第二节 评价估计量优劣的标准
- 格式:ppt
- 大小:775.00 KB
- 文档页数:16
优良估计量的三个标准在统计学中,估计量是用来估计总体参数的统计量。
一个好的估计量应当具备一定的性质,以保证对总体参数的估计是准确可靠的。
在选择估计量时,我们需要考虑其偏差、方差和一致性等特性。
下面将分别介绍这三个标准。
首先,偏差是衡量估计量优劣的重要标准之一。
偏差是指估计量的期望值与真实参数值之间的差异。
一个好的估计量应当具有小的偏差,即在重复抽样的情况下,估计量的平均值应当接近真实参数值。
因此,我们通常希望选择那些无偏的估计量,即其期望值等于真实参数值。
当然,在实际应用中,往往很难找到完全无偏的估计量,因此我们也需要考虑偏差的大小,尽量选择偏差较小的估计量。
其次,方差是衡量估计量优劣的另一个重要标准。
方差是衡量估计量的离散程度的指标,一个好的估计量应当具有小的方差,即在重复抽样的情况下,估计量的取值应当比较集中。
这样可以保证估计结果的稳定性和可靠性。
因此,我们通常希望选择那些方差较小的估计量,以确保估计结果的精确度。
最后,一致性是衡量估计量优劣的第三个标准。
一致性是指当样本容量逐渐增大时,估计量逐渐趋近于真实参数值的性质。
一个好的估计量应当具有一致性,即当样本容量增大时,估计量应当收敛于真实参数值。
这样可以保证在大样本情况下,估计结果的准确性。
因此,我们通常希望选择那些具有一致性的估计量,以确保在大样本情况下依然能够得到准确的估计结果。
综上所述,一个优良的估计量应当具备小的偏差、小的方差和一致性这三个标准。
在实际应用中,我们需要根据具体的问题和数据特点来选择合适的估计量,以确保对总体参数的估计是准确可靠的。
希望本文介绍的这三个标准能够帮助大家更好地理解和选择优良的估计量。
估计量的三个评价标准估计量是统计学中非常重要的概念,它在实际应用中有着广泛的用途。
在进行估计量的评价时,我们通常会采用一些评价标准来衡量其优劣,从而选择最适合的估计量。
本文将从三个方面来介绍估计量的评价标准。
首先,我们来看估计量的无偏性。
无偏性是评价估计量优劣的重要标准之一。
一个估计量如果是无偏的,意味着在重复抽样的情况下,其期望值等于被估计的参数真值。
换句话说,无偏估计量不会出现系统性的偏差,能够在一定程度上准确地估计参数的真值。
因此,无偏性是评价估计量优劣的重要标准之一。
其次,我们来讨论估计量的一致性。
一致性是另一个重要的评价标准。
一个估计量如果是一致的,意味着当样本容量趋于无穷大时,估计量收敛于被估计的参数真值。
换句话说,一致估计量能够在大样本情况下稳定地接近参数的真值,具有较高的精确度和可靠性。
因此,一致性也是评价估计量优劣的重要标准之一。
最后,我们来考虑估计量的效率。
效率是评价估计量优劣的另一个重要标准。
一个估计量如果是有效的,意味着在所有无偏估计量中具有最小的方差,能够以最小的误差估计参数的真值。
换句话说,有效估计量具有最佳的精确度和准确性,能够在给定的样本容量下提供最优的估计结果。
因此,效率也是评价估计量优劣的重要标准之一。
综上所述,无偏性、一致性和效率是评价估计量优劣的三个重要标准。
在实际应用中,我们需要综合考虑这三个标准,选择最合适的估计量来进行参数估计。
只有在估计量具有较高的无偏性、一致性和效率时,我们才能够更准确地估计参数的真值,从而得到更可靠的统计推断结果。
因此,在统计学中,对于估计量的评价标准是非常重要的,它直接影响着我们对于总体参数的估计和推断的准确性和可靠性。
7.2估计量的评选标准第二节估计量的评选标准对于同一个参数,哪一个估计量较好呢?下面介绍评价估计量优劣的三个标准。
用不同的估计方法得到的估计,有时相同,有时不同.在不同时,一、无偏性由于估计量是样本的函数,因此是一个随机希望估计量的期望等于未知参数的真值!这就是所谓的估计量的无偏性概念。
尽管样本值不同,估计量的取值(估计值)变量。
也不同,估计值与参数的真值可能不同,但是我们定义1是参数q则称为q的无偏设若的估计量,估计量。
例1证明;样本均值是总体均值E(X)=m的无偏估计量.证独立,又∴是总体均值E(X)=m的无偏估计量。
定义1是参数q则称为q的无偏设若的估计量,估计量。
且与总体X同分布,定义1设是参数q的则称为的无偏估计。
可证:是总体方差的无偏估计量。
注意:总体X的方差D(X)的矩估计量不是D(X)的无偏估计。
见书P117。
估计量,若思考题是总体X的样本,判断估计量设是否为总体均值m的无偏估计。
定义1是参数q的估若,则称为q的无偏估计量。
设计量,若为总体X简单随机样本,则(1)相互独立(2)中每一个与X有相同的分布。
2.有效性都是总体均值m的两个无偏估计量.哪个估计量更好一些?我们希望参数q的无偏估计量对q的平均偏差越小越好,注意到即一个好的估计量,设未知参数q有两个无偏估计量即那么如何去判定这两个估计量的好坏呢?应当有尽可能小的方差。
定义2分别是参数q两个则称较有效.设如果及无偏估计量,定义1设是参数q的估若,则称为q的无偏估计量。
计量,例2设是总体X的样本,分别是m的两个估计量,证明比有效。
证是m的两个无偏估计量(由例1得)定义2设是参数q如果两个无偏估计量,则称较有效.及定义1设是参数q的估若,则称为q的无偏估计量。
计量,又∵∴比有效。
3.相合性估计量一个好的估计量应当随着n的增大而愈加精确,因此有定义3设为q的估计量,若对任给的e>0,则称为的相合估计.则称序列{Xn}依概率收敛于a,记作Pa即Pq 定义3设为的估计量,若对任给的则称为的相合估计量.定理1设是q的一个若估计量,则是q的相合估计。
简述评价估计量好坏的标准估计量是指通过一定的方式来预测或者评估某种特定的情况,同时估计量是统计学中重要的概念。
在进行估计量之后需要对估计的准确性进行评价,以确定估计量的好坏。
本文将描述评价估计量好坏的标准。
2. 偏差(Bias)和方差(variance)偏差和方差是评价估计量好坏的最基本的标准之一。
偏差是指估计量的期望值与真实值之间的差异,而方差是指估计量的值在各个试验之间的差异情况。
一个好的估计量应该在偏差与方差之间平衡,即期望值和各个试验之间的差异都应该小。
3. 置信区间(Confidence interval)置信区间是对估计量的成功率进行评价的方式。
在确定估计量值之后,可以尝试通过一个置信区间来对这个值进行确认。
置信区间的计算方法在不同的情况下可能会有不同的方法,但绝大部分基于样本、标准误差和显著性水平这些指标。
一个好的估计量应该拥有一个较小的置信区间,这意味着它通常会预测正确的结果。
4. 精度(Accuracy)精度是估计量成功率的另一种评价方式。
在确定你的估计值之后,您可以评估它的准确性,即与真实值之间的差异。
估计量的精度越高,则在大量试验中得到正确的结果的可能性就越大。
5. 可解释性(Interpretability)可解释性是估计量的另一个重要的评价标准。
在许多情况下,一个估计量的易于解释性能够对结果影响甚至超过准确性。
一个易于解释的估计量能够更容易地被他人理解和应用,这也能够促进估计量的进一步发展。
同时,可解释性也需要结合实际的应用场景。
将清楚地定义评估结果的成功指标,往往能够进一步提升估计量的可解释性。
6. 时效性(Timeliness)时效性是评价估计量的一个重要方面,尤其在紧急情况下。
在某些情况下,对估计量的准确和及时的预测是非常重要的,尤其是在医疗、军事、安全等领域中。
缺乏时效性的估计量可能会导致严重的后果,因此在这些情况下,时效性非常重要。
7. 可重复性(Reproducibility)可重复性是用于检验估计量准确性的一个重要方面,它确保了试验的复制和估计量值的可靠性。
-=-⎡⎤=---⎣⎦=2222ˆ()ˆMSE ˆˆ()()ˆˆˆMSE ˆˆˆˆˆ()()=(())+(())E MSE E MSE E E E E E θθθθθθθθθθθθθθθθθ 通常用偏差平方的期望来衡量估计量的偏离程度,并称为(),记作: 如果存在一个估计量,在所有估计量中,的均方误差最小,则称是的. 均方误差可分解为两均方误差最优估项:计量-+-=+-222ˆˆˆ(())(())ˆˆ()(()).E E D E θθθθθθθ→∞→∞⎧⎪⎪⎪⎨⎪⎪−−→==⎩⇐⎪ˆˆˆ()=()()ˆˆˆlim (),lim ()0.P n n nn n E D D E D θθθθθθθθθ无偏性有效性最小方差无偏估计相合性小者 最小者渐进性 无偏→∞=≠====-1212ˆ()()ˆ()()ˆˆˆ (,,)ˆ.ˆ.ˆˆˆ(,,)(1,2)()ˆl m (ˆi )n n n n n nnX X X X X X n E E E E θθθθθθθθθθθθθθθθθθθθθ ,无偏估计量,有偏估计量偏设,是参数的一个估计量,如果 则称是的 如果 则称是的称为估计量的 如果的一列估计,,,满足关系式 ,则称是差一、无偏.性的渐进无偏().估计量{}---=+-=<<===-=--=<<+∑∑111101(,),01,().1ˆ()()ˆ()()(1),()(1)10, 0 1.1mkkm kmk mk k m kmk B m p p n g p p n g p gX EgX g k C p p p g k C pp p p m 考察二项分布族则不管样本容量为多少,参数的无偏估计不存在以为例: 设有无偏估计,则有 无偏估计不存在的 于是 上式左端反证是的法子 例:次多+1.m 项式,它最多有个实根,矛盾nD 3)ˆ(21θθ=→∞→∞⎧⎪⎪⎪⎨⎪⎪−−→=⎪⇐=⎩ˆˆˆ()=()()ˆˆˆlim (),lim ()0..P n n n n n E D D E D θθθθθθθθθ 估计量的评价标准四、小小者 最小者 相合性是对估计量的一个基本无偏性有效性最小方差无偏估计相合性渐进无偏要求,不具备相合性的估计量是不予结以考虑的性。