正方体截面探究
- 格式:doc
- 大小:38.50 KB
- 文档页数:2
探索用平面截正方体所得截面形状
山东于秀坤
用平面去截一个几何体,截面的情况可以帮助我们更好地认识几何体,对于一个几何体不同切截方式,所以得截面可能出现不同的情况.下面让我们来探索用平面截正方体所得截面的形状.
我们知道正方体有六个面,用一个平面去解正方体至少要经过三个面,最多经过六个面.所以出现的截面只可能是三角形、四边形、五边形和六边形.
一、截面是三角形
用一平面截正方体,当平面经过正方体的三个面时,所得的截面的形状为三角形.所得的三角形可能是锐角三角形(如图1);等腰三角形(如图2);等边三角形(如图3).其中等边三角形三个顶点是正方形的顶点.
图1 图2 图3
二、截面是四边形
用一个平面截正方体,当平面经过正方体的四个面时,所得截面可能是正方形、长方形、梯形.
①用平行于底面的一个平面去截正方体时,按图4方式得到的截面是正方形.
图4
②按图5或图6或图7的方式切截,得到的截面是长方形
图5 图6 图7
③按图8的方式所得截面为梯形.
图8
三、截面是五边形
用平面截正方体,当平面经过正方体的五个面时,所得截面是五边形.如图9.
图9
四、截面是六边形
用平面截正方体,当平面经过正方体的六个面时,所得截面是六边形,如图10.
图10
总结:用一个平面截正方体,由于正方体共有六个面,所以截面不可能是七边形.。
正方体的截面问题研究研究性学习报告——正方体的截面形状【课题】正方体的截面形状【作者】刘可歆岳新茹【摘要】探究正方体截面形状,通过实践和图示证明其结果,列举特例。
【研究方法】首先经过猜想,列举出猜想到的截面,其次进行画图和实践等方法证明猜想是否正确。
再通过网络查询资料,寻找未猜想到的情况。
【研究过程】探究1:当截面为三角形根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:====由上图可知,正方体可以截得三角形截面。
特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:====》正三棱锥探究2:当截面是四边形1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。
====》》》由图示可知,竖直方向截取正方体,得到的截面为正方形。
2.矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。
其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。
3.平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。
4.菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:5.梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》探究3:当截面是五边形6.五边形:如图所示,可以截得五边形截面:=》探究3:当截面是六边形7.六边形:如图所示,可以截得六边形截面:=》特别的,当平面与正方体各棱的交点为中点时,截面为正六边形,如图所示:【拓展探究】1. 正方体最大面积的截面三角形:如该图所示可证明,由三角面对角线构成的三角形。
2. 正方体最大面积的截面四边形:通过猜想及查询资料可知,正方体截面可能得到的四边形有:正方形、矩形、梯形、平行四边形。
关于正方体截面图形的研究报告问题背景:一天,妈妈在切胡萝卜做菜,突然问我:“成宇轩,这个胡萝卜块切成了什么形状,你知道吗?”我跑过去一看,笑着说“就是一个正方体”,妈妈说,“最近你的课外书上提到正方体截面的问题,你解决了吗?”我说,“还没有啊,我感觉答案有很多啊”,妈妈摇摇手中的胡萝卜说,“这个可以帮助你吗?”对啊,我一拍脑门,对了,可以动手实验一下。
研究目标:通过动手操作实践,研究将一个正方体切一刀,截面可能是几边形?研究过程:一、材料准备:用胡萝卜切成正方体形状二、实验步骤:1、胡萝卜切成小正方体。
2、将刀和正方体的三条边接触,使得截面成三角形。
还可以这样切,即切到三个对角时,截面是一个大的等边三角形。
3、将刀和正方体的四条边接触,使得截面成四边形,这两个四边形(如下图)。
这副图的截面是长方形:这副图的截面是正方形:4、还有截面是梯形的,这是将刀从上面两边切起到下面的两个顶点。
5、将刀和正方体的两条棱接触,即把正方体截成体积相等的两部分,使得截面成四边形。
6、将刀由上面的一条棱切起,并接触到下面的两条棱,使得截面成四边形。
7、将刀和正方体的五条棱接触,使得截面成五边形。
8、将刀和正方体的六条棱接触,使得截面成六边形,切的时候感觉为了容易一些,最好和每条棱的中点接触比较好。
三、实验结论:1、将正方体切一刀,可以得到三角形、长方形、正方形、梯形这样的四边形、五边形和六边形。
2、切的过程中,刀接触到几条边,截面就有几个角,形成的截面就是几条边,截面就是几边形。
3、特别发现两点:第一是若刚好切到三个对角时,截面是一个大的等边三角形。
六边形截面比较难切好,只要把刀接触到六条棱的中点,就很容易形成六边形截面。
实验感想:在妈妈的鼓励下,我通过自己动手实践解决了这个困扰我的问题,我感到很高兴。
通过这样的研究活动,我感到非常有收获,本来在我的头脑中很难想象出的五边形、六边形这样的图形,通过亲手切出来,我感觉现在我可以很轻松的想象出五边形和六边形截面图形。
结论如下:1、可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。
若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。
三:猜想及其他可能的证明:1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。
====》》》由图示可知,竖直方向截取正方体,得到的截面为正方形。
2.矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。
其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。
例如,正方体的六个对角面都是矩形。
3.平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。
4.三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:==》》》由上图可知,正方体可以截得三角形截面。
但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:==》得到:正三棱锥5.猜想之外的截面形状:(1)菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》(3)五边形:如图所示,可以截得五边形截面:=》通过实践及资料查询可知,无法得到正五边形。
(4)六边形:如图所示,可以截得六边形截面:=》特别的,当平面与正方体各棱的交点为中点时,截面为正六边形,如图所示:拓展探究:1.正方体最大面积的截面三角形 2.正方体最大面积的截面四边形3.最大面积的截面形状4.截面五边形、六边形性质1.正方体最大面积的截面三角形:如该图所示可证明,由三角面对角线构成的三角形。
正方体的截面问题研究报告研究报告:正方体的截面问题一、引言:正方体是一种具有六个面都是正方形的立体,它具有许多有趣的性质和特点。
其中一个问题是关于正方体的截面问题,即在不同位置和方式截取正方体,观察其截面形状和特征。
本研究报告将对正方体的截面问题进行研究和分析。
二、研究目的:1. 研究正方体的截面形状及特征。
2. 探索正方体的不同截面位置和方式对截面形状的影响。
3. 分析正方体的截面特性与其它几何形体的关系。
三、研究方法:通过数学分析与计算机模拟相结合的方式进行研究。
首先,研究者将正方体进行截面,观察并记录截面形状、面积和其他特征。
然后,通过数学模型和计算机模拟,研究者将确定各种截面形状的数学方程,并分析其特性和关系。
四、实验过程与结果:1. 实验过程:研究者首先在正方体的不同位置划定截面平面,包括水平截面、垂直截面和倾斜截面。
然后,使用切割工具在规定的截面平面上进行截取操作,获得正方体的截面。
最后,通过测量和计算,记录截面的形状、面积及其他特征。
2. 实验结果:不同位置和方式的截面形状各不相同。
水平截面和垂直截面一般为正方形,但大小和位置不同。
而倾斜截面则为一种四边形,具有奇特的形状。
截面的面积也因位置和方式的不同而有差异。
五、分析与讨论:1. 正方体的截面形状与其位置和方式密切相关。
对于水平和垂直截面,截面形状为正方形,且大小和位置相对稳定。
而倾斜截面则更具变化性,形状可能是一种特殊的四边形。
2. 正方体的截面特性与其他几何形体有一定的关系。
在特定的截面位置和方式下,正方体的截面形状可能与柱体、圆柱体等具有相似的形态。
3. 正方体的截面问题与数学几何有密切关系,通过研究正方体的截面形状和特性,可以深入理解几何形体的性质,丰富几何学科的研究。
六、结论:通过对正方体的截面问题进行研究和分析,我们发现正方体的截面形状与其位置和方式密切相关,同时也与其他几何形体具有一定的关系。
正方体的截面问题在数学几何研究中具有一定的重要性,对于深入理解几何形体的性质具有积极的作用。
研究性学习报告——体的截面形状【课题】体的截面形状【作者】可歆岳新茹【摘要】探究体截面形状,通过实践和图示证明其结果,列举特例。
【研究方法】首先经过猜想,列举出猜想到的截面,其次进行画图和实践等方法证明猜想是否正确。
再通过网络查询资料,寻找未猜想到的情况。
【研究过程】探究1:当截面为三角形根据一定角度过体的三条棱进行截取可以得到三角形的截面,图示如下:====由上图可知,体可以截得三角形截面。
特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:====》正三棱锥探究2:当截面是四边形1.形:因为该立体几何图形是体,所以用从任意位置与该体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取体,得到的截面为形。
====》》》由图示可知,竖直方向截取体,得到的截面为形。
2.矩形:因为形也属于矩形,所以对形的证明同适用于矩形。
其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取体可以得到矩形。
3.平行四边形:当平面与体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与体的各面平行时,所得截面可能为平行四边形。
4.菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:5.梯形:如图所示,当按一定角度使截面在体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》探究3:当截面是五边形6.五边形:如图所示,可以截得五边形截面:=》探究3:当截面是六边形7.六边形:如图所示,可以截得六边形截面:=》特别的,当平面与体各棱的交点为中点时,截面为正六边形,如图所示:【拓展探究】1. 体最大面积的截面三角形:如该图所示可证明,由三角面对角线构成的三角形。
2. 体最大面积的截面四边形:通过猜想及查询资料可知,体截面可能得到的四边形有:形、矩形、梯形、平行四边形。
根据四边形的面积公式:面积=长*宽联系体图形:得到:当由两条平行的面对角线和两对平行棱构成的四边形的长最大,又因为在各个情况下的宽不变。
关于一个正方体截面的小论文,500字
正方体是一种十分常见的几何体,不管是在题干中,还是在生活上,都已是我们眼中的常客。
但就是这么令人熟悉的物体,在它的背后仍然有许多有趣、深奥,甚至堪比未解之谜的问题待我们一一发掘、解答。
这不,正方体截面形状的多样性则是像这样一个趣味无穷的讨论点。
借助几何画板,我也发现了它其中的一些奥秘。
多次试验过后,我归纳出4种正方体的截面形状:三角形,四边形,五边形以及六边形。
下面,我们来讨论讨论这4种截面形状的产生条件。
三角形应该是我们最容易发现的截面形状之一了。
“很随便”地一截,就可以获得一个三角形截面。
当截面仅截过同一顶点的三条棱时,即可截得一对三角形截面。
二、四边形
四边形形状的截面也是比较容易发现的。
在此分以下两种情况讨论:
1. 当截面仅过四条相互平行的棱时,则有四边形截面出现。
2. 当截面仅过一个面内一对相交棱及其平行面内另一对完全相同的相交棱即可得到四边形截面。
四边形的出现和获得可由上述三角形某一顶点的运动,即截面绕棱旋转的角度推导而来。
运用这个顶点“一生二”的思路,我们应该很容易进行后面的探究。
若要得到面积最大的截面四边形,则可作以两条平行的面对角线为长,以对棱为宽的矩形。
三、五边形
五边形截面相对于前两种截面形状来说就不是那么能直观地看出来了——当然,我们借助前面顶点“一生二”的思想,也可较为容易地得到五边形的截面。
四、六边形
依据刚才所提出的思想,下面我们进行六边形的研究,将所得五边形在正方体底面上的棱所对顶点继续上移,即可得到六边形。
正方体截面的探究教学设计无为县襄安中学李向林背景介绍为了使课改工作开展的更有成效,很重要的方面,就是要重构课堂,在现代课堂的教学中,我们应该清楚地认识到:1.课堂不是教师表演的舞台,而是师生之间交流、互动的舞台。
2.课堂不是对学生进行训练的场所,而是引导学生发展的场所。
3.课堂不只是传授知识的场所,而更应该是探究知识的基地。
4.课堂不是教师教学行为模式化运作的天堂,而是教师教育智慧充分展现的竞技场。
在进行立体几何中“如何求作平面与平面的交线”这部分内容的教学时,为了提高学生学习立体几何的兴趣,帮助一些学生克服对立体几何的畏惧心理,我适时补充了“正方体的截面”这个内容。
考虑到要通过会“求作平面与平面的交线”从而学会“过已知点求作正方体的截面”对学生而言是有一定难度的。
因此,能否通过这节课的学习让学生体会到数学知识就在我们身边、感悟到数学的美,激发出学生学习数学的兴趣和强烈的求知欲望,初步培养学生动手实验、观察比较、归纳总结的能力和探究意识、创新意识,就成为这节课首要解决的问题。
为了更好地突破以上难点,落实新课标的精神,我运用"学生为主体,教师为引导,问题为核心,体验为红线"的探究性学习方式,逐步培养学生的创造性思维;在教学策略上我通过实物操作与电脑演示相结合的方法帮助学生了解正方体截面的各种可能的形状以及有否特殊的形状。
教材分析《正方体截面的探究》是人民教育出版社《普通高中课程标准实验教科书·数学·必修2》关于正方体的“截面”问题的教学设计。
本课是在学生已经学习了平面的三个基本性质的基础上,为了更深刻地理解平面图形与立体图形之间的关系及求作平面与平面的交线,帮助学生初步建立空间观念,发展几何直觉,而安排的一节以实验操作为主的探究课。
新课程标准强调课程实施应从学生的学习兴趣,生活经验和认知水平出发,倡导体验、实践、参与、交流的学习方式和任务型的教学途径,发展学生的主动思维能力和大胆实践的创新精神。
正方体的截面引言截面是指一个物体被一个平面所切割后的形状。
正方体是一个具有六个相等的正方形面的立方体。
在本文中,我们将讨论正方体的截面形状和性质。
正方体的基本概念正方体是一种特殊的立方体,具有六个相等的正方形面。
它的每个面都与其他三个面相邻,形成直角相交。
正方体的边长被定义为所有正方形面的边长。
正方体的截面形状正方体的截面形状取决于截割平面的方向和位置。
根据截面与正方体边长的相对位置,可以将截面分为以下几种情况:1. 水平截面当截割平面与正方体的底面平行时,截面为一个正方形。
正方形的边长等于正方体的边长。
2. 垂直截面当截割平面与正方体的一个侧面平行时,截面为一个长方形。
长方形的边长等于正方体的边长,而宽度则取决于截割平面与正方体的相对位置。
3. 平面截面当截割平面与正方体的一个角相交时,截面为一个不规则多边形。
多边形的形状取决于截割平面的位置和角度。
4. 对角线截面当截割平面通过正方体的两个相对角点时,截面为一个菱形。
菱形的对角线为正方体的对角线。
5. 中心截面当截割平面通过正方体的中心点时,截面为一个正六边形。
正六边形的边长等于正方体的边长。
正方体截面的性质正方体的截面具有一些特殊的性质,这些性质可以用来解决一些几何问题。
以下是一些常见的性质:1. 截面面积正方体的截面面积取决于截割平面的形状和位置。
对于水平和垂直截面,其面积等于正方体的底面积。
对于其他类型的截面,其面积可以通过几何计算方法进行求解。
2. 截面形状对称性正方体的截面形状具有一定的对称性。
例如,水平和垂直截面是关于正方体的中心点对称的。
对称性可以帮助我们简化计算和分析截面的性质。
3. 截面相对位置正方体的截面相对位置可以用来确定截面之间的关系。
例如,两个水平截面之间的距离等于正方体的高度。
总结正方体的截面形状和性质是几何学中的重要概念。
通过研究截面,我们可以更好地理解正方体的结构和特性。
了解正方体截面的形状和性质对于解决几何问题和应用数学都具有重要的意义。
探索用平面截正方体所得截面形状
山东于秀坤
用平面去截一个几何体,截面的情况可以帮助我们更好地认识几何体,对于一个几何体不同切截方式,所以得截面可能出现不同的情况.下面让我们来探索用平面截正方体所得截面的形状.
我们知道正方体有六个面,用一个平面去解正方体至少要经过三个面,最多经过六个面.所以出现的截面只可能是三角形、四边形、五边形和六边形.
一、截面是三角形
用一平面截正方体,当平面经过正方体的三个面时,所得的截面的形状为三角形.所得的三角形可能是锐角三角形(如图1);等腰三角形(如图2);等边三角形(如图3).其中等边三角形三个顶点是正方形的顶点.
图1 图2 图3
二、截面是四边形
用一个平面截正方体,当平面经过正方体的四个面时,所得截面可能是正方形、长方形、梯形.
①用平行于底面的一个平面去截正方体时,按图4方式得到的截面是正方形.
图4
②按图5或图6或图7的方式切截,得到的截面是长方形
图5 图6 图7
③按图8的方式所得截面为梯形.
图8
三、截面是五边形
用平面截正方体,当平面经过正方体的五个面时,所得截面是五边形.如图9.
图9
四、截面是六边形
用平面截正方体,当平面经过正方体的六个面时,所得截面是六边形,如图10.
图10
总结:用一个平面截正方体,由于正方体共有六个面,所以截面不可能是七边形.。