凝胶渗透色谱(GPC)
- 格式:docx
- 大小:13.42 KB
- 文档页数:4
gpc测试原理
GPC测试原理
GPC(Gel Permeation Chromatography)是一种高效液相色谱技术,也称为凝胶渗透色谱。
它是一种分离高分子化合物的方法,可以用于分析高分子材料的分子量分布、分子量平均值、分子量分布宽度等参数。
GPC测试原理是基于高分子材料在凝胶柱中的渗透性质进行分离和分析的。
GPC测试原理的基本步骤是:将待测样品溶解在适当的溶剂中,通过一系列的凝胶柱,使高分子材料在柱中渗透,根据分子量大小分离出不同的组分,然后通过检测器检测各组分的信号强度,得到分子量分布曲线。
在GPC测试中,凝胶柱是非常重要的组成部分。
凝胶柱是由一系列不同孔径的凝胶颗粒组成的,这些颗粒可以将高分子材料分离成不同的组分。
凝胶柱的孔径大小决定了分离效果的好坏,通常使用的凝胶柱孔径范围为10-10万埃。
GPC测试中的检测器通常使用光散射检测器(LS)和粘度检测器(Viscometer)。
光散射检测器可以测量高分子材料的分子量分布,粘度检测器可以测量高分子材料的分子量平均值和分子量分布宽度。
GPC测试的样品制备非常重要。
样品必须完全溶解在溶剂中,否则会影响分离效果。
此外,样品的浓度也需要控制在一定范围内,以
避免过度分离或不足分离。
GPC测试原理是基于高分子材料在凝胶柱中的渗透性质进行分离和分析的。
通过GPC测试,可以得到高分子材料的分子量分布、分子量平均值、分子量分布宽度等参数,为高分子材料的研究和应用提供了重要的数据支持。
凝胶渗透色谱目录一、基本原理 (2)1.1 凝胶的特性 (2)1.2 色谱的分离原理 (3)1.3 凝胶渗透色谱在分离技术中的应用 (5)二、仪器设备 (6)2.1 凝胶渗透色谱仪的主要组成部分 (7)2.2 主要性能指标及选择 (9)2.3 仪器设备的清洁与维护 (9)三、样品前处理 (11)3.1 样品的选择与制备 (11)3.2 样品浓缩与净化 (12)3.3 样品检测方法的建立 (13)四、实验操作流程 (14)4.1 样品进样 (16)4.2 柱塞泵的设置与调节 (17)4.3 检测器的选择与校准 (18)4.4 数据处理与结果分析 (19)五、理论基础与数学模型 (20)5.1 凝胶渗透色谱的理论基础 (22)5.2 数学模型在凝胶渗透色谱中的应用 (23)5.3 实验数据的解释与处理 (24)六、应用领域 (26)6.1 在化学领域中的应用 (28)6.2 在生物医学领域中的应用 (29)6.3 在环境科学领域中的应用 (30)七、常见问题与解决方案 (31)7.1 常见问题及原因分析 (32)7.2 预防措施与解决策略 (33)八、实验安全与防护 (34)8.1 实验室安全规程 (36)8.2 个人防护装备的使用 (37)8.3 应急处理措施 (38)九、最新研究进展 (39)9.1 新型凝胶材料的研究与应用 (40)9.2 色谱技术的创新与发展 (41)9.3 聚合物凝胶渗透色谱法的探索 (43)一、基本原理它的基本原理是利用具有不同孔径大小的多孔凝胶颗粒作为固定相,将待分离的混合物通过凝胶柱进行分离。
在色谱过程中,待分离的混合物会与凝胶颗粒发生相互作用,从而导致不同成分在凝胶颗粒之间的分配系数和扩散速率的差异。
根据这些差异,混合物中的各个成分可以通过不同的时间顺序依次通过凝胶柱,从而实现对混合物中各组分的高效分离。
GPC的关键参数包括:凝胶颗粒的大小和形状;溶液流速;压力;洗脱剂的选择和浓度。
凝胶渗透色谱法(GPC)一、凝胶渗透色谱凝胶渗透色谱Gel Permeation Chromatography(GPC),一种新型的液体色谱,原理是利用高分子溶液通过一个装填凝胶的柱子,在柱子中按分子大小进行分离。
柱子为玻璃柱或金属柱,内填装有交联度很高的球形凝胶。
其中的凝胶类型有很多,都是根据具体的要求而确定(常用的有聚苯乙烯凝胶)。
然而,无论哪一种填料,他们都有一个共同点,就是球形凝胶本身都有很多按一定分布的大小不同的孔洞(见图1)。
图1 GPC分离原理不仅可用于小分子物质的分离与鉴定,而且可作为用来分析化学性质相同但分子体积不同的高分子同系物。
可以快速、自动测定高聚物的平均分子量及分子量分布。
现阶段,已经成为最为重要的测定聚合物的分子量与分子量分布的方法。
二、测定原理凝胶色谱法的固定相采用凝胶状多孔性填充剂,是根据样品中各种分子流体力学提及的不同进行分离的。
比凝胶孔径大的分子完全不能进入孔内,随流动相沿凝胶颗粒间流出柱外,而娇小的分子则可或多或少地进入孔内。
因此大分子流程短,保留值小;小分子流程长,保留值大,所以凝胶色谱是按分子流体力学体积的大小,从大到小顺序进行分离的。
(见图2)图2 GPC淋出曲线溶质分子的体积越小,其淋出体积越大,这种解释不考虑溶质与载体间的吸附效应以及溶质在流动相和固定相中的分配效应,其淋出体积仅仅由溶质分子的尺寸和载体的孔径尺寸决定,分离完全是由于体积排除效应所致。
凝胶色谱的特点是样品的保留体积不会超出色谱柱中溶剂的总量,因为保留值的范围是可以推测的,这样可以每隔一定时间连续进样而不会造成谱峰的重叠,提高了仪器的使用率。
三、分子量校正曲线(LogM-V曲线)凝胶色谱图计算样品的分子量分布的关键是把凝胶色谱曲线中的淋洗体积V转化成分子量M,这种分子量的对数值与淋洗体积之间的曲线(LogM-V)称之为分子量校正曲线(见图3)。
图3 分子量校正(LogM-V)曲线➢排阻极限排阻极限是指不能进入凝胶颗粒空穴内部的最小分子的分子量。
1. 凝胶渗透色谱的简单回顾凝胶渗透色谱[GPC(Gel Permeation Chromatography)][也称作体积排斥色谱(Size Exclusion Chromatography)]是三十年前才发展起来的一种新型液相色谱,是色谱中较新的分离技术之一。
利用多孔性物质按分子体积大小进行分离,在六十年前就已有报道。
Mc Bain用人造沸石成功地分离了气体和低分子量的有机化合物,1953年Wheaton和Bauman用离子交换树脂按分子量大小分离了苷、多元醇和其它非离子物质。
1959年Porath和Flodin 用交联的缩聚葡糖制成凝胶来分离水溶液中不同分子量的样品。
而对于有机溶剂体系的凝胶渗透色谱来说,首先需要解决的是制备出适用于有机溶剂的凝胶。
二十世纪60年代J.C.Moore在总结了前人经验的基础上,结合大网状结构离子交换树脂制备的经验,将高交联度聚苯乙烯凝胶用作柱填料,同时配以连续式高灵敏度的示差折光仪,制成了快速且自动化的高聚物分子量及分子量分布的测定仪,从而创立了液相色谱中的凝胶渗透色谱技术。
2. 凝胶渗透色谱的应用三十多年来,凝胶渗透色谱的理论、实验技术和仪器的性能等方面有了突飞猛进的发展。
尤其是随着新型柱填料的诞生、高效填充柱的出现(目前其理论塔板数已超过10000/米)以及计算机的普及,凝胶渗透色谱在工业、农业、医药、卫生、国防、宇航以及日常生活的各个领域得到了广泛的应用。
特别是近年来,随着各种高分子材料的问世,人们对高分子科学的不断探索,高聚物的分子量及其分布的测定显得尤为重要,成为科研和生产中不可缺少的测试项目之一。
例如:常见的聚苯乙烯塑料制品,其分子量为十几万,如果聚苯乙烯的分子量低至几千,就不能成型;相反,当分子量大到几百万,甚至几千万,它又难以加工,失去了实用意义。
科研和生产上通过控制高聚物的分子量及其分布宽度指数D(D=Mw/Mn)、分子量微分分布曲线、分子量积分分布曲线来生产出性能最佳的高聚物产品。
gpc原理GPC(Gel Permeation Chromatography)又称为分子排列色谱、凝胶渗透色谱、分子种类分布分析、分子大小分布分析等。
它是一种流体色谱分离技术,主要用于聚合物、糖类等高分子物质的分子量及其分子量分布的分析。
一、GPC的原理及操作流程GPC的原理是利用高分子物质在固定相凝胶纤维内的渗透能力差异进行分离。
样品进入柱内,经过一定时间后,不同分子量的高分子物质在凝胶纤维内渗透的程度不同,分子量较大的高分子物质渗透能力差,停留时间长,分子量较小的高分子物质渗透能力强,停留时间短,从而在柱内被分离开来,形成不同的“尖峰”。
记录各尖峰的相对峰面积,可以计算出高分子物质的分子量分布。
GPC的操作流程如下:1、样品制备:样品应选择相对分子量范围较小、单峰或少数几峰的单组分聚合物或天然高分子。
2、节流:首先通过节流器将柱内溶剂的流速控制在一定范围内。
3、样品进样:将样品注入进样器,通过准确的进样量落入柱内,等到液相再次达到柱床的稳定状态。
4、柱渗透及分离:经由色谱柱的凝胶纤维时,不同相对分子量的高分子物质在凝胶内部渗透的程度不同,分子量大的高分子物质渗透能力差,停留时间长,分子量较小的高分子物质渗透能力强,停留时间短,从而在柱内被分离开来。
5、检测:检测器将记录各个“尖峰”的相对峰面积,可以计算出高分子物质的分子量分布。
二、GPC的仪器及设备GPC主要由以下组成部分:泵、进样器、耗材、色谱柱、检测器等。
泵主要用于精密控制流速,进样器用于精确进样,耗材主要有压缩式碳水化合物凝胶纤维、移液器吸头、样品瓶、溶剂瓶等。
GPC的检测器有不同种类,包括紫外检测器和光散射检测器等。
三、GPC的应用GPC是一种重要的高分子物质分析手段,特别适用于聚合物分子量及其分布的测定,还可用于天然高分子的测定与分析。
GPC可以用于研究聚合物的结构与性质的关系、分析高分子材料的质量、研究聚合物分子间的相互作用等。
凝胶渗透色谱原理
凝胶渗透色谱(GPC)是一种应用广泛的分析技术,它可以用于分离和测定高
分子化合物的相对分子质量和分子量分布。
本文将介绍凝胶渗透色谱的原理及其在分析领域中的应用。
首先,让我们来了解一下凝胶渗透色谱的原理。
凝胶渗透色谱是一种液相色谱
技术,它利用高分子在凝胶柱中的渗透作用来实现分离。
当样品通过凝胶柱时,较大分子由于受到凝胶的阻碍而渗透速度较慢,而较小分子则可以更快地渗透。
因此,通过测定样品在凝胶柱中的渗透速度,可以得到样品的相对分子质量和分子量分布。
凝胶渗透色谱的应用十分广泛,特别是在高分子材料的研究和生产中。
例如,
在聚合物材料的研究中,可以利用GPC技术来确定聚合物的相对分子质量,从而
评估其性能和质量。
在生物医药领域,GPC也被广泛应用于蛋白质、多肽等生物
大分子的分析和质量控制。
此外,凝胶渗透色谱还可以用于环境监测、食品安全等领域的分析。
除了以上提到的应用外,凝胶渗透色谱还可以与其他分析技术结合,如联用质谱、红外光谱等,以实现对样品更加全面的分析。
这种多种分析技术的结合,可以为分析人员提供更加准确和可靠的分析结果。
总之,凝胶渗透色谱作为一种重要的分析技术,具有广泛的应用前景。
通过对
高分子化合物的分离和测定,可以为相关领域的研究和生产提供重要的支持。
随着科学技术的不断发展,相信凝胶渗透色谱在未来会有更加广泛和深入的应用。
凝胶渗透色谱分析的工作原理
介绍
凝胶渗透色谱(GPC)分析是一种常用的分离和分析各种分子量、表
面张力和组成的分子的分析技术。
它是一种用于精确测定有机物中分子量、表面张力和组成的仪器分析技术。
主要应用于有机溶剂和其它流体的分子
量测定,如石蜡、柴油、燃料油、精细有机化学品等,也可用于动植物油、挥发油、液态烃、有机酸和碳氢化合物等的分析。
工作原理
凝胶渗透色谱(GPC)通常是通过一种名为凝胶的高分子材料分离物质。
凝胶是由色谱柱中的柱内阻抗和外抗拒形成的晶体,其中含有晶体溶胶,
溶胶可以将分子分离到晶体溶胶和晶体溶胶之间。
凝胶固定相(GFP)具
有分离和活性的作用,可以改变色谱柱中分子的分子量大小和结构,以实
现对物质的分离和精确测量。
此外,GPC还使用不同溶剂的分子截止力,来改变高分子流体的运动。
它的原理是通过不同溶剂的渗透压来改变高分子流体的流速,从而达到分
离不同分子的目的。
通常使用的溶剂包括水、丙酮、乙醇、苯、甲苯等。
根据溶剂的分子截止力,高分子流体可以分为高分子浓度流体和低分
子浓度流体,这两种流体可以分别运动在柱中的上下层,实现分子的分离。
GPC实验的主要仪器组成由三个部分组成:泵、色谱柱和检测器。
凝胶色谱gpc凝胶色谱(GPC)是一种分离技术,其特点是使用凝胶作为分离介质,因此得名。
GPC是一种广泛应用于聚合物分子量分析的方法。
它具有许多优点,如高分辨率、简单易行、准确性高等特点。
本文将从定义、原理、应用等方面详细介绍GPC技术。
一、定义凝胶色谱(GPC),又称凝胶过滤色谱(GFC),是一种以聚合物溶液中分子量大小分离为目的的色谱技术,通过使用一种凝胶化合物作为固定相来实现。
异构体、聚合物和其他高分子物质可以被凝胶过滤器赶出溶液,从而有效进行分析。
二、原理 GPC的原理是将待测样品注入溶剂中,并通过进样系统将样品引入色谱柱中。
色谱柱由一束微粒、凝胶或涂层柱组成,包括高分子树脂、泡沫塑料或其他亲水性材料。
样品通过色谱柱流动时,大分子会因分子量大而与凝胶颗粒反复碰撞,并逐渐逐出柱外。
相反,小分子则更容易穿过凝胶颗粒,达到提取分子的目的。
由于某些原因,大分子的分离能力非常重要。
其中最重要的条件是使用疏水性溶液,这有助于分子与凝胶颗粒产生亲水作用,并排出大分子分子,以谷物的形式进行检测和分离。
其次,为了获得最好的分离效果,GPC操作需要优化。
包括确定外径,内径,粒径,压强,长度和运行时间等参数。
三、应用 GPC技术广泛应用于聚合物分子量分析、生物大分子的纯化和组分分离,其中聚合物分子量分析是GPC 的主要应用之一,把聚合物以及其他宏大分子按照其不同的分子量分离出来,并对其分子量进行测定。
GPC广泛用于各种行业,尤其是化学、医药、材料科学等领域。
GPC技术因其简单易实施,又不需高百科技含量,被广泛用于聚合物领域中分子量的分析。
聚合物的分子量和分子分布是对其性质、应用和储存特性影响较大的一个参数,因此GPC技术已经成为聚合物科研和实际应用领域的日常工具。
(一)在功能材料领域中GPC的应用:用于纤维素的结构性能研究;碳纤维复合材料中的聚合物基质性能的研究;用于电池电极材料的研究。
(二)在生命科学领域中GPC的应用:GFC已经成为蛋白质化合物的一种得到纯化的方法;纯化或高净度生物材料的时序性分析;用于多肽或蛋白质的计量。
gpc色谱柱原理GPC(Gel Permeation Chromatography,凝胶渗透色谱)又称作GFC(Gel Filtration Chromatography,凝胶过滤色谱),是一种分子量分析方法。
GPC的原理基于溶液中分子的分散行为,利用一根柱子填充有多孔凝胶材料,通过流动相将溶液样品推动通过柱子,分子将根据其大小分散在凝胶中。
根据分子量的不同,大分子会填满凝胶孔隙,因此在柱上流动速度较慢,小分子则能更容易地渗透到凝胶孔隙中,在柱上流动速度较快。
因此,通过在柱上测量不同组分的保留体积或保留时间,可以推断出样品中分子的分子量分布情况。
GPC色谱柱原理主要包括以下几个方面:1. 柱填充:GPC色谱柱填充有一种多孔凝胶材料,通常为聚合物凝胶,如聚(styrene-divinylbenzene)(PSDVB)。
2. 流动相:典型的流动相是溶剂,如甲苯、二甲苯或四氢呋喃等。
流动相的选择要根据被分析样品的特性和需要分析的分子量范围进行调整。
3. 校正曲线:为了准确测量样品中的分子量分布,需要使用一系列已知分子量的标准物质进行校正。
通过测量标准物质的保留时间或保留体积,建立一个标准曲线,从而根据待测样品的保留时间或保留体积推断出其分子量。
4. 检测器:常用的检测器有光散射检测器(LS),粘度检测器(RI)和紫外/可见光检测器(UV/Vis)。
利用这些检测器,可以测量样品在柱上的浓度信号,并从中得到对应的保留时间或保留体积。
通过以上的原理,GPC可以分析多种样品中的分子量分布情况,例如聚合物、蛋白质、生物大分子等。
这种方法能够提供样品中不同分子量的相对含量和分布情况,对于了解样品的结构和性质至关重要。
凝胶色谱分析二〇一一年九月九日第九章凝胶色谱分析凝胶渗透色谱(Gel Permeation Chromatography, GPC),又称尺寸排阻色谱(Size Exclusion Chromatography, SEC),其以有机溶剂为流动相,流经分离介质多孔填料(如多孔硅胶或多孔树脂)而实现物质的分离。
GPC可用于小分子物质和化学性质相同而分子体积不同的高分子同系物等的分离和鉴定。
凝胶渗透色谱是测定高分子材料分子量及其分布的最常用、快速和有效的方法[1]。
凝胶渗透色谱(GPC)的创立历程如下[2,5]:1953年Wheaton和Bauman用多孔离子交换树脂按分子量大小分离了苷、多元醇和其它非离子物质,观察到分子尺寸排除现象;1959年Porath和Flodin用葡聚糖交联制成凝胶来分离水溶液中不同分子量的样品;1964年J. C. Moore将高交联密度聚苯乙烯-二乙烯基苯树脂用作柱填料,以连续式高灵敏度的示差折光仪,并以体积计量方式作图,制成了快速且自动化的高聚物分子量及分子量分布的测定仪,从而创立了液相色谱中的凝胶渗透色谱。
近年来,光散射技术(如图9-1所示,一束光通过一间充满烟雾的房间,会产生光散射现象。
)广泛应用于高分子特征分析领域[3]。
将光散射技术和凝胶渗透色谱(GPC)分离技术相结合,可以测定大分子绝对分子量、分子旋转半径、第二维里系数,也可测定分子量分布、分子形状、分枝率和聚集态等。
目前,该技术在高分子分析领域已成为一种非常有效的工具,在美国,日本及欧洲广为使用,国内近年来亦引进了此项技术。
入射光散射光图9-1光散射现象9.1 基本原理9.1.1凝胶渗透色谱分离原理让被测量的高聚物溶液通过一根内装不同孔径的色谱柱,柱中可供分子通行的路径包括粒子间的间隙(较大)和粒子内的通孔(较小)。
如图9-2、图9-3所示,当待测聚合物溶液流经色谱柱时,较大的分子只能从粒子间的间隙通过,被排除在粒子的小孔之外,速率较快;较小的分子能够进入粒子中的小孔,通过的速率慢得多。
GPC(Gel Permeation Chromatography ) ,凝胶渗透色谱,又称为尺寸排阻色谱(Size Exclusion Chromatography,简称SEC),它是基于体积排阻的分离机理,通过具有分子筛性质的固定相,用来分离相对分子质量较小的物质,并且还可以分析分子体积不同、具有相同化学性质的高分子同系物。
凝胶渗透色谱(Gel Permeation Chromatography、GPC)1964年,由J.C.Moore首先研究成功。
不仅可用于小分子物质的分离和鉴定,而且可以用来分析化学性质相同分子体积不同的高分子同系物。
(聚合物在分离柱上按分子流体力学体积大小被分离开)1.基本原理1.1分离原理让被测量的高聚物溶液通过一根内装不同孔径的色谱柱,柱中可供分子通行的路径有粒子间的间隙(较大)和粒子内的通孔(较小)。
当聚合物溶液流经色谱柱时,较大的分子被排除在粒子的小孔之外,只能从粒子间的间隙通过,速率较快;而较小的分子可以进入粒子中的小孔,通过的速率要慢得多。
经过一定长度的色谱柱,分子根据相对分子质量被分开,相对分子质量大的在前面(即淋洗时间短),相对分子质量小的在后面(即淋洗时间长)。
自试样进柱到被淋洗出来,所接受到的淋出液总体积称为该试样的淋出体积。
当仪器和实验条件确定后,溶质的淋出体积与其分子量有关,分子量愈大,其淋出体积愈小。
(1)体积排除(2)限性扩散(3)流动分离1.2校正原理用已知相对分子质量的单分散标准聚合物预先做一条淋洗体积或淋洗时间和相对分子质量对应关系曲线,该线称为“校正曲线”。
聚合物中几乎找不到单分散的标准样,一般用窄分布的试样代替。
在相同的测试条件下,做一系列的GPC标准谱图,对应不同相对分子质量样品的保留时间,以lgM对t作图,所得曲线即为“校正曲线”。
通过校正曲线,就能从GPC谱图上计算各种所需相对分子质量与相对分子质量分布的信息。
聚合物中能够制得标准样的聚合物种类并不多,没有标准样的聚合物就不可能有校正曲线,使用GPC方法也不可能得到聚合物的相对分子质量和相对分子质量分布。
凝胶渗透色谱(GPC)凝胶渗透色谱(GPC)又称凝胶色谱,是高分子化合物的分子量测定和分布分析的重要方法之一。
GPC是一种以凝胶过滤为基础的分离技术,通过溶液中高分子量化合物在凝胶柱的过滤作用下发生分离和分子量分布测定。
GPC是一种广泛使用的技术,涉及到工业、生产等多个领域,因此设备的安全操作至关重要。
下面介绍凝胶色谱设备的操作规定。
设备安全操作规定一、设备安装1.在设备安装前,应仔细阅读设备的说明书,并根据说明进行安装。
2.安装地点应选择平稳、通风、无尘、无环境振动和电磁干扰的地方。
3.在安装凝胶色谱柱时,切勿使柱子接触到有机溶剂,以免磨损和污染。
4.在连接系统管路时,要求密封性好,避免泄漏和外界污染。
二、操作前准备1.确认设备电源、水源和气源等是否正常,并根据实际需要进行调整和适当调节。
2.准备好实验所需试剂、溶剂、标准品等,并按要求进行标记和分类。
3.检查柱子封头是否紧固,柱温控制是否正常,出样口和检测器设备是否连接正常。
三、样品准备1.样品需先过滤,去掉杂质和颗粒,然后进行适当的稀释处理,以避免过高的浓度造成的毛刺。
2.样品的溶剂应与流动相相同,以避免对流动相造成干扰和影响。
3.在进行样品预处理和进样前,必须先清洗进样器和采样针,以避免样品交叉污染和干扰。
四、操作过程中的注意事项1.注意保持操作环境干净,避免灰尘、污染物等杂质进入柱子和系统中。
2.切勿突然关闭机器或脱离电源,应按照说明书要求进行操作,避免对设备和数据造成损伤和误差。
3.在操作过程中,随时监测输出信号,注意记录相关的参数和数据,便于后期的分析和处理。
4.如果设备出现异常情况,应立即停止操作,寻找问题并解决,以免对实验数据造成影响和误差。
总结凝胶渗透色谱是一种常用的高分子量分析技术,应用广泛。
在进行实验操作时,设备的安全是至关重要的。
在操作过程中,我们需要仔细阅读说明书,按要求进行设备安装和调试,准备好富有经验的工作人员,保持设备和操作环境的干净和整洁,随时注意操作中的细节注意事项。
血细胞分析试剂凝胶渗透色谱仪gpc凝胶渗透色谱(下简称“GPC”)是在高分子化学中检测高分子量分布的重要方法。
岛津研发的Prominence GPC系统,特别设计用于提供优质可靠数据,并且操作简易。
数据稳定性卓越的基线稳定性GPC系统中的示差折光检测器,对于流动相的温度变化及其中溶解的空气非常敏感,这些因素可导致基线不稳定。
Prominence GPC系统中的RID-10A示差折光检测器内部具有双重温控的检测池单元,有效减少温度变化对于基线的影响。
另外,容量仅为380 uL高效脱气单元大大降低了系统稳定所需时间。
送液重复性GPC系统检测分子量分布,是通过将化合物的分子量与洗脱时间进行伪关联。
化合物按照分子量大小在排阻限制和渗透限制中进行洗脱,分子量具有洗脱时间的指数功能。
结果,即便是很微小的洗脱时间的误差也可能导致测量结果的较大变化。
为了解决此问题,岛津Prominence GPC系统运用了高速微型柱塞驱动和自动脉冲补偿技术,实现了无脉冲送液并提高洗脱时间的重现性。
验证设计为确保数据的可靠性,设备维护和管理同样重要。
此系统的自动验证特征对于安装时候的IQ/OQ过程非常有用,同时也可评价每一个组件的运行状态并在阶段性检查时管理维护信息。
另外可选配CMD(色谱柱管理单元),确认柱名,系列编号和其他关于色谱柱的信息以及历史应用信息,包括流动相流速以及样品进样次数等(当多根柱连接时,可记录其中一组色谱柱历史数据)。
易于操作的设计通过公式创建校准曲线:比如线性,3阶+双曲线,五阶,五阶+双曲线,7阶,7阶+双曲线,或折线等。
此软件可提供最大64个数据点并允许虚拟点的进入,因此可对创建时的校准曲线进行可视化的检查,Mark-Houwinkji校准曲线修正方法或基于Q值或聚合度的不同校正方法也可用。
右图:GPC校准曲线创建功能。
使用多种GPC数据分析功能进行的后处理分析可帮助确定数据处理方法。
峰形可在GPC数据分析窗口中的图形界面上操控,改变峰积分参数同样可以即时重新计算平均数,平均重量,平均Z,平均Z+1,粘度平均分子量以及固有粘度和分子量分布。
凝胶渗透色谱(GPC)
1. 简介
凝胶渗透色谱(Gel Permeation Chromatography,简称GPC)是一种常用的分离和分析高分子化合物的方法。
该技术基于样品中高分子与凝胶基质之间的相互作用特性进行分离,并通过检测其分子量进行定性和定量分析。
2. 原理
GPC的原理基于高分子在溶剂中形成的动态螺旋结构。
在这个多孔的凝胶基质中,高分子可以通过不同的速度渗透进入孔隙中,较大分子量的高分子会更难进入孔隙,而较小分子量的高分子则相对容易进入。
因此,在GPC中,高分子化合物会根据其分子量的大小在凝胶柱中得到分离,从而实现对样品的分析。
3. 实验操作
3.1 样品制备:
将待分析的高分子化合物溶解在合适的溶剂中,得到样品溶液。
确保样品溶液中没有明显的悬浮物或杂质。
3.2 柱装填:
将凝胶柱装入色谱柱座,并根据柱座的要求进行调整和固定。
3.3 校准:
使用一系列已知分子量的标准品进行校准。
将标准品溶液以一定流速注入凝胶柱中,记录各标准品的保留时间。
3.4 样品进样:
使用自动进样器或手动进样器将样品溶液以适当流速注入凝胶柱中。
3.5 分离:
样品在凝胶柱中进行凝胶渗透分离,不同分子量的高分子以不同的速度通过凝胶基质,完成分离。
3.6 检测:
通过不同的检测器检测凝胶柱中流出的样品,常用的检测器包括紫外-可见光谱检测器、折光率检测器等。
3.7 数据处理:
根据标准品的保留时间和已知分子量,结合样品的保留时间,计算出样品的分子量。
4. 应用领域
GPC广泛应用于高分子化合物的分析和研究领域。
主要应用包括但不限于以下几个方面:
•分析聚合物的分子量分布:通过GPC可以获得聚合物样品的分子量分布情况,了解样品中分子量大小的范围和占比,有助于进一步研究和应用。
•聚合物纯度分析:GPC可以用于判断聚合物样品的纯度,通过检测样品中的低分子量杂质,评估样品的纯净度。
•聚合物杂质分析:GPC可以用于分析聚合物样品中的杂质物质,如副产物、残留单体等。
•聚合物品质控制:GPC可以作为一种有效的质量控制手段,用来监测聚合物样品的分子量分布和纯度,保证产品质量的稳定性和一致性。
•聚合物合成优化:通过GPC可以评估不同合成条件对产物分子量的影响,有助于优化聚合反应的条件和工艺。
5. 结论
凝胶渗透色谱(GPC)是一种重要的分离和分析高分子化合物的技术。
基于凝胶基质和高分子化合物之间的渗透特性,GPC可以实现对高分子样品的分离和分析,并通过分子量的
测定来定性和定量分析样品。
GPC在高分子化学、材料科学、聚合物工程等领域有广泛的应用和重要的作用,为高分子化合物的研究和应用提供了有力的支持。