华师大数学七年级下册《第10章轴对称、平移与旋转》单元测试卷(含答案)
- 格式:docx
- 大小:1.38 MB
- 文档页数:17
华师大版七年级数学下册第10章轴对称、平移与旋转单元测试题一、选择题(每小题4分,共28分)1.下列图标既是轴对称图形又是中心对称图形的是 ( )2.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是 ( )3.下列选项中能由左图平移得到的是 ( )4.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为 ( )A.30°B.45°C.60°D.75°5.如图,△ABC中,∠C=67°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且C′在BC上,则∠B′C′B的度数为 ( )A.56°B.50°C.46°D.40°6.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为 ( )A.50°B.60°C.70°D.80°7.如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为 ( )A.13B.3C.4D.6二、填空题(每小题5分,共25分)8.由图中左侧三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是 .9.如图,正方形ABCD中,把△ADE绕顶点A顺时针旋转90°后到△ABF的位置,则△ADE≌ ,AF与AE的关系是 .10.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于 .11.如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A,C,B′三点共线,那么旋转角度的大小为 .12.某宾馆在重新装修后考虑在大厅内的主楼梯上铺设地毯,已知主楼梯宽为3米,其剖面如图所示,那么需要购买地毯 平方米.三、解答题(共47分)13.(10分)作平移后的图形,如图,经过平移,△ABC的边AB移到了EF,作出平移后的三角形.14.(12分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1.(2)计算出三角形ABC的面积.15.(12分)如图,四边形ABCD的对角线AC,BD相交于点O,△ABC≌△BA D.求证:(1)OA=O B.(2)AB∥C D.16.(13分)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图.(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.第10章轴对称、平移与旋转单元检测答案(45分钟 100分)一、选择题(每小题4分,共28分)1.下列图标既是轴对称图形又是中心对称图形的是 ( )【解析】选C.A.既不是轴对称图形也不是中心对称图形;B.不是轴对称图形,是中心对称图形;C.既是轴对称图形,也是中心对称图形;D.既不是轴对称图形,也不是中心对称图形.2.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是 ( )【解析】选C.C项既不能由轴对称得到,又不能由旋转得到.3.下列选项中能由左图平移得到的是 ( )【解析】选C.A选项图形,可由左图顺时针旋转90°得到,不是平移;B选项图形,可由左图旋转180°得到,不是平移;C选项图形,可由左图平移得到;D选项图形,可由左图逆时针旋转90°得到,不是平移.4.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为 ( )A.30°B.45°C.60°D.75°【解析】选C.要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.5.如图,△ABC中,∠C=67°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且C′在BC上,则∠B′C′B的度数为 ( )A.56°B.50°C.46°D.40°【解析】选C.∵点C′在边BC上,∴∠BC′C为平角.由于旋转不改变图形的大小,∴∠AC′B′=∠C=67°,AC′=A C.∴∠AC′C=∠C∴∠B′C′B=180°-∠AC′B′-∠AC′C=180°-67°-67°=46°.6.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为 ( )A.50°B.60°C.70°D.80°【解析】选D.分别作A关于BC,DC的对称点A1,A2,连结A1A2分别交BC,CD于点E,F,连结AE,AF,此时△AEF的周长最小,∵A关于BC,DC的对称点分别为A1,A2,∴BC垂直平分AA1,DC垂直平分AA2,∴AE=A1E,AF=A2F,∴∠A1AE=∠A1,∠A2AF=∠A2,∵∠BAD=360°-∠C-∠ABC-∠ADC=360°-50°-90°-90°∴∠A1+∠A2=180°-∠BAD=180°-130°=50°,∴∠A1AE+∠A2AF=∠A1+∠A2=50°,∴∠EAF=∠BAD-(∠A1AE+∠A2AF)=130°-50°=80°.7.如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为 ( )A.13B.3C.4D.6【解析】选D.∵△ABC≌△DEF,∴DF=AC,∵△DEF的周长为13,DE=3,EF=4,∴DF=6,即AC=6.二、填空题(每小题5分,共25分)8.由图中左侧三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是 .【解析】(1)可以通过平移得到,(2)无法通过以上三种变换得到,(3)可以通过轴对称变换得到,(4)可以通过旋转得到.答案:(2)9.如图,正方形ABCD中,把△ADE绕顶点A顺时针旋转90°后到△ABF的位置,则△ADE≌ ,AF与AE的关系是 .【解析】∵△ABF是△ADE绕顶点A顺时针旋转90°后得到的,∴△ADE≌△ABF,∠EAF=90°,∴AE与AF相等且互相垂直.答案:△ABF 相等且互相垂直10.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于 .【解析】由图形可知,圆心先向前走OO1的长度即圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2π×5+×2π×5=5π.答案:5π11.如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A,C,B′三点共线,那么旋转角度的大小为 .【解析】根据旋转的性质可知,∠ACB=∠A′CB′=45°,那么旋转角度的大小为∠ACA′=180°-45°=135°.答案:135°12.某宾馆在重新装修后考虑在大厅内的主楼梯上铺设地毯,已知主楼梯宽为3米,其剖面如图所示,那么需要购买地毯 平方米.【解析】利用平移知识可得:所有台阶的水平距离的和正好与BC的长度相等,所有台阶的竖直高度的和与AB的长度相等.所以地毯总长为AB+BC=1.2+2.4=3.6(米).所以购买地毯面积为3.6×3=10.8(平方米).答案:10.8三、解答题(共47分)13.(10分)作平移后的图形,如图,经过平移,△ABC的边AB移到了EF,作出平移后的三角形.【解析】根据已知得A点的对应点是E点,B点的对应点是F,那么只要确定C 点的对应点即可.作法:过点E作AC的平行线,截取EH=AC,连结FH,则三角形EFH即为所求作的图形.如图.14.(12分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1.(2)计算出三角形ABC的面积.【解析】(1)作出△A1B1C1如图所示.(2)三角形ABC的面积=×3×2=3.15.(12分)如图,四边形ABCD的对角线AC,BD相交于点O,△ABC≌△BA D.求证:(1)OA=O B.(2)AB∥C D.【证明】(1)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=O B.(2)∵△ABC≌△BAD,∴AC=BD,又∵OA=OB,∴AC-OA=BD-OB,即:OC=OD,∴∠OCD=∠OD C.∵∠AOB=∠COD,∠CAB=,∠ACD=,∴∠CAB=∠ACD,∴AB∥C D.16.(13分)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图.(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.【解析】(1)答案不唯一,如:(2)(答案不唯一)。
华师大版七年级下册第10章轴对称平移与旋转单元测试题一、选择题(3分×9=27分)1、下列关于轴对称的说法,错误的是(B)A、成轴对称的两个图形是全等形;B、轴对称图形是全等形;C、对称点所连的线段被对称轴垂直平分;D、用剪纸的方法可以剪出轴对称图形;2、下列关于平移的说法,正确的是(C)A、平移由平移的距离决定;B、平移由平移的方向决定;C、对应点所连的线段平行且相等;D、平移改变了图形的位置和大小;3、下列关于旋转的说法,正确的是(D)A、旋转由旋转方向决定;B、旋转由旋转角度决定;C、旋转由旋转中心决定;D、旋转只改变图形的位置,不改变图形的大小;4、下列关于等边三角形的说法中,错误的是(B)A、等边三角形是轴对称图形;B、等边三角形是中心对称图形;C、等边三角形是旋转对称图形;D、等边三角形有3条对称轴;5、下列图案中,属于轴对称图形的是(A)A.B.C.D.6、下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有(B)A.1种B.2种C.3种D.4种7、如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是(B)A.25°B.30°C.35°D.40°8、如图,这是一个正面为黑、反面为白的未拼完的拼木盘,给出如下四块正面为黑、反面为白的拼木,现欲拼满拼木盘使其颜色一致.那么应该选择的拼木是(B)9、如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( A)A.①B.②C.⑤D.⑥二、填空题(3分×6=18分)10、如图,AB左边是计算器上的数字“5”,若以直线AB为对称轴,那么它的轴对称图形是数字_____2_____.11、如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为.12、如图是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB =8 cm,BE=4 cm,DH=3 cm,则图中阴影部分的面积为___26_______ cm2.13、如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为___30°._______.14、如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,有下列结论:①∠CDF=α;②A1E=CF;③DF=FC;④AD =CE;⑤A1F=CE.其中正确的是___①②⑤_______(写出正确结论的序号).三、解答题(55分)15、(8分)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.16、(8分)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.答案:1217、(9分)如图,△ABC 中,AD 是中线,△ACD 旋转后能与△EBD 重合.(1) 旋转中心是哪一点? (2) 旋转了多少度?(3) 如果M 是AC 的中点,那么经过上述旋转后,点M 转到了什么位置?18、(9分)如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在图2中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.图1图2画法4画法3画法2画法119、(10分)(本题中四个长方形的水平方向的边长均为a ,竖直方向边长均为b )在图18①中,将线段A 1A 2向右平移1个单位到B 1B 2得到封闭图形A 1A 2B 2B 1.在图18②中,将有一个折点的折线A 1A 2A 3向右平移一个单位到B 1B 2B 3得到封闭图形A 1A 2A 3B 3B 2B 1.⑴在图18③中,请你类似地画出一条有两个折点的折线,同时向右平移一个单位,从而得到一个封闭的图形,并用斜线画出阴影部分.⑵请你写出上述三个图形中除去阴影部分的面积:S 1=__,S 2=_,S 3=_. ⑶联想与探索:如图18④,在一块矩形草地上,有一条弯曲的小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分的草地面积是多少?并说明你的猜想是正确的.答案:(1)略,(2)S 1=S 2=S 3=ab -b ,(3)猜想:空白部分的草地面积是ab -b .理由可妨照(2)即能说明问题;20、(11分)如图20-a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE .(1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画山一个变换后的图形c (草图即可),(1)中的结论还成立吗?作出判断不必说明理由; (4)根据以上说理、画图,归纳你的发现.图18①②④ 小③图a图c 图b图20BACFEECBFA。
七年级数学下册《第十章轴对称、平移与旋转》单元测试卷及答案-华东师大版一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形但不是轴对称图形的是()2.下列日常生活现象中,不属于平移的是()A.物体在传送带上匀速运动B.大楼电梯上上下下地迎送来客C.时钟上的秒针在不断地转动D.拉动抽屉时抽屉的运动3.如图,小明想用图形①通过作图变换得到图形②,则下列变换:(1)轴对称变换;(2)平移变换;(3)旋转变换中可行的是()A.(1)(2) B.(1)(3) C.(2)(3) D.(1)(2)(3)4.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它旋转的角度可能是()A.60°B.90°C.72°D.120°5.已知△ABC和△DEF关于点O对称,相应对称点如图所示,则下列结论正确的是()A.AO=BOB.BO=EOC.点A关于点O的对称点是点DD.点D在BO的延长线上6.如图,在△ABC中,边BC在直线MN上,且BC=9 cm.将△ABC沿直线MN平移得到△DEF,点B的对应点为E.若平移的距离为2 cm,则CE的长为()A.2 cm B.7 cm C.2 cm或9 cm D.7 cm或11 cm7.如图,点A在直线l上,△ABC与△AB′C′关于直线l对称,连结BB′分别交AC,AC′于点D,D′,连结CC′,下列结论不一定正确的是()A.∠BAC=∠B′AC′ B.CC′∥BB′C.BD=B′D′ D.AD=DD′8.下列说法正确的是()A.面积相等的两个图形全等B.周长相等的两个图形全等C.形状相同的两个图形全等D.全等图形的形状和大小相同9.如图,面积为12 cm2的△ABC沿BC方向平移到△DEF的位置,平移的距离是边长BC长的两倍,则图中四边形ACED的面积为( )A.24 cm2B.36 cm2C.48 cm2D.无法确定10. 下列说法:①形状相同的图形是全等图形;②全等图形的大小相同,形状也相同;③全等三角形的面积相等;④面积相等的两个三角形全等;⑤若△ABC≌△A1B1C1,△A1B1C1≌△A2B2C2,则△ABC≌△A2B2C2.其中正确的说法有( )A.2个B.3个C.4个D.5个二.填空题(共8小题,每小题3分,共24分)11. 如图所示的图案有________条对称轴.12. 如图,△ABC与△DEC关于点C成中心对称,若AB=2,则DE=________.13. 如图,已知线段DE由线段AB平移而得,AB=DC=4 cm,EC=5 cm,则△DCE的周长是____cm.14. 如图,△ABC≌△ADE,BC的延长线交DA于点F,交DE于点G.若∠DGF=60°,∠B=30°,则∠DFG 的度数为________.15. 等边三角形至少绕其三条高的交点旋转________度才能与自身重合.16. 如图,将△ABC平移到△A′B′C′的位置(点B′在边AC上),若∠B=55°,∠C=100°,则∠AB′A′的度数为________°.17. 如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为________.18. 如图,∠AOB=45°,点M,N分别在射线OA,OB上,MN=7,△OMN的面积为14,点P是直线MN 上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,△OP1P2的面积最小值为__ __.三.解答题(共7小题,66分)19.(8分) 如图,△ABC与△DEF是成中心对称的两个图形,确定它们的对称中心.20.(8分) 在如图所示的正方形网格中,每个小正方形的边长都是1个单位长度,△ABC的顶点均在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1;(2)画出△A2B2C2,使△A2B2C2与△ABC关于点O成中心对称;(3)△A1B1C1与△A2B2C2是否对称?若对称,请在图中画出对称轴或对称中心.21.(8分) 如图,网格中每个小正方形的边长为1,请你认真观察图中的三个网格中阴影部分构成的图案,解答下列问题:(1)这三个图案都具有以下共同特征:①都是________对称图形,都不是________对称图形;②面积都是________.(2)请在图中的空白网格中设计出具备上述特征的图案,要求所画图案不能与所给出的图案相同,且不能由所给出的图案通过平移或旋转得到.22.(8分) 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=62°,求∠A的大小.(2)若AD=9 cm,BC=5 cm,求AB的长.23.(10分) 如图,△ABC沿直线l向右平移4 cm得到△FDE,且BC=6 cm,∠ABC=45°.(1)求BE的长.(2)求∠FDB的度数.(3)写出图中互相平行的线段(不另添加线段).24.(10分) 在△ABC中,AD平分∠BAC交BC于点D.(1)在图①中,将△ABD沿BC的方向平移,使点D移至点C的位置,得到△A′B′D′,且A′B′交AC于点E,猜想∠B′EC与∠A′之间的关系,并说明理由;(2)在图②中,将△ABD沿AC的方向平移,使A′B′经过点D,得到△A′B′D′,求证:A′D′平分∠B′A′C.25.(14分) 如图,点O在直线AB上,OC⊥AB.在Rt△ODE中,∠ODE=90°,∠DOE=30°,先将△ODE 一边OE与OC重合(如图①),然后将△ODE绕点O按顺时针方向旋转(如图②),当OE与OB重合时停止旋转.(1)当∠AOD=80°时,则旋转角∠COE的大小为__ __;(2)当OD在OC与OB之间时,求∠AOD-∠COE的值;(3)在△ODE的旋转过程中,若∠AOE=4∠COD时,求旋转角∠COE的大小.参考答案1-5BCBCD 6-10DDDBB11.212. 213. 1314. 90°15. 12016. 2517. 3218.819. 解:(1)连结AD;(2)取AD的中点O,则点O就是它们的对称中心,如图(作法不唯一,也可以连结BE 或CF).20.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)△A1B1C1与△A2B2C2成轴对称,对称轴为直线EF,如图.21. 解:(1)①中心;轴②4(2)如图所示.(答案不唯一)22. 解:(1)∵BE⊥AD,∴∠EBD=90°.∵△ACF≌△DBE,∴∠FCA=∠EBD=90°.∴∠F+∠A=90°,∵∠F=62°,∴∠A=28°.(2)∵△ACF≌△DBE,∴CA=BD.∴CA-CB=BD-CB,即AB=CD.∵AD=9 cm,BC=5 cm,∴AB+CD =9-5=4(cm),∴AB=CD=2 cm.23. 解:(1)由平移知,BD=CE=4 cm.∵BC=6 cm,∴BE=BC+CE=6+4=10(cm).(2)由平移知,∠FDE=∠ABC=45°,∴∠FDB=180°-∠FDE=180°-45°=135°.(3)图中互相平行的线段有AB∥DF,AC∥FE.24. 解:(1)∠B′EC=2∠A′,理由:∵△A′B′D′是由△ABD平移而来,∴A′B′∥AB,∠A′=∠BAD,∴∠B′EC =∠BAC.∵AD平分∠BAC,∴∠BAC=2∠BAD.∴∠B′EC=2∠A′.(2)证明:∵△A′B′D′是由△ABD平移而来,∴A′B′∥AB,∠B′A′D′=∠BAD,∴∠B′A′C=∠BAC.∵AD平分∠BAC,∴∠BAC=2∠BAD.∴∠B′A′C=2∠B′A′D′,∴A′D′平分∠B′A′C.25. 解:(1)∠AOE=∠AOD+∠DOE=80°+30°=110°,则∠COE=∠AOE-∠AOC=110°-90°=20°(2)∠AOD-∠COE=(∠AOC+∠COD)-(∠COD+∠DOE)=∠AOC+∠COD-∠COD-∠DOE=∠AOC -∠DOE=90°-30°=60°(3)设∠COE=x,当OD在OA与OC之间时,∠AOE=∠AOC+∠COE=90°+x,∠COD=30°-x,由题意得90°+x=4(30°-x),解得x=6°;当OD在OC与OB之间时,∠AOE=∠AOC+∠COE=90°+x,∠COD=x-30°,由题意得90°+x=4(x-30°),解得x=70°,综上所述,∠AOE=4∠COD时,旋转角∠COE 为6°或70°。
七年级数学下册《第十章 轴对称、平移与旋》单元测试卷及答案解析-华东师大版 一、单选题1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A .B .C .D .2.下列四个图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .3.如图,将△ABC 绕点A 逆时针旋转65°得到△AED ,则△BAE 的度数是( )A .65°B .45°C .35°D .25°4.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”、“谷雨”、“白露”、“大雪”,其中是中心对称图形的是( )A .B .C .D .5.如图,若ABC DEF ≌,则D ∠等于( )A .30︒B .50︒C .60︒D .100︒6.如图,在ABC 中40C ∠=︒,把ABC 沿BC 边上的高AM 所在的直线翻折,点C 落在边CB 的延长线上的点C '处,如果20BAC ∠='︒,则BAC ∠的度数为( )A .80︒B .75︒C .85︒D .70︒7.如图,DEF 经过怎样的平移得到ABC ( )A .把DEF 向左平移4个单位,再向上平移2个单位B .相DEF 向右平移4个单位,再向下平移2个单位C .把DEF 向右平移4个单位,再向上平移2个单位D .把DEF 向左平移4个单位.再向下平移2个单位8.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A'OB',若△AOB =15°,则△AOB'的度数是( )A .25°B .30°C .35°D .40°9.下列图案中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .10.如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中△ABC 是格点三角形,请你找出方格中所有与△ABC 全等,且以A 为顶点的格点三角形,这样的三角形共有( )个(△ABC 除外).A .2B .3C .4D .5二、填空题11.如图,在ABC 中,D 是BC 上一点250ABC BAD ∠=∠=︒,将ABD 沿着AD 翻折得到AED ,则CDE ∠= .12.如图,△ABC 沿BC 所在直线向右平移得到△DEF ,已知EC =4,BF =18,则平移的距离为 .13.两块不同的三角板按如图1所示摆放,AC 边重合4530BAC DAC ∠∠=︒=︒,接着如图2保持三角板ABC 不动,将三角板ACD 绕着点C 按顺时针以每秒10︒的速度旋转90︒后停止.在此旋转过程中,当旋转时间t = 秒时三角板A CD ''有一条边与三角板ABC 的一条边恰好平行.14.三个全等三角形摆成如图所示的形式,则αβγ∠+∠+∠的度数为 .三、作图题15.如图,在正方形网格中,ABC 各顶点都在格点上,点A ,B ,C 的坐标分别为()51-,,()54-,和()14-,.四、解答题16.如图是正方形纸片ABCD ,分别沿AE 、AF ,折叠后边AB 与AD 恰好重叠于AG ,求△EAF 的大小.17.如图,在一块长为20m ,宽为10m 的长方形草地上,修建了宽为1m 的小路,求这块草地的绿地面积.18.如图,已知30BAC ∠=︒,把ABC 绕着点A 顺时针旋转,使得点B 与CA 的延长线上的点D 重合,求AEC ∠的度数.19.如图,点P 是△AOB 外的一点,点Q 与P 关于OA 对称,点R 与P 关于OB 对称,直线QR 分别交OA ,OB 于点M ,N ,若PM=PN=3,MN=4,求线段QR 的长.20.如图,ACB 和DCE 均为等边三角形,点A 、D 、E 在同一直线上,连结BE .试说明AD BE =.聪明的小亮很快就找到了解决该问题的方法,请你帮助小亮把说理过程补充完整.解:∵ACB 和DCE 均为等边三角形∴CA CB =,CD=CE ,ACB ∠= 60=︒(等边三角形的性质) ∴ACD ∠=即ACD 绕点C 按逆时针方向旋转 度,能够与 重合 ∴ACD ≌ (旋转变换的性质) ∴AD BE =( ).五、综合题21.如图,已知110AOB ∠=︒,OC 在AOB ∠内部,OD 在BOC ∠的内部,40COD ∠=︒.(1)若50AOC ∠=︒,则BOD ∠= ;若AOC x ∠=︒,则BOD ∠= (用含x 的代数式表示);(2)若2AOD BOC ∠=∠,求AOC ∠的度数;(3)将AOC ∠以OC 为折痕进行翻折,OA 落在OE 处,将BOD ∠以OD 为折痕进行翻折,OB 落在OF 处,AOC ∠的度数变化时EOF ∠的度数是否发生变化?若变化,请说明理由:若不变,请求出EOF ∠的度数.22.如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC 进行平移,得到△A′B′C′,使点A 与A′对应,请在网格中画出△A′B′C′;(2)线段AA′与线段CC′的关系是 .23.如图1,AB CD 点E ,F 分别在直线CD AB ,上2BEC BEF ∠∠=,过点A 作AG BE ⊥的延长线交于点G ,交CD 于点N ,AK 平分BAG ∠,交EF 于点H ,交BE 于点M.(1)直接写出AHE FAH KEH ∠∠∠,,之间的关系:_ . (2)若12BEF BAK ∠=∠,求AHE ∠. (3)如图2,在(2)的条件下,将KHE 绕着点E 以每秒5°的速度逆时针旋转,旋转时间为t ,当KE 边与射线ED 重合时停止,则在旋转过程中,当KHE 的其中一边与ENG 的某一边平行时直接写出此时t 的值.参考答案与解析1.【答案】B【解析】【解答】解:千里之行,四个字中,可以看作是轴对称图形的是:里;故答案为:B .【分析】根据轴对称图形的定义逐项判断即可。
七年级数学下册第10章轴对称、平移与旋转单元检测试题姓名:__________ 班级:__________一、单选题(共10题;共30分)1.下列图形既是轴对称图形又是中心对称图形的是()A. B. C. D.2.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转90°后,能与原图形完全重合的是()A. B. C. D.3.如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于( )A. 55°B. 45°C. 40°D. 35°4.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A. 4B. 5C. 6D. 75. 如果齿轮A以逆时针方向旋转,齿轮E旋转的方向()A. 顺时针B. 逆时针C. 顺时针或逆时针D. 不能确定6.如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四边形ABCD是平行四边形,下列结论错误的是()A. 沿AE所在直线折叠后,△ACE和△ADE重合B. 沿AD所在直线折叠后,△ACE和△ADE重合C. 以A为旋转中心,把△ACE逆时针旋转90°后与△ADB重合D. 以A为旋转中心,把△ACE逆时针旋转270°后与△ADB重合7.如图,在3×3的网格中,与ABC成轴对称,顶点在格点上,且位置不同的三角形有()A. 5个B. 6个C. 7个D. 8个8.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()A. 把△ABC绕点C逆时针方向旋转90°,再向下平移2格B. 把△ABC绕点C顺时针方向旋转90°,再向下平移5格C. 把△ABC向下平移4格,再绕点C逆时针方向旋转180°D. 把△ABC向下平移5格,再绕点C顺时针方向旋转180°9.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()A. B. C. D.10.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是点()A. A点B. B点C. C点D. D点二、填空题(共8题;共24分)11.线段、两相交直线、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形、圆等图形中是中心对称图形的有:________.12.正六边形可以看成由基本图形________经过________次旋转而成.13.把汉字“目”绕其中心旋转90°后,所得图形与汉字________相似.14.如图,△ABC 中, ,,点D,E分别在线段,上,将沿直线DE翻折,使B落在处,,分别交AC于F,G. 若,则的度数为________.15.如图所示,直径为4cm的⊙O1平移5cm到⊙O2,则图中阴影部分面积为________cm2.16.如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于________cm。
七年级数学下册第10章《轴对称、平移与旋转》单元综合测试题一、单选题(共10题;共30分)1.下列图形既是轴对称图形又是中心对称图形的是()A. B. C. D.2.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转90°后,能与原图形完全重合的是()A. B. C. D.3.如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A.55°B.45°C.40°D.35°4.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4B.5C.6D.75.如果齿轮A以逆时针方向旋转,齿轮E旋转的方向()A.顺时针B.逆时针C.顺时针或逆时针D.不能确定6.如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四边形ABCD是平行四边形,下列结论错误的是()A.沿AE所在直线折叠后,△ACE和△ADE重合B.沿AD所在直线折叠后,△ACE和△ADE重合C.以A为旋转中心,把△ACE逆时针旋转90°后与△ADB重合D.以A为旋转中心,把△ACE逆时针旋转270°后与△ADB重合7.如图,在3×3的网格中,与ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个8.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°9.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()A. B. C. D.10.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是点()A.A点B.B点C.C点D.D点二、填空题(共8题;共24分)11.线段、两相交直线、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形、圆等图形中是中心对称图形的有:________.12.正六边形可以看成由基本图形________经过________次旋转而成.13.把汉字“目”绕其中心旋转90°后,所得图形与汉字________相似.14.如图,△ABC中,,,点D,E分别在线段,上,将沿直线DE翻折,使B落在处,,分别交AC于F,G.若,则的度数为________.15.如图所示,直径为4cm的⊙O1平移5cm到⊙O2,则图中阴影部分面积为________cm2.16.如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于________cm。
华东师大版七年级数学下册《第十章轴对称、平移与旋转》单元检测卷-带答案(考试时间:120分钟;全卷满分:150分)学校:___________班级:___________姓名:___________考号:___________一、选择题:本大题共12个小题,每小题4分,共48分1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字中是轴对称图形的是()2.下列图形中,属于中心对称图形的是()3.如图,已知△ABC与△A′B′C′关于直线l对称,∠B=110°,∠A′=25°,则∠C的度数为()A.25° B.45° C.70° D.110°4.如图,将△ABC绕点C按照顺时针方向旋转35°得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A的度数为()A.45° B.50° C.55° D.60°5.已知△ABC≌△DEF,△DEF的周长为13,AB+BC=7,则AC的长为()A.3 B.4 C.6 D.206.下列说法中正确的是()A.平移不改变图形的形状和大小,旋转则改变图形的形状和大小B.图形可以向某方向平移一定的距离,也可以向某方向旋转一定距离C.平移和旋转的共同点是改变图形的位置D.在平移和旋转图形中,对应角相等,对应线段相等且平行7.如图,把△ABC以点A为中心逆时针旋转得到△ADE,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论中一定正确的是()A.∠CAE=∠BED B.AB=AE C.∠ACE=∠ADE D.CE=BD 8.如图是4×4的网格图,将图中标有①,②,③,④的一个小正方形涂灰,使所有的灰色图形构成中心对称图形,则涂灰的小正方形是()A.① B.② C.③ D.④9.如图,以正六边形ABCDEF的顶点D为旋转中心,按顺时针方向旋转,使得新正六边形A′B′C′D′E′F′的顶点落在直线CD上,则正六边形ABCDEF至少旋转()A.30° B.45° C.60° D.90°10.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3的度数为()A.90° B.135° C.150° D.180°11.如图,某园林内,在一块长33 m,宽21 m的长方形土地上,有两条斜交叉的小路,其余地方种植花卉进行绿化.已知小路的出路口均为1.5 m,则绿化地的面积为()A.693 B.614.25 C.78.75 D.58912.如图,△ABC≌△AEF,点F在BC上,下列结论:①AC=AF;②∠FAB=∠EAB;③∠FAC=∠BAE;④若∠C=50°,∠FAC=80°,则∠BFE=80°.其中错误的有()A.1个 B.2个 C.3个 D.4个二、填空题:本大题共6个小题,每小题4分,共24分13.如图,如果△ABC和△A′B′C′关于点O中心对称,那么AA′必过点,且被这个点14.如图是一个轴对称图形,AD所在的直线是对称轴,则线段BO,CF的对称线段分别是;△ACE的对称三角形是15.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别是S1,S2,则S1 S2 (选填“>”“<”或“=”)16.如图,在正方形ABCD中,E为边CD上的一点,连接BE,∠BEC=60°,将△BEC绕点C按顺时针方向旋转90°得到△DFC,连接EF,则∠EFD的度数为17.用等腰直角三角尺画∠AOB=45°,并将三角尺沿OB方向平移到如图所示的虚线处,然后将其绕点M按逆时针方向旋转22°,则三角尺的斜边与边OA的夹角α为18.对于平面图形上的任意两点P,Q,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点P′,Q′,保持PP′=QQ′,我们把这种对应点连线相等的变换称为“同步变换”.对于三种变换:①平移;②旋转;③轴对称;④中心对称,其中一定是“同步变换”的有 (选填序号)三、解答题:本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤19.(10分)如图,△ABC和△ADE关于直线MN对称,BC与DE的交点F在直线MN 上.若∠BAC=108°,∠BAE=30°,求∠EAF的度数20.(10分)在如图的方格纸中,每个小正方形的边长都为1,△ABC与△A1B1C1构成的图形是中心对称图形(1)画出此中心对称图形的对称中心;(2)画出将△A1B1C1沿直线DE方向向上平移5格得到的△A2B2C2;(3)以点C2为旋转中心将△A2B2C2顺时针方向旋转90°得到△A3B3C2,画出△A3B3C221.(10分)已知△ABC≌△EFG,AB=EF,BC=FG,∠A=58°,∠F-∠G=32°.求∠B与∠C的度数22.(10分)如图,△AOC逆时针旋转到△BOD,其中∠AOC=120°,点A,O,D 在同一直线上.(1)旋转中心是哪一点?(2)旋转了多少度?(3)指出对应线段、对应角及对应点23.(12分)将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE(1)如果AC=6 cm,BC=8 cm,试求△ACD的周长;(2)如果∠CAD∶∠BAD=1∶2,求∠B的度数24.(12分)如图,已知△ABC≌△AEF,∠BAE=25°,∠F=57°(1)请证明∠BAE=∠CAF;(2)△ABC可以经过图形的变换得到△AEF.请描述这个变换;(3)求∠AMB的度数25.(14分)如图,已知直线l1∥l2,点A,B在直线l1上,点C,D在直线l2上,点C在点D的右侧,∠ADC=80°,∠ABC=n°,BE平分∠ABC,DE平分∠ADC,直线BE,DE交于点E,且点E在l1与l2之间(1)写出∠EDC的度数:________;(2)试求∠BED的度数(用含n的代数式表示);(3)将线段BC向右平行移动,使点B在点A的右侧,其他条件不变,请画出图形并直接写出∠BED的度数(用含n的代数式表示)参考答案1.( C )2.( B )3.( B )4.( C )5.( C )6.( C )7.( A )8.( C )9.( C )10.( B )11.( B )12.( A )13.O,平分14.CO,BE;△ABF15.S1=S216.15° 17.22° 18.①19、解:∵∠BAC =108°,∠BAE =30° ∴∠CAE =108°-30°=78° 再根据对称性,得∠EAF =∠CAF∴∠EAF =12∠CAE =39°20解:(1)对称中心点O 如图所示 (2)△A 2B 2C 2如图所示 (3)△A 3B 3C 2如图所示21、解:∵△ABC ≌△EFG ,AB =EF ,BC =FG ∴∠A =∠E ,∠B =∠F ,∠C =∠G∵∠A =58°,∴∠B +∠C =180°-∠A =180°-58°=122° ∵∠F -∠G =32°,即∠B -∠C =32°,∴∠B =77°,∠C =45° 22、解:(1)旋转中心为点O(2)∵∠BOD =∠AOC ,∠AOC =120°,点A ,O ,D 在同一直线上 ∴∠AOB =180°-120°=60°∵线段OA的对应线段为OB∴旋转角为∠AOB=60°.即旋转了60°(3)对应角:∠A对应∠OBD; ∠C对应∠D; ∠AOC对应∠ BOD;对应线段:OA对应OB;OC对应OD;CA对应DB;对应点:A对应 B; C对应D23、解:(1)由折叠的性质可得BD=AD,∠B=∠BAD∵△ACD的周长为AC+AD+CD∴△ACD的周长为AC+BD+CD=AC+BC=6+8=14(cm)(2)设∠CAD=x°,则∠BAD=2x°∵∠B=∠BAD,∴∠B=2x°∵∠B+∠DAB+∠CAD=90°,∴2x°+2x°+x°=90°,∴x=18 ∴∠B=36°24、(1)证明:∵△ABC≌△AEF∴∠BAC=∠EAF∴∠BAC-∠PAF=∠EAF-∠PAF∴∠BAE=∠CAF(2)解:由题意知△ABC绕点A顺时针旋转25°可以得到△AEF(3)解:∵△ABC≌△AEF,∠F=57°,∠BAE=25°∴∠C=∠F=57°,∠CAF=∠BAE=25°∴∠AMB=∠C+∠CAF=57°+25°=82°25第 11 页 共 11 页解:(1)∵DE 平分∠ADC ,∠ADC =80°,∴∠EDC =12∠ADC =40°(2)如题图,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ∴∠ABE =∠BEF ,∠CDE =∠DEF∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n °,∠ADC =80° ∴∠ABE =12n °,∠CDE =40°∴∠BED =∠BEF +∠DEF =12n °+40°(3)如答图①,点A 在点B 的左边时∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n °,∠ADC =80° ∴∠ABE =12n °,∠CDE =40°,∵AB ∥CD ,∴AB ∥CD ∥EF∴∠BEF =180°-∠ABE =180°-12n °,∠CDE =∠DEF =40°∴∠BED =∠BEF +∠DEF =180°-12n °+40°=220°-12n °;如答图②,∠BED =12n °+140°综上所述,当点B 在点A 右侧时,∠BED 的度数为12n °+140°或220°-12n °。
第10章 轴对称、平移与旋转 单元测试卷一.选择题(共10小题) 1.下列运动属于平移的是( ) A .小朋友荡秋千B .自行车在行进中车轮的运动C .地球绕着太阳转D .小华乘手扶电梯从一楼到二楼 2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.下列运动属于旋转的是( ) A .火箭升空的运动 B .足球在草地上滚动C .大风车运动的过程D .传输带运输的东西4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.如图是6级台阶侧面示意图,如果要在台阶上铺红地毯,那么地毯长度至少需要( )A .8米B .5米C .4米D .3米6.如图,将ABC ∆绕点A 按逆时针方向旋转100︒,得到△11AB C ,若点1B 在线段BC 的延长线上,则11BB C ∠的大小为( )A .70︒B .80︒C .84︒D .86︒7.如图,AOB ∆中,30B ∠=︒,将AOB ∆绕点O 顺时针旋转52︒得到△A OB '',点A '与点A 是对应点,边A B ''与边OB 交于点C (点A '不在OB 上),则A CO ∠'的度数为( )A .22︒B .52︒C .60︒D .82︒8.如图是某公园里一处矩形风景欣赏区ABCD ,长100AB =米,宽50BC =米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为2米,那小明沿着小路的中间,从出口A 到出口B 所走的路线(图中虚线)长为( )A .148米B .196米C .198米D .200米9.已知ABC ∆≅△A C B ''',B ∠与C ∠',C ∠与B ∠'是对应角,有下列4个结论:①BC C B ='';②AC A B ='';③AB A B ='';④ACB A B C ∠=∠''',其中正确的结论有( ) A .1个B .2个C .3个D .4个10.如图,长方形ABCD 中,6AB =,第一次平移长方形ABCD 沿AB 的方向向右平移5个单位长度,得到长方形1111A B C D ,第2次平移长方形1111A B C D 沿11A B 的方向向右平移5个单位长度,得到长方形2222A B C D ,⋯,第n 次平移长方形1111n n n n A B C D ----沿11n n A B --的方向向右平移5个单位长度,得到长方形(2)n n n n A B C D n >,若n AB 的长度为2026,则n 的值为( )A .407B .406C .405D .404二.填空题(共6小题)11.请观察图中的5组图案,其中是全等形的是 (填序号).12.如果一个正多边形的每一个内角都是144︒,则该正多边形的对称轴条数为 .13.如图,将AOB ∆绕点O 按逆时针方向旋转46︒后得到COD ∆.若16AOB ∠=︒,则AOD ∠= 度.14.计划在一块长为10米,宽为7米的长方形草坪上,修建一条宽为2米的人行道,则剩余草坪的面积为 平方米.15.如图,在ABC ∆中,20C ∠=︒,将ABC ∆绕点A 顺时针旋转60︒得到ADE ∆,则E ∠的度数是 .16.大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,现把小正方形以1厘米/秒的速度向右沿直线平移,同时大正方形以1厘米/秒的速度向左沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S平方厘米.当2S=时,平移的时间为秒.三.解答题(共7小题)17.将图中的小船向左平移5 格,画出平移后的小船.18.如图,在Rt ABC∆.ACB∆中,90∠=︒,将ABC∆沿AB方向向右平移得到DEF∠=︒,33A(1)试求出E∠的度数;(2)若9=.请求出CF的长度.DB cmAE cm=,219.如图,按下列要求画图,不要求写出画图方法.(1)画线段AE BC⊥于F;⊥于E,线段AF DC(2)画直线//DG AC交BC的延长线于G;(3)把ABC∆进行适当的平移,使AC边落在直线DG上(其中点C与点G重合),请作出平移后的HIG∆.20.如图,在长方形ABCD 中,把ADE ∆沿AE 折叠得AED ∆',若30BAD ∠'=︒. (1)求AED ∠'的度数;(2)把AED ∆'绕A 点逆时针旋转60︒得△11AD E ,画出△11AD E ; (3)直接写出1AD E ∠和11E D E ∠.21.如图1、图2,是两张形状、大小完全相同的方格纸,点A 、B 、C 均在小正方形的顶点上,请分别在两图中确定一点D (点D 在小正方形的顶点上),并画出ABD ∆和ACD ∆,使得他们均为轴对称图形,且分别满足下列要求:(1)图1中四边形ABDC 为中心对称图形,但不是轴对称图形; (2)图2中四边形ABDC 不是轴对称图形,也不是中心对称图形.22.如图,由边长为1的小正方形组成的网格,ABC ∆的顶点都在格点上.请分别按下列要求完成解答:(1)平移ABC ∆,使顶点A 平移到D 处,画出平移后的DEF ∆. (2)画出ABC ∆的高CM ,中线AN ; (3)BE 与AD 有什么关系? (4)求出DEF ∆的面积.23.如图1,将一副三角板的直角重合放置,其中30CDE∠=︒.∠=︒,45A(1)如图1,求EFB∠的度数;(2)若三角板ACB的位置保持不动,将三角板CDE绕其直角顶点C顺时针方向旋转.①当旋转至如图2所示位置时,恰好//∠的度数为︒;CD AB,则ECB②若将三角板CDE继续绕点C旋转,直至回到图1位置.在这一过程中,是否还会存在∠的CDE∆其中一边与AB平行?如果存在,请你画出示意图,并直接写出相应的ECB 大小;如果不存在,请说明理由.参考答案一.选择题(共10小题)1.下列运动属于平移的是()A.小朋友荡秋千B.自行车在行进中车轮的运动C.地球绕着太阳转D.小华乘手扶电梯从一楼到二楼【解答】解:A、小朋友荡秋千,属于旋转变换,此选项错误;B、行驶的自行车的车轮,属于旋转变换,此选项错误;C、地球绕着太阳转,属于旋转变换,此选项错误;D、小华乘手扶电梯从一楼到二楼,属于平移变换,此选项正确;故选:D.2.下列图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、是轴对称图形;故选:B.3.下列运动属于旋转的是()A.火箭升空的运动B.足球在草地上滚动C.大风车运动的过程D.传输带运输的东西【解答】解:A、火箭升空的运动,是平移,故此选项错误;B、足球在草地上滚动,不是旋转,故此选项错误;C、大风车运动的过程,是旋转,故此选项正确;D、传输带运输的东西,是平移,故此选项错误;故选:C .4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【解答】解:A 、既是轴对称图形,又是中心对称图形,故此选项符合题意; B 、不是轴对称图形,是中心对称图形,故此选项不合题意; C 、是轴对称图形,不是中心对称图形,故此选项不合题意;D 、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A .5.如图是6级台阶侧面示意图,如果要在台阶上铺红地毯,那么地毯长度至少需要( )A .8米B .5米C .4米D .3米【解答】解:Q 六级台阶的高等于3米,六级台阶的长等于5米, ∴要买地毯的长:358+=(米).故选:A .6.如图,将ABC ∆绕点A 按逆时针方向旋转100︒,得到△11AB C ,若点1B 在线段BC 的延长线上,则11BB C ∠的大小为( )A .70︒B .80︒C .84︒D .86︒【解答】解:由旋转的性质可知:11B AB C ∠=∠,1AB AB =,1100BAB ∠=︒. 1AB AB =Q ,1100BAB ∠=︒,140B BB A ∴∠=∠=︒. 1140AB C ∴∠=︒.11111404080BB C BB A AB C ∴∠=∠+∠=︒+︒=︒.故选:B .7.如图,AOB ∆中,30B ∠=︒,将AOB ∆绕点O 顺时针旋转52︒得到△A OB '',点A '与点A 是对应点,边A B ''与边OB 交于点C (点A '不在OB 上),则A CO ∠'的度数为( )A .22︒B .52︒C .60︒D .82︒【解答】解:根据旋转的性质可知30B B ∠'=∠=︒,52BOB ∠'=︒, 305282A CO B BOC ∴∠'=∠'+∠=︒+︒=︒.故选:D .8.如图是某公园里一处矩形风景欣赏区ABCD ,长100AB =米,宽50BC =米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为2米,那小明沿着小路的中间,从出口A 到出口B 所走的路线(图中虚线)长为( )A .148米B .196米C .198米D .200米【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB ,纵向距离等于(2)2AD -⨯,图是某公园里一处矩形风景欣赏区ABCD ,长100AB =米,宽50BC =米,为100(502)2196+-⨯=米,故选:B .9.已知ABC ∆≅△A C B ''',B ∠与C ∠',C ∠与B ∠'是对应角,有下列4个结论:①BC C B ='';②AC A B ='';③AB A B ='';④ACB A B C ∠=∠''',其中正确的结论有( )A .1个B .2个C .3个D .4个【解答】解:ABC ∆≅Q △A C B ''',B ∠与C ∠',C ∠与B ∠'是对应角, BC C B ∴='',AC A B ='',ACB A B C ∠=∠''', ∴①②④共3个正确的结论.AB 与A B ''不是对应边,不正确.故选:C .10.如图,长方形ABCD 中,6AB =,第一次平移长方形ABCD 沿AB 的方向向右平移5个单位长度,得到长方形1111A B C D ,第2次平移长方形1111A B C D 沿11A B 的方向向右平移5个单位长度,得到长方形2222A B C D ,⋯,第n 次平移长方形1111n n n n A B C D ----沿11n n A B --的方向向右平移5个单位长度,得到长方形(2)n n n n A B C D n >,若n AB 的长度为2026,则n 的值为( )A .407B .406C .405D .404【解答】解:6AB =Q ,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形1111A B C D ,第2次平移将矩形1111A B C D 沿11A B 的方向向右平移5个单位,得到矩形2222A B C D ⋯, 15AA ∴=,125A A =,211112651A B A B A A =-=-=, 11122155111AB AA A A A B ∴=++=++=, 2AB ∴的长为:55616++=;125111AB =⨯+=Q ,235116AB =⨯+=, (1)512026n AB n ∴=+⨯+=,解得:404n =. 故选:D .二.填空题(共6小题)11.请观察图中的5组图案,其中是全等形的是(1)(4)(5)(填序号).【解答】解:5组图案,其中是全等形的是(1)(4)(5).故答案为:是(1)(4)(5).12.如果一个正多边形的每一个内角都是144︒,则该正多边形的对称轴条数为10.【解答】解:设正多边形是n边形,由内角和公式得-︒=︒⨯,n n(2)180144解得:10n=,故该正多边形的对称轴条数为:10.故答案为:10.13.如图,将AOB∠=︒,则AODAOB∠=∆.若16∆绕点O按逆时针方向旋转46︒后得到COD30度.【解答】解:如图,由题意及旋转变换的性质得:46∠=︒,BODQ,∠=︒AOB16∴∠=∠-∠=︒-︒=︒,461630AOD BOD AOB故答案为:30.14.计划在一块长为10米,宽为7米的长方形草坪上,修建一条宽为2米的人行道,则剩余草坪的面积为56平方米.【解答】解:长草部分的面积为7(102)7856⨯-=⨯=(平方米),即长草部分的面积为56平方米.故答案为:56.15.如图,在ABC ∆中,20C ∠=︒,将ABC ∆绕点A 顺时针旋转60︒得到ADE ∆,则E ∠的度数是 20︒ .【解答】解:ABC ∆Q 绕点A 顺时针旋转60︒得ADE ∆,C E ∴∠=∠,20C ∠=︒Q ,20E ∴∠=︒,故答案为:20︒.16.大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,现把小正方形以1厘米/秒的速度向右沿直线平移,同时大正方形以1厘米/秒的速度向左沿直线平移,设平移的时间为t 秒,两个正方形重叠部分的面积为S 平方厘米.当2S =时,平移的时间为 0.5或2.5 秒.【解答】解:当2S =时,重叠部分长方形的宽221cm =÷=,重叠部分在大正方形的左边时,120.5t =÷=秒,重叠部分在大正方形的右边时,(421)2 2.5t =+-÷=秒,综上所述,小正方形平移的时间为0.5或2.5秒;故答案为:0.5或2.5.三.解答题(共7小题)17.将图中的小船向左平移 5 格, 画出平移后的小船 .【解答】解: 如图所示:.18.如图,在Rt ABC ∆中,90ACB ∠=︒,33A ∠=︒,将ABC ∆沿AB 方向向右平移得到DEF ∆. (1)试求出E ∠的度数;(2)若9AE cm =,2DB cm =.请求出CF 的长度.【解答】解:(1)Q 在Rt ABC ∆中,90ACB ∠=︒,33A ∠=︒,903357CBA ∴∠=︒-︒=︒,由平移得,57E CBA ∠=∠=︒;(2)由平移得,AD BE CF ==,9AE cm =Q ,2DB cm =, 1(92) 3.52AD BE cm ∴==⨯-=, 3.5CF cm ∴=.19.如图,按下列要求画图,不要求写出画图方法.(1)画线段AE BC ⊥于E ,线段AF DC ⊥于F ;(2)画直线//DG AC 交BC 的延长线于G ;(3)把ABC ∆进行适当的平移,使AC 边落在直线DG 上(其中点C 与点G 重合),请作出平移后的HIG ∆.【解答】解:(1)如图,AE 、AF 为所作;(2)如图,DG 为所作;(3)如图,HIG ∆为所作.20.如图,在长方形ABCD 中,把ADE ∆沿AE 折叠得AED ∆',若30BAD ∠'=︒.(1)求AED ∠'的度数;(2)把AED ∆'绕A 点逆时针旋转60︒得△11AD E ,画出△11AD E ;(3)直接写出1AD E ∠和11E D E ∠.【解答】解:(1)30BAD '∠=︒Q ,90BAD ∠=︒,903060DAD '∴∠=︒-︒=︒,由折叠得,30DAE D AE ∠=∠'=︒,在Rt EAD ∆'中,903060AED '∠=︒-︒=︒.(2)如图所示:(注:图形要保证1E 、1D 、E 三点共线.)(3)1190D ADE AD E '∠=∠=∠=︒Q ,D ∴与1D 重合,190AD E ∴∠=︒,11180E D E ∠=︒.21.如图1、图2,是两张形状、大小完全相同的方格纸,点A 、B 、C 均在小正方形的顶点上,请分别在两图中确定一点D (点D 在小正方形的顶点上),并画出ABD ∆和ACD ∆,使得他们均为轴对称图形,且分别满足下列要求:(1)图1中四边形ABDC 为中心对称图形,但不是轴对称图形;(2)图2中四边形ABDC 不是轴对称图形,也不是中心对称图形.【解答】解:如图,(1)图1中ABD ∆和ACD ∆即为所求;(2)图2中ABD ∆和ACD ∆即为所求.22.如图,由边长为1的小正方形组成的网格,ABC ∆的顶点都在格点上.请分别按下列要求完成解答:(1)平移ABC ∆,使顶点A 平移到D 处,画出平移后的DEF ∆.(2)画出ABC ∆的高CM ,中线AN ;(3)BE 与AD 有什么关系?(4)求出DEF ∆的面积.【解答】解:(1)如图,即为平移后的DEF∆;(2)如图,高CM,中线AN即为所求;(3)BE与AD的关系为:平行且相等;(4)DEF∆的面积为:11125135524125 222-⨯⨯-⨯⨯-⨯⨯-⨯=.23.如图1,将一副三角板的直角重合放置,其中30A∠=︒,45CDE∠=︒.(1)如图1,求EFB∠的度数;(2)若三角板ACB的位置保持不动,将三角板CDE绕其直角顶点C顺时针方向旋转.①当旋转至如图2所示位置时,恰好//CD AB,则ECB∠的度数为30︒;②若将三角板CDE继续绕点C旋转,直至回到图1位置.在这一过程中,是否还会存在CDE∆其中一边与AB平行?如果存在,请你画出示意图,并直接写出相应的ECB∠的大小;如果不存在,请说明理由.【解答】解:(1)30∠=︒,CDEQ,45A∠=︒∠=︒-︒=︒,EABC∴∠=︒-︒=︒,904545903060∴∠=∠-∠=︒-︒=︒;EFB ABC E604515(2)①//Q,CD AB30∴∠=∠=︒,ACD AQ,∠+∠=∠=︒90ACD ACE DCE∠+∠=∠=︒,90ECB ACE ACB∴∠=∠=︒;ECB ACD30②如图1,//ACE A∠=∠=︒,CE AB,30ECB ACB ACE∠=∠+∠=︒+︒=︒;9030120如图2,//DE AB时,延长CD交AB于F,则45∠=∠=︒,BFC D在BCFBCF B BFC∠=︒-∠-∠,∆中,180=︒-︒-︒=︒,180604575∴=∠+∠=︒+︒=︒;ECB BCF ECF7590165如图3,//∠=∠=︒,BCD BCD AB时,60∠=∠+∠=︒+︒=︒;6090150ECB BCD EDC如图4,//∠=∠=︒,ECB BCE AB时,60如图5,//∠=︒-︒=︒.ECBDE AB时,604515。
(新课标)华东师大版七年级下册第10章轴对称、平移与旋转单元检测题一、选择题(每小题3分,共30分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看做轴对称图形的是()A B C D2.下列四个图案中,属于中心对称图形的是()3.如图1,该图形围绕其旋转中心,按下列角度旋转后,能与自身重合的是()A.150°B.120°C.90°D.60°图1图24.有下列说法:①形状相同的三角形是全等三角形;②面积相等的三角形是全等三角形;③全等三角形的周长相等;④经过平移、翻折或旋转得到的三角形与原三角形是全等三角形.其中正确的有()A. 1个B. 2个C. 3个D. 4个5.已知图2中的两个三角形全等,则∠α的度数是()A. 72°B. 60°C. 58°D. 50°6.如图3,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC 成轴对称且以格点为顶点的三角形共有()A. 3个B. 4个C. 5个D. 6个7.如图4,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为()A. 6B. 8C. 10D. 12图4 图58.如图5,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()A. 34°B. 36°C. 38°D. 40°9.如图6,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A. 3种B. 6种C. 8种D. 12种图6图710.如图7,小明家的住房平面图呈长方形,被分割成 3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A. ①②B. ②③C. ①③D. ①②③二、填空题(每小题4分,共32分)11.下列现象:①升国旗;②荡秋千;③手拉抽屉.其中属于平移的是(填序号).12.如图8,其中是轴对称图形,且对称轴的条数为2的图形的个数是.13.图9中是旋转对称图形的有.①②③④⑤14.如图10,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是.15.如图11,将三角形OAB绕着点O逆时针旋转两次得到三角形OA″B″,每次旋转的角度都是50°,若∠B″OA=120°,则∠AOB=__________.16.如图12,△ABC≌△DEF,∠A=70°,∠B=40°,BF=2,则∠DFE =,EC=.17.如图13,在直角△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于.18.如图14,在长方形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将长方形ABCD沿EF折叠,使点A,D分别落在长方形ABCD外部的点A1,D1处,则阴影部分图形的周长为.三、解答题(共58分)19.(10分)如图15,是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转,设计一个精美图案,使其满足:①既是轴对称图形,又能以点O为旋转中心旋转而得到;②所作图案用阴影标识,且阴影部分面积为4.20.(10分)如图16,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,使它与△ABC全等且点A与点A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看做由AB绕A 点经过怎样的旋转而得到的.21.(12分)如图17,在8×8的方格纸中,将△ABC向右平移4个单位长度得到△A1B1C1,△ABC关于直线MN对称的图形为△A2B2C2,将△ABC绕点O旋转180°得△A3B3C3.(1)在方格纸中画出△A1B1C1、△A2B2C2和△A3B3C3;(2)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成轴对称?请画出对称轴;(3)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成中心对称?请画出对称中心P.22.(12分)(1)如图18—①,如果要在长32米,宽20米的长方形地面上修筑如图所示宽度相同的道路,余下的部分作为耕地,求:道路宽为2米时耕地面积为多少平方米.(2)如图18—②,把直角梯形ABCD 沿BA 方向平移得到梯形A ′B ′C ′D ′,CD 与B ′C ′相交于点E ,BC =20 cm ,EC =5 cm ,EC ′=4 cm ,猜想图中阴影部分的面积与哪个四边形的面积相等,并求出阴影部分的面积.23.(14分)将两块全等的含30°角的直角三角尺(∠BAC =∠B 1A 1C =30°)按图19—①方式放置,固定三角尺A 1B 1C ,然后将三角尺ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90°)至图19—②所示的位置,AB 与A 1C 相交于点E ,AC 与A 1B 1相交于点F ,AB 与A 1B 1相交于点O .(1)当旋转角等于30°时,AB 与A 1B 1垂直吗?请说明理由; (2)当BC ∥A 1B 1时,求旋转角的度数.① ② 图18 ① ②图19附加题(15分,不计入总分)24.(1)如图20—①,直线同侧有两点A、B,在直线上求一点C,使它到A、B之和最小;(保留作图痕迹不写作法).(2)解决问题:如图20—②,在五边形ABCDE中,∠B=∠E=90°,在BC,DE上分别找一点M,N,使得△AMN周长最小(保留作图痕迹不写作法).图①2参考答案一、1. A2. D3. B4. B5. D6.C 7.B8.C9.B10.A提示:设②的边长为a,①的宽为b,③的边长为a-b,则①的长为2a-b.原住房平面图的周长可表示为2[(2a-b+a)+(a+b)]=8a.因为已知原住房平面图的周长,所以可以求出a的值,又①的周长可表示为2(2a-b+b)=4a,②的周长可表示为4a.二、11. ①③12. 313. ①②③⑤14. ②15. 20°16. 70217. 818. 30三、19.解:如图所示,答案不唯一.20.解:(1)本题是开放题,答案不唯一,图中给出了两个满足条件的三角形,其他解答只要正确即可;(2)D点如图所示,AD是由AB绕A点逆时针旋转90°而得到的,或AD 是由AB绕A点顺时针旋转270°而得到的.21. 解:(1)画图略;(2)△A2B2C2与△A3B3C3成轴对称;(3)△A1B1C1与△A3B3C3成中心对称,对称中心点P为A1A3的垂直平分线与B1B3的垂直平分线的交点.22.解:(1)(32-2)(20-2)=540(m2);(2)因为S梯形AB′ED+S阴影=S梯形AB′ED+S梯形B′BCE,所以S阴影=S梯形B′BCE=12×(16+20)×5=90(cm2).23.解:(1)AB⊥A1B1.理由:因为∠A1EO=∠A1CA+∠BAC=30°+30°=60°,所以∠A1OE=180°-∠B1A1C-∠A1EO=180°-30°-60°=90°,所以AB⊥A1B1;(2)因为BC∥A1B1,所以∠B1FC=∠ACB=90°.又因为∠B1FC=∠B1A1C+∠A1CA,所以∠A1CA=∠B1FC-∠B1A1C=90°-30°=60°.所以旋转角为60°.24. 解:(1)作A关于直线MN的对称点E,连接BE交直线MN于C,连接AC,BC,则此时C点符合要求.(2)作图如下:。
华师大版七年级数学下册《第十章轴对称、平移与旋转》达标测试卷-带参考答案一、选择题(每题3分,共24分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看成是轴对称图形的是()2.下列四组图形中,不能视为由一个基本图形通过平移得到的是()3.美丽的雪花呈现出浪漫空灵的气质.如图,雪花图案可以看成是由自身的一部分围绕它的中心依次旋转一定角度得到的,这个角的度数可以是()A.30°B.45°C.60°D.90°(第3题)(第5题)4.下列图形中既是轴对称图形又是中心对称图形的是()5.如图,点A,E,C在同一直线上,△ABC≌△DEC,AE=3,CD=8,则BC 的长为()A.3 B.5 C.8 D.116.如图,在长方形ABCD中,E是CD上一点,连结AE,将△ADE沿AE折叠,使点D的对应点F落在BC上,若AB=3,BC=5,BF=4,则CE的长为()(第6题)A.2 B.1 C.53 D.437.如图①所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把其中一张扑克牌旋转180°.魔术师解除蒙具后,看到4张牌如图②所示.那么被旋转过的牌是()(第7题)A.方块4 B.黑桃5 C.梅花6 D.红桃7 8.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移将长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 026,则n的值为()(第8题)A.407 B.406 C.405 D.404二、填空题(每题3分,共18分)9.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________°.(第9题)(第11题)10.把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.11.如图,方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A′B′C′,使各顶点仍在格点上,则其旋转角的最小度数是________°.12.如图,直角三角形DEF是由直角三角形ABC沿BC平移得到的,若AB=8,BE=3,DH=2,则图中阴影部分的面积是________.(第12题)(第13题)13.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C的对应点C′落在△ABC内,则∠1+∠2=________°.14.如图,在锐角三角形ABC中,AB=8,△ABC的面积为40,BD平分∠ABC,若M、N分别是BD、BC上的动点,则CM+MN的最小值为________.(第14题)三、解答题(共78分)15.(6分)如图是正方形纸片ABCD,点E、F分别在边BC、CD上,连结AF,AE,将△ABE,△ADF分别沿AE、AF折叠,折叠后边AB与AD恰好重叠于AG,求∠EAF的大小.(第15题)第3 页共12 页16.(6分)如图,在边长均为1的小正方形组成的网格中,△AOB的顶点均在格点上.(1)将△AOB向下平移2个单位后得到△A1O1B1,请画出△A1O1B1;(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请画出△A2OB2;(3)△A3OB3与△AOB关于点O中心对称,请画出△A3OB3.(第16题)17.(6分)如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.(第17题)18.(7分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用3种不同的方法分别在下图方格内涂黑2个小正方形,使它们成为轴对称图形.(第18题)19.(7分)如图,△ABD≌△EBC,AB=3 cm,BC=6 cm.(1)求DE的长;(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?(第19题)20.(7分)如图,E是正方形ABCD的边AB上一点,AB=4,AE=1.5,△DAE逆时针旋转后能够与△DCF重合.第5 页共12 页(1)旋转中心是哪一点,旋转角为多少度?(2)请你判断△DFE的形状,并说明理由.(3)求四边形ABFD的面积.(第20题)21.(8分)如图①②均为上底为1,下底为2,高为1的直角梯形.(1)用实线把图①分割成六个全等图形;(2)用实线把图②分割成四个全等图形.(第21题)22.(9分)如图,小丽将直角三角形ABC沿某条直线折叠,使斜边的两个端点A 与B重合,折痕为DE.(1)如果AC=6,BC=8,试求△ACD的周长;(2)如果∠CAD∶∠BAD=4∶7,求∠B的度数.(第22题)23.(10分)如图①,将一副直角三角尺OCD、PMN放在同一条直线AB上,其中∠PNM=30°,∠OCD=45°.(1)【观察猜想】将图①中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN=________.(2)【操作探究】将图①中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图③,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)【深化拓展】将图①中的三角尺OCD绕点O按顺时针方向旋转一周,在旋转的过程中,若边CD恰好与边MN平行,请你求出此时旋转的角度.(第23题)第7 页共12 页24.(12分)将一副直角三角尺按如图①所示的方式摆放在直线MN上(∠DEC=60°,∠BAC=45°),保持三角尺EDC不动,将三角尺ABC绕点C以每秒5°的速度顺时针旋转,旋转时间为t秒,当AC与射线CN重合时停止旋转.(1)如图②,当CA平分∠DCE时,求此时t的值;(2)当AC旋转至∠DCE的内部时,求∠DCA与∠ECB之间的数量关系,并说明理由;(3)在旋转过程中,当三角尺ABC的某一边平行于三角尺EDC的某一边时,求此时t的值.(第24题)答案一、1.B 2.C 3.C 4.A 5.B6.D思路点睛:根据长方形的面积列方程求解.7.A点拨:观察发现旋转之前和旋转之后扑克牌的图案没变化,所以旋转的扑克牌转180°后图案与原来相同,只有方块4符合题意,故选A.8.D思路点睛:根据平移的性质得出AA1=5,A1A2=5,A1B1=6,A2B2=6,进而求出AB1和AB2的长,然后总结规律,得出AB n=(n+1)×5+1,求出n 即可.二、9.12010.6011.9012.2113.8014.10三、15.解:∵四边形ABCD是正方形,∴∠BAD=90°由折叠的性质得,∠DAF=∠GAF=12∠DAG,∠BAE=∠GAE=12∠BAG,∴∠EAF=∠GAF+∠GAE=12∠DAG+12∠BAG=12(∠DAG+∠BAG)=12∠BAD=45°.16.解:(1)如图,△A1O1B1即为所作.(2)如图,△A2OB2即为所作.(3)如图,△A3OB3即为所作.(第16题) 17.解:由旋转的性质可得,AB=AD,∠ADE=∠B=70°∴∠ADB=∠B=70°∴∠CDE=180°-∠ADB-∠ADE=40°.18.解:如图.(方法不唯一)(第18题)第9 页共12 页19.解:(1)∵△ABD ≌△EBC ∴AB =BE ,BD =BC∴DE =BD -BE =BC -AB =6-3=3(cm).(2)垂直.∵△ABD ≌△EBC ,且A 、B 、C 在一条直线上 ∴∠ABD =∠CBE ,∠ABD +∠CBE =180° ∴∠ABD =∠CBE =90°,即DB ⊥AC . 20.解:(1)旋转中心是点D ,旋转角为90°.(2)△DFE 是等腰直角三角形.理由如下: ∵四边形ABCD 是正方形,∴∠ADC =90°.根据旋转的性质可得DE =DF ,∠EDF =∠ADC =90° ∴△DFE 是等腰直角三角形.(3)∵四边形ABCD 是正方形,∴∠A =90°,AD =AB =4,S正方形ABCD=4×4=16,根据旋转的性质可得S △CDF =S △ADE =12AD ·AE =12×4×1.5=3 ∴S 四边形ABFD =S 正方形ABCD +S △CDF =16+3=19. 21.解:(1)如图①所示. (2)如图②所示.(第21题)22.解:(1)由折叠的性质可得BD =AD ,∴△ACD 的周长=AC +AD +CD =AC+BD +CD =AC +BC =6+8=14. (2)可设∠CAD =4x °,∠BAD =7x °由折叠的性质可得∠B =∠BAD ,∴∠B =7x ° ∵∠C =90°,∴∠B +∠DAB +∠CAD =90° ∴7x °+7x °+4x °=90°,解得x =5,∴∠B =35°. 23.解:(1)105°(2)∵OD 平分∠MON ,∴∠DON =12∠MON =12×90°=45°,∴∠DON =∠D =45°,∴CD ∥AB∴∠CEN =180°-∠MNO =180°-30°=150°.(3)设直线MO 与CD 相交于点F 如图①,当CD 在AB 上方时(第23题)∵CD∥MN,∴∠OFD=∠M=60°在△ODF中,∠MOD=180°-∠D-∠OFD=180°-45°-60°=75°,∴旋转角为75°;如图②,当CD在AB的下方时∵CD∥MN,∴∠DFO=∠M=60°,在△DOF中,∠DOF=180°-∠D-∠DFO=180°-45°-60°=75°∴旋转角为75°+180°=255°.综上所述,旋转的角度为75°或255°时,边CD恰好与边MN平行.24.解:(1)∵CA平分∠DCE,∴∠ACE =12∠DCE=15°∴t=15°÷5°=3.(第24题)(2)∠ECB-∠DCA=15°.理由如下:如图①,由旋转得∠ACE=5°t,∴∠DCA=30°-5°t,∠ECB=45°-5°t,∴∠ECB-∠DCA=(45°-5°t)-(30°-5°t)=15°.(3)分四种情况:①当AB∥DE时,如图②,∠ACE=∠ACB+∠DCE=45°+30°=75°,∴t=75°÷5°=15;(第24题)②当AB∥CE时,如图③,则∠BCE=∠B=90°∴∠ACE=∠BCE+∠ACB=90°+45°=135°第11 页共12 页∴t=135°÷5°=27;③当AB∥CD时,如图④,则∠DCB=∠B=90°∴∠ACE=∠DCE+∠DCB+∠ACB=30°+90°+45°=165°,∴t=165°÷5°=33;(第24题)④当AC∥DE时,如图⑤,则∠ACD=∠D=90°∴∠ACE=∠ACD+∠DCE=90°+30°=120°∴t=120°÷5°=24.综上所述,t的值是15,24,27或33.第12 页共12 页。
2022年春华师版数学七年级下册单元测试卷班级姓名第10章轴对称、平移与旋转[时间:90分钟分值:120分]一、选择题(每题3分,共30分)1.[2021·淄博]下列图形中,不是轴对称图形的是()A B C D2.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格3.[2021·长沙模拟]如图,△ABC≌△DEC,则不能得到的结论是()A.AB=DEB.∠A=∠DC.BC=CDD.∠ACD=∠BCE4.如图,△ABC与△DEF关于直线MN成轴对称,则以下结论错误的是()A.AB∥DFB.∠B=∠EC.AB=DED.AD的连线被MN垂直平分5.[2022·崇仁校级模拟]如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠BOD=82°.要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()A.8°B.10°C.12°D.18°6.[2021·成都模拟]如图,△ABC沿边BC所在直线向右平移得到△DEF,则下列结论错误的是()A.△ABC≌△DEFB.AC=DFC.AB=DED.EC=FC7.[2022·萧山模拟]将一张正方形纸片按如图步骤①、②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形为()A B C D8.[2021·哈尔滨模拟]如图,将△ABC纸片绕点A按逆时针方向旋转某个角后得到△AEF,CB、AF的延长线交于点D,AE∥CB,∠D=40°,则∠BAC的度数为()A.30°B.40°C.50°D.60°9.如图,△ABC≌△ADE,∠B=20°,∠E=110°,∠EAB =30°,则∠BAD的度数为()A. 80°B. 110°C. 70°D. 130°10.[2021春·商水县期末]如图,点P在∠MON的内部,点P关于OM、ON的对称点分别为A、B,连结AB,交OM 于点C,交ON于点D,连结PC、PD.若∠MON=50°,则∠CPD=()A.70°B.80°C.90°D.100°二、填空题(每题4分,共24分)11.[2021秋·宁河县期中]把图中的风车图案,绕着它的中心O旋转,旋转角至少为____度时,旋转后的图形能与原来的图形重合.12.[2021春·农安县期末]如图,将锐角△ABC绕点B 按顺时针方向旋转35°,得到△A′BC′.若A′C′⊥BC于点D,则∠C的度数是____.13.[2021春·鄄城县期末]某同学从平面镜里看到镜子对面的电子钟的示数如图所示,这时的实际时间是__________.14.如图,正方形ABCD经平移后成为正方形CEFG,其平移的方向为_________________________________的方向,平移的距离为线段______________________________的长;正方形CEFG也能看成是正方形ABCD经过旋转得到的,它的旋转中心为点_______,旋转角度为______.15.如图,将△OAB绕着点O逆时针连续旋转两次得到△OA″B″,每次旋转的角度都是50°.若∠B″OA=120°,则∠AOB=_______.16.如图,某住宅小区内有一长方形地块,若在长方形地块内修筑同样宽的两条“之”字路,余下部分绿化,道路的宽为2 m,则绿化的面积为_______ m2.三、解答题(共66分)17.(9分)如图,∠A=90°,点E为BC上一点,点A 和点E关于BD对称,点B和点C关于DE对称,求∠ABC 和∠C的度数.18.(9分)[2021·温州]如图,P、Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的P AQB;(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.图1图2 19.(12分)如图,已知△ABC≌△DEF,∠A=30°,∠B =50°,BF=2,求∠DFE的度数和EC的长.20.(12分)[2021秋·濮阳县期中]如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P.若AD =DC=2.4,BC=4.1.(1)若∠ABE=162°,∠DBC=30°,求∠CBE的度数;(2)求△DCP与△BPE的周长和.21.(12分)[2021春·黄陂区月考]如图1,将线段AB平移至CD,使A与D对应,B与C对应,连结AD、BC.(1)填空:AB与CD的关系为______________________,∠B与∠D的大小关系为__________;(2)如图2,若∠B=60°,F、E为BC的延长线上的点,∠EFD=∠EDF,DG平分∠CDE交BE于G,求∠FDG;(3)在(2)中,若∠FDG=α,其他条件不变,则∠B=_______.图1图2 22.(12分)如图1,将△ABC绕顶点A顺时针旋转得到△AB′C′,若∠B=30°,∠C=40°.(1)当△ABC当顺时针旋转至少多少度时,旋转后的△AB′C′的顶点B′与原三角形的顶点C和A在同一直线上(如图2)?(2)在(1)的基础上,再继续旋转至少多少度时,点C、A、C′在同一直线上(如图3)?图1图2图3参考答案1.C【解析】选项A、B、D均可以沿一条直线折叠,图形左、右或上、下两部分可以重合,故均为轴对称图形,只有C选项不是轴对称图形.2.D3.C4.A【解析】AB与DF不一定平行,故A项错误;△ABC与△DEF关于直线MN成轴对称,则∠B=∠E,AB=DE,点A与点D是对应点,AD的连线被MN垂直平分,故B、C、D项正确.5.C【解析】∵AC∥OD′,∴∠BOD′=∠A=70°,∴∠DOD′=∠BOD-∠BOD′=82°-70°=12°.6.D7.D8.B【解析】∵EA∥CB,∴∠EAD=∠D=40°,∴由旋转的性质可知∠BAC=∠EAD=40°.9.A【解析】∵△ABC≌△ADE,∠B=20°,∴∠D=∠B =20°.在△ADE中,∠DAE=180°-∠D-∠E=180°-20°-110°=50°,∴∠BAD=∠DAE+∠EAB=50°+30°=80°.10.B【解析】如答图,连结OA、OB、OP,设P A与OM交于点E,PB与ON交于点F.∵点P关于OM、ON的对称点分别为A、B,∴OA=OP=OB,CA=CP,DP=DB,∠AOC=∠COP,∠POD=∠DOB,∴∠AOB=∠AOC+∠COP+∠POD+∠DOB=2∠COD=100°,∴∠OAB=∠OBA=12(180°-∠AOB)=40°.设∠COP=α,∠DOP=β,则α+β=50°.∵OA=OP,∠AOP=2α,∴∠OP A=∠OAP=12(180°-2α)=90°-α.∵∠OAB=40°,∴∠CP A=∠CAP=∠OAP-∠OAB=50°-α.同理,∠DPB=50°-β.∵∠EPF=360°-∠EOF-∠OEP-∠OFP=360°-50°-90°-90°=130°,∴∠CPD=∠EPF-(∠CP A+∠DPB)=130°-(50°-α+50°-β)=30°+(α+β)=80°.11.9012.55°【解析】∵将锐角△ABC绕点B按顺时针方向旋转35°,得到△A′BC′,∴∠CBC′=35°,∠C=∠C′.∵A′C′⊥BC于点D,∴∠BDC′=90°,∴∠C′=90°-35°=55°,∴∠C=∠C′=55°.13.10:5114.射线AC(答案不唯一,写出一个即可)AC(答案不唯一,写出一个即可) C 180°15.20°【解析】∵∠AOA′=∠A″OA′=∠BOB′=∠B′OB″=50°,∴∠B″OB=100°.∵∠B″OA=120°,∴∠AOB=∠B″OA-∠B″OB=120°-100°=20°.16.540【解析】如答图,把两条“之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFCG是长方形,根据长方形的面积公式即可求出结果.∵CF=32-2=30(m),CG=20-2=18(m),∴长方形EFCG的面积=30×18=540(m2).故绿化的面积为540 m2.17.解:∵点A和点E关于BD对称,∴∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.又∵点B和点C关于DE对称,∴∠EBD=∠C,∴∠ABC=2∠C.∵∠A=90°,∴∠ABC+∠C=2∠C+∠C=3∠C=90°,∴∠C=30°,∴∠ABC=2∠C=60°.18.解:(1)画法不唯一,如答图1所示:答图1(2)画法不唯一,如答图2所示:答图2 19.解:∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=180°-30°-50°=100°.∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF-CF=BC-CF,即EC=BF.∵BF=2,∴EC=2.20.解:(1)∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°.∵△ABC≌△DBE,∴∠ABC=∠DBE,∴∠ABD=∠CBE=132°÷2=66°.即∠CBE的度数为66°.(2)∵△ABC≌△DBE,∴DE=AD+DC=4.8,BE=BC=4.1,∴△DCP和△BPE的周长和=DC+DP+CP+BP+PE +BE=DC+DE+BC+BE=15.4.21.(1) AB∥CD,且AB=CD相等(3) 2α【解析】(1)AB∥CD,且AB=CD,∠B与∠D相等.解:(2)∵AB∥CD,∴∠DCE=∠B.由三角形的外角性质,得∠CDF=∠DFE-∠DCE,∴∠CDG=∠CDF+∠FDG=∠DFE-∠DCE+∠FDG.∵在△DEF中,∠DEF=180°-2∠DFE,在△DFG中,∠DGF=180°-∠FDG-∠DFE,∴∠EDG=∠DGF-∠DEF=180°-∠FDG-∠DFE-(180°-2∠DFE)=∠DFE-∠FDG.∵DG平分∠CDE,∴∠CDG=∠EDG,∴∠DFE-∠DCE+∠FDG=∠DFE-∠FDG,∴∠FDG=12∠DCE,即∠FDG=12∠B.又∵∠B=60°,∴∠FDG=12×60°=30°.【解析】(3)思路同(2).∵∠FDG=α,∴∠B=2α.22.解:(1)∵∠B=30°,∠C=40°,∴∠BAC=180°-∠B-∠C=110°.∵将△ABC绕其顶点A顺时针旋转,旋转后的△AB′C′的顶点B′与原三角形的顶点C和A在同一直线上,∴∠BAB′=110°,∴需要旋转至少110°.(2)若在(1)的基础上,再继续旋转,使点C、A、C′在同一直线上,则旋转后∠BAB′=180°,∴∠CAB′=180°-110°=70°.即在(1)的基础上,再继续旋转至少70°时,点C、A、C′在同一直线上.。