第17章反比例函数知识要点(投影)
- 格式:doc
- 大小:112.00 KB
- 文档页数:5
反比例函数知识点归纳反比例函数是指形如y=k/x的函数,其中k为常数,且x≠0.在解决与自变量指数相关的问题时,需要特别注意系数。
另外,反比例函数也可以写成xy=k的形式,通过这个式子可以迅速求出反比例函数的解析式中的k。
反比例函数的图象与x轴和y轴无交点,因此在用描点法画反比例函数图象时,需要取关于原点对称的点。
反比例函数图象的形状为双曲线,其弯曲度与k的大小有关。
当k越大,曲线越平直;当k越小,曲线越弯曲。
反比例函数的图象关于原点对称,同时也关于直线y=x和y=-x对称。
k的几何意义可以通过双曲线上任意一点P(a,b)来解释,其中k等于矩形PBOA的面积除以三角形PAO和三角形PBO的面积之积。
在研究反比例函数的增减性时,需要将双曲线的两个分支分别讨论,不能一概而论。
反比例函数与一次函数之间有联系,而求函数解析式的方法可以采用待定系数法或根据实际意义列函数解析式。
在解决实际问题时,需要充分利用数形结合的思想。
2.图像和性质对于反比例函数,以下是已知函数的情况:①若它的图像在第二、四象限内,则k为负数。
②若y随x的增大而减小,则k为正数。
对于一次函数y=ax+b的图像经过第一、二、四象限,则函数的图像位于第一、三象限。
如果反比例函数通过点(m,2),则一次函数的图像不会通过点(m,2)。
已知a·b<0,点P(a,b)在反比例函数的图像上,则直线y=x不会通过第三象限。
如果P(2,2)和Q(m,n)是反比例函数图像上的两点,则一次函数y=kx+m的图像经过第一、三、四象限。
已知函数y=k/x和y=kx(k≠0),它们在同一坐标系内的图像大致是反比例函数和正比例函数的图像。
3.函数的增减性①在反比例函数的图像上有两个点A(x1,y1)和B(x2,y2),且x1<x2,则y1y2<0,即y1和y2的符号不同。
②在函数y=ax(a为常数)的图像上有三个点A(x1,y1)、B(x2,y2)和C(x3,y3),且x1<x2<x3,则y1<y2<y3.对于四个函数中的①、②、③、④,其中y随x的增大而减小的函数只有一个,即②。
反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。
其中,x 是自变量,y 是因变量,k 叫做比例系数。
需要注意的是,反比例函数中自变量 x 的取值范围是x≠0,因为在分母中,分母不能为 0。
二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x(k 为常数,k≠0),这是最基本的形式。
2、 xy = k(k 为常数,k≠0),通过对 y = k/x 两边同时乘以 x 得到。
3、 y = kx^(-1)(k 为常数,k≠0),这是用幂的形式表示。
三、反比例函数的图像反比例函数的图像属于双曲线。
当 k>0 时,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随 x 的增大而减小。
当 k<0 时,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随 x 的增大而增大。
反比例函数的图像是以原点为对称中心的中心对称的两条曲线。
四、反比例函数的性质1、单调性当 k>0 时,函数在区间(∞,0)和(0,+∞)上分别单调递减;当 k<0 时,函数在区间(∞,0)和(0,+∞)上分别单调递增。
2、对称性反比例函数的图像既是轴对称图形,又是中心对称图形。
它有两条对称轴,分别是直线 y = x 和 y = x;对称中心是原点(0,0)。
3、渐近线当 x 趋近于正无穷或负无穷时,曲线无限接近坐标轴,但永远不会与坐标轴相交。
4、取值范围当 k>0 时,y>0 或 y<0;当 k<0 时,y<0 或 y>0。
五、反比例函数中 k 的几何意义1、过反比例函数 y = k/x(k≠0)图像上任意一点 P 作 x 轴、y 轴的垂线 PM、PN,垂足分别为 M、N,则矩形 PMON 的面积 S =PM×PN =|y|×|x| =|xy| =|k|。
反比例函数是什么?反比例函数相关知识1:反比例函数是什么?反比例函数的定义域和值域因为x在分母上,所以x≠0,即自变量X的取值范围为非零实数。
而且常数k≠0,因此y≠0,即因变量y的`取值范围为非零实数。
反比例函数的图像及其性质形状:反比例函数的图象是两条双曲线,每一条曲线都无限向X轴Y轴延伸但不与坐标轴相交。
增减性:当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每个象限内y随x的增大而增大。
对称性:反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x和y=-x,对称中心是坐标原点。
2:反比例函数知识点1、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k?1/xxy=ky=k?x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n2、函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k?1/xxy=ky=k?x^(-1)y=kx(k为常数(k≠0),x不等于0)3、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
4、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的.绝对值=(x_y)的绝对值=|k|研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM?PN=|y|?|x|=|xy|=|k|。
第十七章 反比例函数一、基础知识1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
x ky =还可以写成kxy =1-2. 反比例函数解析式的特征:⑴等号左边是函数y ,等号右边是一个分式。
分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1.⑵比例系数0≠k⑶自变量x 的取值为一切非零实数。
⑷函数y 的取值是一切非零实数。
3. 反比例函数的图像 ⑴图像的画法:描点法① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序)③ 连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。
⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。
45. 点的坐标即可求出k ) 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky =中的两个变量必成反比例关系。
7. 反比例函数的应用二、例题【例1】如果函数222-+=k k kx y 的图像是双曲线,且在第二,四象限内,那么的值是多少?【解析】有函数图像为双曲线则此函数为反比例函数xk y =,(0≠k )即kx y =1-(0≠k )又在第二,四象限内,则0<k 可以求出的值 【答案】由反比例函数的定义,得:⎩⎨⎧<-=-+01222k k k 解得⎪⎩⎪⎨⎧<=-=0211k k k 或 1-=∴k1-=∴k 时函数222-+=k k kx y 为xy 1-=【例2】在反比例函数x y 1-=的图像上有三点(1x ,)1y ,(2x ,)2y ,(3x ,)3y 。
反比例函数知识点反比例函数是一种特殊的函数形式,它描述了两个变量之间的关系。
其特点是当一个变量的值增加时,另一个变量的值会减小,反之亦然。
在数学中,反比例函数通常用一个方程表示,形式为y=k/x,其中k是一个常数。
在本文中,我们将探讨一些与反比例函数相关的知识点。
一、反比例函数的定义反比例函数是一种形如y=k/x的函数形式。
其中,k是一个常数,被称为反比例函数的比例常数。
在反比例函数中,变量x和y的变化满足如下关系:当x增加时,y减小;当x减小时,y增加。
二、反比例函数的图像和性质反比例函数的图像是一条直线,经过原点(0,0)。
该函数的图像与坐标轴都有一个渐近线,与x轴共轭于y轴,与y轴共轭于x轴。
同时,反比例函数的图像在第一象限和第三象限中是上升的,即从左下到右上。
三、反比例函数的图像和实际应用反比例函数的图像常常出现在实际问题中,如物理、经济等领域。
例如,某物体的速度与其所受的力成反比,即速度越大,所受的力越小,反之亦然。
又如,在某种化学反应中,反应速率与溶液中的浓度成反比。
这些实际问题可以通过反比例函数来表示和解决。
四、反比例函数的性质和应用由于反比例函数的性质和图像特点,反比例函数在实际问题中有许多应用。
首先,反比例函数可以用来描述两个变量之间的关系,例如速度和力的关系、反应速率和浓度的关系等。
其次,反比例函数可以用来解决一些实际问题,例如求解未知变量的值或优化问题。
五、反比例函数的变形除了常见形式的反比例函数y=k/x,还有其他形式的反比例函数。
例如,y=k/(x-a)、y=(k+x)/(k-x)等。
这些变形形式的反比例函数在实际问题中也有广泛应用,例如电路中的电阻和电流的关系等。
六、反比例函数的应用举例反比例函数的应用非常广泛。
下面以几个具体的实例来说明。
例1:某车辆以恒定的速度行驶,当行驶时间增加时,其行驶距离减小。
这个问题可以用反比例函数来描述,行驶距离与行驶时间成反比。
例2:某工厂的生产成本与产量成反比,即产量越大,生产成本越低,反之亦然。
关于反比例函数的知识点反比例函数是数学中经常用到的一种重要函数类型。
它是一种特殊类型的函数,通过定义两个变量之间的关系,其中一个变量的增加导致另一个变量的减小,反之亦然。
本文将详细介绍反比例函数的定义、图像、性质以及一些实际应用。
一、反比例函数的定义反比例函数的定义如下:y = k / x其中,x 和 y 是变量,k 是一个常数。
在反比例函数中,y 的值与 x 的值成反比例关系,即 x 越大,y 越小,反之亦然。
常数 k 称为比例常数,它决定了函数的形状。
二、反比例函数的图像反比例函数的图像通常是一个双曲线,它的形状取决于比例常数 k 的值。
当比例常数 k 大于 0 时,反比例函数的图像在 x 轴的正半轴和 y 轴的负半轴上分别存在一个渐近线。
这是因为当 x 趋近于无穷大时,y 趋近于 0,当 y 趋近于无穷大时,x 趋近于 0。
当比例常数 k 小于 0 时,反比例函数的图像与前一种情况相似,但是渐近线位于 x 轴的负半轴和 y 轴的正半轴上。
三、反比例函数的性质1. 定义域和值域:由于反比例函数中 x 不能为 0,所以它的定义域为 x ≠ 0。
根据函数的定义,可以得出反比例函数的值域为 y ≠ 0。
2. 对称性:反比例函数具有轴对称性,即当 (x, y) 在反比例函数中时,(-x, -y) 也在反比例函数中。
3. 变化率:反比例函数的变化率是一个常数,即在函数图像上的任意两个点 (x1, y1) 和 (x2, y2) 中,斜率 k = y1 / x1 = y2 / x2 是一个常数。
四、反比例函数的实际应用反比例函数在实际生活中有许多应用。
以下是一些常见的实际应用示例:1. 物体的速度和时间:当物体的运动速度保持不变时,物体在单位时间内所需的时间与其速度成反比例关系。
当速度增加时,所需时间减小;当速度减小时,所需时间增加。
2. 货币兑换:兑换货币时,汇率决定了兑换后的货币数量。
如果汇率变高,那么兑换后的货币数量就变少;如果汇率变低,兑换后的货币数量就变多。
第十七章反比例函数全章小结从容说课本章的基础知识总结:1.反比例函数的概念:如果两个变量x、y之间的关系可以表示成y=kx(k•为常数且k≠0)的形式,那么称y是x的反比例函数,反比例函数的自变量x不为零.2.反比例函数的图象和性质:(1)反比例函数y=kx的图象是双曲线.(2)当k>0时双曲线位于第一、三象限;•当k<0时,双曲线位于第二、四象限,在每一象限内,y随x的增大而增大.3.反比例函数的应用:列反比例函数关系式,并用反比例函数的性质解决生活中特别是物理学中的问题.课程标准知识和能力总结.1.结合具体情况领会反比例函数作为一种数学模型的意义.2.会画反比例函数的图象,从函数图象中敏锐地获取函数的相关信息.3.逐步提高我们的观察、归纳、分析问题的能力,•体验数形结合的数学思想方法.4.我们要善于用函数的观点处理实际问题.教学时,教师应关注学生运用自己的语言回答有关问题的过程,关注学生举例说明对有关知识的理解;通过一些问题向学生强调利用图象了解函数的性质,并进一步发展从图象中获取信息的能力.教学时间第8课时三维目标一、知识与技能1.反比例函数的图象和性质.2.反比例函数的应用:解决实际问题,学科内部的应用.二、过程与方法1.反思在具体问题中探索数量关系和变化规律的过程,•理解反比例函数的概念,领会反比例函数作为一种数学模型的意义.2.能画出反比例函数的图象,•并根据图象和解析式掌握反比例函数的主要性质.3.培养学生观察、分析、归纳的能力,感悟数形结合的数学思想方法.4.能根据所给的条件,确定反比例函数,体会函数在实际问题中的应用价值.三、情感、态度与价值观1.面对困难,培养学生克服困难的勇气和战胜困难的信心.2.培养学生的合作交流意识和运用数学问题解决实际问题的意识,•认识数学的实用性.教学重点反比例函数的概念、图象和主要性质.教学难点对反比例函数意义的理解.教具准备教学投影仪.教学过程一、创设问题情境,引入新课问题1:你能举出现实生活中有关反函数的几个例子吗?问题2:说一说函数y=2x和y=-2x的图象的联系和区别.(先由学生小组交流本单元的小结,再进行小组汇报,教师在旁适时引导,提问,鼓励.学生分四人小组合作交流,归纳出本单元的知识体系,以及对每一个知识块的认识,由上面两个问题作牵引,完成本单元的知识体系).教师应重点关注:①关注学生的复习过程,观察学生智力、情感的达标水平.②对函数概念及图象、性质的理解.③关注数学活动对学生发展的影响,学生能否从函数图象中敏锐地获取函数的相关信息,是否善于对实际问题进行分析,并灵活运用所学知识解决问题.二、单元知识结构图三、巩固、延伸、提高做一做:1.已知y=y 1+y 2,y 1与x 成反比例,y 2与x 2成正比例,并且x=2时,y=14;x=3时,y=2813,•求y 与x 的函数表达式.分析:依据正、反比例函数的定义,利用待定系数法求得其比例系数,•从而求出y 与x 之间的函数关系式.解:设y 1=1k x ,y 2=k 2x 2,则y=1k x +k 2x 2,将(2,14),(3,2813)代入上式 得121122414421392833k k k k k k ⎧+=⎪=⎧⎪⎨⎨=⎩⎪+=⎪⎩解得∴函数关系式为y=4x+3x 2. 点评:(1)一个反比例函数和一个正比例函数相加,构成一个新的函数,从形式上较为复杂,但是用待定系数法求系的方法都一样. (2)要将k 1,k 2设成不同的两个参数. 2.若反比例函数y=kx(k ≠0),当x>0,y 随x 的增大而增大,则一次函数y=kx-k 的图象经过第几象限( )A .一,二,三B .一,二,四C .一,三,四D .二,三,四 解:∵x>0时,y 随x 的增大而增大. ∴k<0,∴一次函数y=kx-k 的图象过一,二,四故选B . 点评:要判断y=kx-k 的位置,需知道k 的符号,由已知y=kx,当x>0时,y 随x•的增大而增大,所以k<0.3.如下图,在同一直角坐标系中,正比例函数y=(m-1)x 与反比例函数y=4mx的图象的大体位置不可能是( )解析:当m-1>0时m>1时,4m>0,此时直线过一、三象限.双曲线位于第一、三象限,A 可能,D 不可能;当m-1<0时,即m<1,分两种情况:0<m<1或m<0.当m<0时,直线过二、四象限,•双曲线位于二、四象限;当0<m<1时,直线过二、四象限,此时,4m>0,双曲线在第一、三象限,所以B 、C 都有可能,故不可能的是D .点评:要判断直线和双曲线的位置关系,借助于它们的字母系数的符号,在这里,要判断m-1与4m 的符号,进而选择合理答案,因不确定其符号,•所以分两种情况进行讨论,当m-1>0时,4m>0,故A 对,D 不对;当m-1<0又有两种情况:0<m<1或m<0,•而前者又4m>0,故B 对,后者又4m<0,故C 对.4.(1)若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y=-1x的图象上的点,并且x 1<0<x 2<x 3,则下列各式中正确的是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 1<y 3<y 2 (2)已知反比例函数y=kx(k<0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,则y 1-y 2值是( )A .正数B .负数C .非正数D .不能确定(3)如图,正比例函数y=kx (k>0),与反比例函数y=1x的图象相交于A 、C 两点,•过A 作x 轴垂线交x 轴于B ,连接BC ,若△ABC 的面积为S ,则( )A .S=1B .S=2C .S=3D .S 的值不确定解:(1)方法一:用图象解法,作出y=-1x的草图,即得三点的大致位置,观察图象,直接得到y 2<y 3<y 1,故选B .方法二:将三个点的坐标直接代入反比例函数表达式中, 得y 1=-23123111,,y y x x x =-=-,由于x 1<0<x 2<x 3,所以y 2<y 3<y 1,故选B . (2)∵k<0,∴图象在二、四象限内,y 随x 的增大而增大,当AB •是同一象限内的点时, ∵x 1<x 2,∴y 1<y 2,∴y 1-y 2<0. 当A 、B 不是同一象限内的点时, ∵x 1<x 2,∴A 在第二象限,B 在第四象限. ∴y 1>y 2,∴y 1-y 2>0. ∴选D .(3)∴A 和C 关于O 对称,∴AO=CO ,设A (x 0,y 0),则y 0=01x ,∴x 0·y 0=1.∴S △AOB =12x 0y 0=12. ∵△AOB 和△BOC 若分别把AO 、CO 看作底,那么底上的高相等, ∴S △AOB =S △BOC .∴S △ABC =1,故选A .点评:(1)因反比例函数的表达式具体,所以其图象具体,因x 1<0<x 2<x 3,•所以三点(x 1,y 1),(x 2,y 2),(x 3,y 3)的前后位置可确定于是可得y 1,y 2,y 3的关系,•也可直接代入表达式内和实数大小比较方法判定;(2)由A 、B 两点的横坐标没有和O 作比较,所以A 、B •两点的位置可分为两种情况讨论; (3)因△AOB 的面积易求,要求△ACB 的面积只需找到△AOB 和△BOC 的关系,•发现AO=CO ,而且高相同,所以面积相等.5.(2005年山西省实验区初中毕业生学业考试)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积V (m 3)的反比例函数,•其图象如下图所示.当气球内的气压大于140kPa 时,气球将爆炸,为了完全起见,气体体积应(• )A .不大于2435m 3B .不小于2435m 3C.不大于2437m 3 D .不小于2437m 3解:因为当温度不变时,气球内气体的气压p (kPa )是气体体积V (m 3)的反比例函数. 设p=kV因为函数图象过A (0.8,120),代入p=kV中得120=0.8k所以k=96,即p=96V. ∵96>0,所以p 随V 的增大而减小,当p=140kPa 时,V=96140=2435.所以为了完全起见,•气球内的气压应不大于140kPa ,气体的体积应不小于2435m 3. 或根据图象回答,所以应选B .板书设计活动与探究已知反比例函数y=2mx和一次函数y=-2x-1,其中一次函数的图象经过(a ,b ),(a+1,b+m )两点. (1)求反比例函数的解析式;(2)如右图所示,已知点A 在第二象限,且同时在上述两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,试判断在x 轴上是否存在点P ,使△AOP 为等腰三角形,若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.解:(1)依题意可得212(1)1b a b m a =--⎧⎨+=-+-⎩解得m=-2,∴反比例函数的解析式为y=-1x, (2)由21,1,y x y x =--⎧⎪⎨=-⎪⎩解得121211,21, 2.x x y y ⎧=-=⎧⎪⎨⎨=⎩⎪=-⎩ 经检验121211,21, 2.x x y y ⎧=-=⎧⎪⎨⎨=⎩⎪=-⎩ 都是原方程组的解. ∵A 点在第二象限,∴A 点坐标为(-1,1).(3),OA 与x 轴所夹锐角为45°.①当OA 为腰时,由OA=OP ,得P 1,0),P 2(,0),由OA=AP ,得P 3(-2,0). ②当OA 为底时,得P 4(-1,0).∴这样的点有4,0),(,0),(-2,0),(-1,0).习题详题 复习题17 1.(1)a=24150;(2)h h h S=2.>,-;>,=3.(1)一,三,减小;(2)二,四,增大 4.(B )5.由题意得k-1>0,所以k>1 6.p=F S设A 、B 、C 三个面的面积分别为4k ,2k ,k (k>0)由题意得S=2k 时,p=a 得F=2ka ,•所以p=2kaS所以当S=4k 时,p=242ka ak =帕; 当S=k 时,p=2kaS=2a (帕). 7.(1)d=4210t⨯(2)当t=10时,d=421010⨯(天)约为421010⨯=2×103(天)则这个电视机大约可使用2×103(天)8.两个不同的反比例函数不会相交,设这两个反比例函数为y=1k x ,y=2kx(k 1,k 2为常数且k 1≠k 2).若有交点,则12,k y xk y x⎧=⎪⎪⎨⎪=⎪⎩有解,但此方程组无解. 所以不同的反比例函数不会相交.9.正比例函数y=k 1x 与反比例函数y=2kx无交点,则12y k k y x =⎧⎪⎨=⎪⎩把①代入②得k 1x=2k x,k 1x 2=k 2,∵k 1≠0, ∴x 2=21k x 若x 无解,则<0,即R 1和R 2异号,所以R 1R 2<0 10.(1)→(B );(2)→(A );(3)→(C );(4)→(D )11.(1)V=610t(2)当V=104立方米时,代入V=610t 得t=641010=102(天).(3)当公司以104立方米/天,工作40天后,共运送土方40×104=4×105立方米,•剩下106-4×105=6×105(立方米)土石方在50天运送完,则每天需送561050=12 000(立方米).而每辆卡车一天可运送土石方104÷100=100(立方米),所以每天运送12 000立方米的土石方需12000100=120辆车,而现在有100辆,公司至少需要再增加20•辆卡车才能按时完成任务.。
反比例函数最全知识点反比例函数是一种特殊的函数形式,它表示了一种两个变量之间的相互依赖关系。
在反比例函数中,当一个变量增大时,另一个变量会相应地减小,反之亦然。
本文将介绍反比例函数的定义、图像特征、性质、图像变换、实际应用以及解决反比例函数问题的方法等知识点。
一、反比例函数的定义反比例函数可以表示为:y=k/x(k≠0),其中y表示因变量(通常是函数的输出值),x表示自变量(通常是函数的输入值),k表示常数。
该定义中的k称为反比例函数的常数项,它决定了反比例函数的性质,也决定了函数图像的形状。
二、反比例函数的图像特征1.零点:当x=0时,由于分母为0,函数无定义。
因此,反比例函数没有定义在x=0的点,这个点称为函数的零点。
2.渐近线:反比例函数有两条渐近线,分别是x轴和y轴。
当x趋近于无穷大或无穷小时,y趋近于0;当y趋近于无穷大或无穷小时,x趋近于0。
3.反比例函数的图像是一个双曲线,由于分母不能为0,因此函数的图像始终存在。
当x取值较小时,y的取值较大;当x取值较大时,y的取值较小。
图像的形状与常数项k相关,k越大,图像越接近于x轴和y 轴。
三、反比例函数的性质1.定义域:反比例函数的定义域为除去零点以外的实数集合。
2.值域:反比例函数的值域为除去0以外的实数集合。
3.奇偶性:反比例函数是个奇函数,即满足f(-x)=-f(x)。
4.单调性:反比例函数在定义域上是单调递减的。
5.对称轴:反比例函数的对称轴为y=x,即函数图像关于对称轴对称。
四、反比例函数的图像变换对反比例函数进行图像变换可以通过调整常数项k的值来实现。
具体变换如下:1.平移:当k保持不变时,反比例函数的图像向上平移或向下平移。
若向上平移b个单位,则为y=k/(x+b);若向下平移b个单位,则为y=k/(x-b)。
2.拉伸:当k保持不变时,反比例函数的图像可以进行纵向拉伸或纵向压缩。
若纵向拉伸为a倍,则为y=(k/a)/x;若纵向压缩为a倍,则为y=(a*k)/x。
反比例函数常用知识点总结一、反比例函数的定义反比例函数也叫做倒数函数,通常用y=k/x表示,其中k为非零常数。
这种函数的图像是一个双曲线,具有对称轴。
二、反比例函数的性质1. 反比例函数的定义域和值域反比例函数的定义域为x≠0,值域为y≠0。
2. 反比例函数的奇偶性反比例函数通常不具有奇偶性。
3. 反比例函数的单调性反比例函数在定义域内单调递减或递增。
4. 反比例函数的渐近线反比例函数的图像有两条渐近线,分别是x轴和y轴。
5. 反比例函数的对称性反比例函数的图像关于原点对称。
6. 反比例函数的零点和极限反比例函数有唯一的零点,即x=±√k。
当x→0时,y→±∞。
三、反比例函数的图像1. 反比例函数的基本图像反比例函数的基本图像是一个双曲线,具有对称轴。
2. 反比例函数的平移和缩放改变k的值可以使反比例函数的图像进行平移和缩放。
3. 反比例函数的特殊情况当k为正数时,反比例函数的图像在第一和第三象限。
当k为负数时,反比例函数的图像在第二和第四象限。
四、反比例函数的应用1. 反比例函数在物理学中的应用反比例函数可以用来描述两个物理量之间的关系,比如牛顿定律中的万有引力定律就是一个反比例函数。
2. 反比例函数在经济学中的应用反比例函数可以用来描述供求关系,比如需求曲线和供给曲线都是反比例函数。
3. 反比例函数在工程学中的应用反比例函数可以用来描述工程中的一些量与距离的关系,比如声音的传播距离与声音的强度之间的关系。
五、反比例函数的解题方法1. 求反比例函数的定义域和值域根据函数的定义,可以求出反比例函数的定义域和值域。
2. 求反比例函数的零点和极限根据函数的性质,可以求出反比例函数的零点和极限。
3. 求反比例函数的图像可以根据函数的性质和图形变换的知识,画出反比例函数的图像。
4. 求反比例函数的应用问题可以根据反比例函数在物理学、经济学和工程学中的应用问题,解决实际问题。
六、反比例函数的常见错误1. 关于定义域和值域的错误很多学生容易忽略反比例函数的定义域和值域,导致在解题过程中出现错误。
第17章反比例函数知识要点
温馨提示:要学好本章要经常利用数形结合
一、 反比例函数
1、 形如x k
y =(k≠0的常数)的函数是反
比例函数(x ≠0) 练习:下列函数①x y 2=
②11+=x y ③2x y = ④x y 23-=⑤11
+=x y 中,
是y 关于x 的反比例函数有:__________。
2、反比例函数的图象是双曲线,它是中心对称图形,对称中心是坐标原点,它又是轴对称图形,对称轴是两坐标夹角平分线所在的直线
练习:1、反比例函数x k
y 的图象经过点P
(-2,3),则这个反比例函数的解析式为_____;此函数的图象过第____象限;y 随x 的增大而_____
(k 决定双曲线的所在象限和性质)
2、 反比例函数x y 2
-=的图象经过三点
(x 1,y 1)、(x 2,y 2)、(x 3,y 3), 且x 1<x 2<0<x 3,则y 1 、y 2、 y 3的大小关系为_____
注意:利用数形结合
3、如果双曲线x m y =经过点(2,-1),那么m= ;若双曲线经过点(a ,b )则必过点(____,___)
下面点:①(1,-6)、②(2,4)、③(3,2)、④(2,-3)⑤(-6,-1)在反比例函数x y 6=的图象上
4、若反比例函数x k y 3
2-=的图象在第一、三
象限,则k 的取值范围是_____
若反比例函数x k y 3
2-=的图象在每个象
限内y 随x 的增大而增大,则k 的取值范围是_____
5、已知y 与x 成反比例,
并且x =3时,y =7,求
1)y 与x 的函数关系式
2)当31
=x 时,求y 的值
3)当3=y 时,求x 的值
6、如图,一次函数y ax b =+的图象与反比例函数k
y x =的图象交于M 、N 两点.
⑴求反比例函数和一次函数的解析式; ⑵根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.
3)求△MON 的面积
4)求方程x k
b ax -+=0的解
5)求不等式x k
b ax -+<0的解
三、反比例函数的应用
1、体积问题:
书54页练习第1题、书55页第5题
2、书55页第6题。