常时一相电容电流的3倍。
电力系统中性点运行方式我国电力系统中常见的中性点运行方式有中性点非有效接地和中性点有效接地两大类。
中性点非有效接地包括:不接地、经消弧线圈接地和经高阻接地,又称为小接地电流系统。
而中性点有效接地包括直接接地和经低阻抗接地,又称为大接地电流系统。
一、中性点不接地的三相系统1、中性点不接地系统的正常运行正常运行时,电力系统三相导线之间和各相导线对地之间,沿导线的全长存在着分布电容,这些分布电容在工作电压的作用下,会产生附加的容性电流。
各相导线间的电容及其所引起的电容电流较小,并且对所分析问题的结论没有影响,故可以不予考虑。
2、单相接地故障当中性点不接地的三相系统中,由于绝缘损坏等原因发生单相接地故障时,情况将会发生显著变化。
假设W相在k点发生完全接地的情况,W相对地电压为零,中性点对地电压上升为相电压,而且与接地相的电源电压反相。
(完全接地,又称为金属性接地,即认为接地处的电阻近似等于零)三相系统的三个线电压仍保持对称而且大小不变。
非故障相电压升高为线电压,非故障相的对地电容电流也就相应的增大到√3倍。
W相对地电容被短接,于是对地电容电流为零。
此时三相对地电容电流的向量和不再为零,大地中有容性电流流过,并通过接地点形成回路。
可见,单相接地故障时流过大地的电容电流,等于正常运行时每相对地电容电流的三倍。
接地电流Ic的大小与系统的电压、频率和对地电容的大小有关,而对地电容又与线路的结构(电缆或架空线)、布置方式和长度有关。
实用计算中可按计算为:对架空线路:I c=UL/350对电缆线路:I c=UL/10式中I c——接地电流,A;U——系统的线电压,Kv;L——与电压同为U,并具有电联系的所有线路的总长度,km。
当系统发生不完全接地,即通过一定的过渡电阻接地时,接地相的对地电压大于零而小于相电压,中性点的对地电压大于零而小于相电压,非接地相对地电压大于相电压而小于线电压,线电压仍保持不变,此时的接地电流要比金属性接地时小一些。
电力系统的中性点运行方式在三相电力系统中,发电机和变压器的中性点有三种运行方式:即中性点不接地系统;中性点经阻抗接地系统;中性点直接接地系统。
前两种合称小接地电流系统,后一种称大接地电流系统。
1. 中性点不接地的三相系统中性点不接地的电力系统2. 中性点经消弧线圈接地系统中性点经消弧线圈接地的电力系统3. 中性点直接接地系统中性点直接接地的电力系统。
当发生单相接地时,故障相由接地点通过大地形成单相短路,单相短路电流很大,故又称其为大接地电流系统。
在低压配电系统中,我国广泛采用中性点直接接地的运行方式,从系统中引出中性线(N)、保护线(PE)或保护中性线(PEN)。
低压配电系统按保护接地形式分为TN系统、TT系统和IT系统。
其中TN系统又分为:TN—C系统、TN—S系统和TN—C—S系统。
《供配电系统设计规范》(GB 50052—2009)中规定:TN系统—在此系统内,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过PE线与该点连接。
TN—S系统—在TN系统中,整个系统的中性线与保护线是分开的。
TN—C—S系统—在TN 系统中,系统中有一部分中性线与保护线是合一的。
TN—C系统—在TN系统中,整个系统的中性线与保护线是合一的。
在TN—C、TN—S和TN—C—S系统中,为确保PE线或PEN线安全可靠,除电源中性点直接接地外,对PE线和PEN线还必须设置重复接地。
低压配电TN系统如图9-6所示。
三、电力系统的中性点运行方式1.中性点不接地的三相系统2.中性点经消弧线圈接地系统3.中性点直接接地系统4.低压配电系统的接地形式a.TN—C系统b.TN—S系统c. TN—C—S系统。
电力系统中性点的运行方式引言一、基本概念1、中性点:在星形连接的三相电路中,其三个线圈(或绕组)连在一起的一点称为中性点。
由中性点引出的导线称为中性线。
2、电力系统中性点:电力系统的中性点是指发电机或变压器绕组的星形连接点,其对地电位在电力系统正常运行时为零或接近于零。
电力系统中性点接地是一种工作接地,保证电力设备和整个电力系统在正常及故障状态下具有适当的运行条件。
3、三相交流配电网中性点与大地间电气连接的方式,称为电网中性点接地方式,也可称为电网中性点运行方式。
4、分类:目前我国常见的中性点运行方式(即中性点接地方式)可分为中性点非有效接地和有效接地两大类.(1)、中性点非有效接地包括中性点不接地、中性点经消弧线圈接地和中性点经高电阻接地的系统,当发生单相接地时,接地电流被限制到较小数值,故又称为小接地电流系统;(2)、中性点有效接地包括中性点直接接地和中性点经小阻抗接地的系统,因发生单相接地时接地电流很大,故又称为大接地电流系统。
5、中性点运行方式的影响:电力系统中性点接地方式是一个重要的综合问题,它不仅涉及电网本身的安全性、可靠性、过电压绝缘水平的选择,而且对通讯干扰、人身安全、继电保护装置的配置、电力系统的运行稳定、故障分析等有重要影响。
一、中性点不接地系统中性点不接地的系统供电可靠性较高,在这种系统中发生一相接地故障时,不构成短路回路,接地相电流不大,不必切除地相;但这时非接地相的对地电压升高为相电压的3倍,因此,对绝缘水平要求高。
1、正常运行情况(1)、电力系统正常运行时,一般认为三相系统是对称的,三相电源的相电压分别为Uu 、Uv 、Uw ,中性点的电位.U N 为零。
相对地电压分别为:u u ud U n U U U ∙∙∙∙=+=v v vd U n U U U ∙∙∙∙=+=ww wd U n U U U ∙∙∙∙=+=(2)、三相导体之间的电容较小,忽略不计;各相对地电容相等,C u = C v = C w =C ,对称电压的作用下,各相对地电容电流cw cv cu I I ∙∙∙、、I 大小相等。