4--第11章 步进电机控制系统
- 格式:ppt
- 大小:11.21 MB
- 文档页数:56
目录一、设计任务: (2)二、步进电机概述: (2)三、题目分析与整体构思: (4)四、硬件电路设计: (7)五、硬件验证: (10)六、程序设计: (10)七、系统仿真: (15)八、感应子式步进电机工作原理: (17)九、心得体会: (24)参考文献: (25)一、系统设计要求步进电机作为一种电脉冲—角位移的转换元件,由于具有价格低廉、易于控、制、无积累误差和计算机接口方面等优点,在机械、仪表、工业控制等领域中获得了广泛的应用。
本设计的具体要求是:1. 设计制作一个步进电机控制电路,可以细分驱动和常规驱动。
2. 常规驱动状态转速四档可调并可实现正反转。
二、步进电机概述步进电机是一种将电脉冲转化为角位移的执行机构。
当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。
现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。
永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度或15度。
反应式步进电机一般为三相,可实现大转矩输出,步进角一般为 1.5度,但噪声和振动都很大。
反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。
混合式步进电机是指混合了永磁式和反应式的优点。
它又分为两相和五相:两相步进角一般为 1.8度而五相步进角一般为 0.72度。
这种步进电机的应用最为广泛,也是本次细分驱动方案所选用的步进电机。
(一)步进电机的一些基本参数:1.电机固有步距角:电机固有步距角表示控制系统每发一个步进脉冲信号,电机所转动的角度。
步进电机控制系统原理步进电机控制系统的原理是控制步进电机运动,使其按照既定的速度和步长进行转动。
步进电机是一种特殊的电机,它通过控制输入的脉冲信号来驱动转子旋转一定的角度,步进电机每接收到一个脉冲信号,转子就会转动一定的角度,因此可以精确控制电机的位置和速度。
控制器是步进电机控制系统的核心部分,它通过软件算法生成脉冲信号来控制步进电机转动。
脉冲信号的频率和脉宽可以调节,频率决定步进电机转动的速度,脉宽决定步进电机转动的步长。
通常采用微处理器作为控制器,通过编程来控制脉冲信号的生成。
驱动器是将控制器产生的脉冲信号转换为电流信号,驱动步进电机转动。
驱动器通常由一个或多个功率晶体管组成,通过开关控制来产生恰当的电流信号。
驱动器还可以采用电流反馈回路来实现闭环控制,提高步进电机的控制精度。
步进电机是根据驱动器的电流信号转动的执行部件,它通过电磁力和磁场相互作用来实现转动。
步进电机根据控制器产生的脉冲信号确定转动的角度和速度。
步进电机一般由定子和转子组成,定子上有若干个电磁线圈,转子上有若干个永磁体。
当驱动器给定一个电流信号时,电流通过定子线圈产生磁场,与转子上的永磁体相互作用,使转子转动一定的角度。
当驱动器改变电流信号时,磁场方向改变,转子转动的角度和方向也会改变。
步进电机控制系统的原理就是通过控制器产生脉冲信号,驱动器将脉冲信号转换为电流信号,通过电流信号驱动步进电机转动。
控制器根据需要调整脉冲信号的频率和脉宽,从而控制步进电机的转动速度和步长。
驱动器根据电流信号的大小和方向控制步进电机的转动角度和方向。
步进电机根据电磁力和磁场相互作用来实现转动。
通过调节脉冲信号的频率和脉宽,可以实现对步进电机的精确控制。
步进电机控制系统浅析步进电机是一种控制简单、响应速度快、结构紧凑的电机,广泛应用于数控机床、印刷设备、医疗设备、自动售货机等许多场合。
步进电机控制系统是指对步进电机进行速度、位置、力矩等参数进行控制的系统,其稳定性和精度对整个设备的性能起着至关重要的作用。
本文将对步进电机控制系统进行一些浅析,包括其基本原理、控制方法及应用场景。
一、步进电机控制系统的基本原理步进电机控制系统的基本原理是通过对步进电机施加脉冲信号,从而驱动步进电机旋转一定角度。
步进电机是将输入的脉冲信号转化为机械位移的电机,通过控制脉冲的频率和脉冲的数量来实现控制电机的转速和位置。
步进电机的控制系统通常由脉冲发生器、驱动器和控制器三部分组成。
脉冲发生器用于产生指定频率和数量的脉冲信号,它通常由控制器进行控制,控制器会根据要求的转速和位置生成相应的脉冲信号。
驱动器则负责将脉冲信号转化为电机的相应动作,它可以控制电机的旋转方向、速度和制动。
控制器是整个系统的核心,它可以接收外部指令,根据指令生成相应的脉冲信号,实现对电机的精确控制。
二、步进电机控制系统的常用控制方法步进电机控制系统有多种控制方法,常见的包括开环控制、闭环控制和矢量控制。
开环控制是最简单的步进电机控制方法,它只需传递脉冲信号给驱动器,由驱动器控制电机转动,但开环控制无法保证电机的精确位置和速度,容易受到外部环境干扰,适用于一些对精度要求不高的场合。
闭环控制是通过反馈系统实时监测电机位置和速度,根据反馈信息调整脉冲信号,使电机的实际位置和速度与期望值保持一致。
闭环控制可以提高系统的稳定性和精度,但复杂度和成本也相应增加,适用于对精度要求较高的场合。
矢量控制是一种结合直流电机控制思想的步进电机控制方法,它利用矢量运算实现对步进电机的精确控制,能够实现电机的高速、高精度和高效率运行。
矢量控制可根据实际需要对电机进行强制转矩、恒转矩和临界转矩控制,适用于对控制精度和效率有较高要求的场合。
步进电机控制系统浅析导言步进电机是一种特殊的电动机,其具有精准的位置控制和简单的驱动电路构成。
因此步进电机在许多领域被广泛应用,包括机械臂、数控机床、3D打印等。
步进电机的控制系统是实现其精确定位和运动的关键,本文将对步进电机控制系统进行浅析。
一、步进电机原理步进电机是一种将电脉冲信号转换为轴向位移的装置,其工作原理主要有两种类型:单步模式和微步模式。
在单步模式下,步进电机每接收一个脉冲信号后,电机旋转一个固定的角度,这个固定的角度称为步距角。
通常情况下,步距角是由电机的物理结构决定的,不同类型的步进电机具有不同的步距角。
在微步模式下,步进电机接收到的脉冲信号会被分解成更小的步距角,从而实现更加精细的控制。
微步模式可以通过更加复杂的驱动电路来实现,通过改变驱动电流的大小和方向来实现步进电机的微步控制。
二、步进电机控制系统组成步进电机控制系统主要由电路驱动部分和控制算法部分组成。
1. 电路驱动部分步进电机的电路驱动部分主要包括功率放大器、脉冲信号发生器和步进电机。
功率放大器用于放大控制信号,驱动步进电机旋转。
脉冲信号发生器用于产生控制信号,控制步进电机的运动。
步进电机则接收控制信号,实现具体的转动动作。
2. 控制算法部分步进电机的控制算法部分主要包括位置控制算法和速度控制算法。
位置控制算法用于确定步进电机的具体位置,通常采用开环控制或者闭环控制来实现。
速度控制算法用于确定步进电机的运动速度,可以通过调整脉冲信号频率来实现。
三、步进电机控制系统工作原理步进电机的控制系统工作原理主要可以分为以下几个步骤:1. 确定目标位置在步进电机的控制系统中,首先需要确定步进电机需要转动到的目标位置。
这个目标位置可以通过控制算法部分来确定,通常可以通过编程或者传感器来实现。
2. 生成控制信号一旦确定了目标位置,控制算法部分就会开始生成相应的控制信号。
这些控制信号会传送到功率放大器和脉冲信号发生器,通过电路驱动部分传送到步进电机。
步进电机控制系统浅析
步进电机控制系统是一种常见的电机控制系统,常用于工业自动化、印刷设备、医疗设备等领域。
它通过精确控制电机的运动角度和速度,实现精准定位和运动控制。
步进电机具有以下特点:步进角度固定、响应时间短、精度高、输出力矩大、结构简单、使用寿命长等。
步进电机的控制原理是利用电流的正反向切换来控制电机转动的步进角度。
控制系统通常包括驱动电路、控制器和电源三部分。
驱动电路是步进电机控制系统的核心,它将控制信号转换为电机的信号,驱动电机旋转。
常用的驱动电路有两相步进电机驱动、三相步进电机驱动和四相步进电机驱动。
四相步进电机驱动最为常见。
驱动电路通常由晶体管或集成电路构成,可根据具体需求选择不同的驱动方式。
控制器是步进电机控制系统的核心,它接受控制信号,根据需要生成驱动电路所需的信号,并传递给驱动电路,控制电机转动。
控制器可以由单片机、PLC、DSP等实现,单片机最为常用。
控制器根据接收到的控制信号,生成相应的驱动信号和脉冲信号,通过驱动电路控制电机的转动。
电源为步进电机提供工作电压和电流,是步进电机控制系统的重要组成部分。
电源需要根据步进电机的额定电压和电流进行选择,以保证系统正常工作。
电源通常包括直流电源和交流电源两种,根据具体需求选择不同类型的电源。
步进电机控制系统的优点是可以实现高精度、高可靠性的定位控制,适用于需要精确定位和运动控制的领域。
它简单可靠,使用寿命长,成本较低。
但也存在一些缺点,如控制器复杂性较高,对驱动电路要求较高,需要较高的控制精度。
1.课程设计描述设计一个以8051单片机作为主控制器的步进电机控制器,实现对步进电机的转速、转向的控制和显示。
2. 课程设计具体要求2.1可通过按键设置步进电机的转向(正/反转)、转速(增/减速);2.2可通过按键设置步进电机的励磁方式(单/双相);2.3可通过数码管将步进电机的转速显示出来;2.4设计电路,编写程序,软件硬件仿真、调试。
3.主要元器件实验板(中号)、STC89C51、电容(30pFⅹ2、10uFⅹ2)、数码管(共阳、四位一体)、晶振(12MHz)、小按键(6个)、步进电机(25BY)、ULN2003等4.基本原理阐述4.1 方案与思路:因为步进电机的控制是通过脉冲信号来控制的,将电脉冲信号转变为角位移或线位移的开环控制元件。
所以怎样产生这个脉冲信号和产生怎样的信号是电机控制的关键。
用单片机来产生这个脉冲信号,通过单片机的P1口输出脉冲信号,因为所选电机是两相的,所以只需要P1口的低四位P1.0~P1.3分别接到电机的四根电线上。
定时器定时来调整电机的转速,通过键盘的按钮,就可以改变定时初值从而改变了电机的转速,P0口接LED 数码管,可以显示当前的电机转速和按钮状态.4.2 步进电机的工作原理:步进电机是纯粹的数字控制电动机。
它将电脉冲信号转变为角位移或线位移的开环控制元件,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
使得在速度、位置等控制领域用步进电机来控制变的非常的简单。
如下图所示,驱动方式为双相方式各线圈通电顺序如下表:如下图所示,驱动方式为单相方式各线圈通电顺序如下表:电机正反转控制和速度控制:双相方式下当电机绕组通电时序为AB-BA’-A’B’-B’A-AB时为正转,通电时序为AB-B’A-A’B’-BA’-AB 时为反转。
步进电机控制系统浅析步进电机是由磁力作用产生旋转的一类电动机,相较于直流电机及交流电机,步进电机具有精度高、静止力矩大、转速稳定等特点,在现代工业生产中得到了广泛的应用。
本文主要介绍了步进电机控制系统的组成和工作原理。
1.组成部分步进电机控制系统由以下几部分组成。
(1)中央处理器(CPU):负责处理电机运转的控制算法,并控制外设驱动器以实现电机的正反转、速度、位置控制等。
(2)电机驱动器:它是电机与控制系统之间的媒介,将中央处理器输出的控制信号转化成足够大的电流和电压,驱动步进电机运转。
(3)位置检测器:用于反馈电机的位置信息,使控制系统能够掌握电机当前位置,并进行相应的运动控制。
2.工作原理步进电机的控制原理非常简单,即让电机依次从一个固定位置加减一定角度,轮流进行,从而实现旋转。
这个固定角度,即为步距角,其大小通常为1.8度或0.9度,不同的角度代表功率不同。
主要有两种控制方式。
(1)开环控制:是通过预先设计好的脉冲信号驱动电机旋转,不考虑电机的位置问题,没有位置反馈装置。
这种方式的优点是结构简单,控制逻辑容易实现,但具有一定的缺陷,如运动误差大、定位不准确等问题,适用于较为简单的控制任务。
(2)闭环控制:是依靠位置检测器进行反馈,将电机的实时位置信息反馈到控制系统中,从而进行控制。
这种方式的优点是精度高、定位准确,但是控制逻辑相对复杂、成本略高。
在精度要求较高、控制任务复杂的情况下,使用闭环控制是明智之选。
总之,步进电机控制系统是由中央处理器、电机驱动器、位置检测器等部分构成,控制原理简单,主要有开环控制和闭环控制两种方式。
不同的控制方式能够满足不同的控制要求,应该根据具体情况进行选择。