小学奥林匹克数学试题1预赛A卷
- 格式:doc
- 大小:33.00 KB
- 文档页数:2
1998小学数学奥林匹克预赛及决赛卷(共4份)预赛(A)卷1.计算: =________。
2.在左下图的乘法算式中,每个□表示一个数字,那么计算所得的乘积应该是_ _____。
3.在右上图中,已知矩形GHCD的面积是矩形ABCD面积的,矩形MHCF的面积是矩形ABCD面积的,矩形BCFE的面积等于3平方米。
矩形AEMG的面积等于_____ ___平方米。
4.三个连续的自然数的最小公倍数是9828,这三个自然数的和等于________。
5.如果四个两位质数a、b、c、d两两不同,并且满足等式a+b=c+d,那么a+b的最大可能值是________。
6.某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是_ _______。
7.一个长方体,表面全涂上红色后,被分割成若干个体积都等于1立方厘米的小正方体。
如果在这些小正方体中,不带红色的小正方体的个数等于7,那么两面带红色的小正方体的个数等于________。
8.甲、乙两个车间共有94个工人,每天共生产1998把竹椅。
由于设备和技术的不同,甲车间平均每个工人每天只生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅。
甲车间每天竹椅的产量比乙车间多________把。
9.一个运输队包运1998套玻璃茶具。
运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元。
结果这个队实际得运费3059.6元。
在运输过程中被损坏的茶具套数是________。
10.买来一批苹果,分给幼儿园大班的小朋友。
如果每人分5个苹果,那么还剩余32个;如果每人分8个苹果,那么还有5个小朋友分不到苹果。
这批苹果的个数是________。
11.某司机开车从A城到B城。
如果按原定速度前进,可准时到达。
当路程走了一半时,司机发现前一半路程中,实际平均速度只可达到原定速度的。
现在司机想准时到达B城,在后一半的行程中,实际平均速度与原速度的比是_______。
1989年数学奥林匹克 A 预赛1.计算:-+++⨯++-++⨯+-+⨯-)4321()321(4)321()21(321121)()10321()9321(10++++⨯++++- = 。
2.1到1989这些自然数中的所有数字之和是 。
3.把若干个自然数,2,3,……乘到一起,如果已知这个乘积的最末13位恰好都是零,那么最后出现的自然数最小应该是 。
4.在1,100199151413121,,,,, 中选出若干个数,使它们的和大于3,至少要选 个数。
5.在右边的减法算式中,每一个字母代表一个 数字,不同的字母代表不同的数字, 那么D+G= 。
6.如图,ABFD 和CDEF 都 是矩形,AB 的 长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是 平方厘米。
7.甲乙两包糖的重量比是4:1,如果从甲包取出10克放入乙包后,甲乙两包糖的重量比变为7:5,那么两包糖重量的总和是 克。
8.设1,3,9,27,81,243是六个给定的数,从这六个数中每次或者取一个,或者取几个不同的数求和(每个数只能取一次),可以得到一个新数,这样共得到63个新数。
如果把它们从小到大依次排列起来是1,3,4,9,12……那么第60个数是 。
9.有甲、乙、丙三辆汽车各以一定的速度从A 地开往B 地,乙比丙晚出发10分钟,出发后40分钟追上丙。
甲比乙又晚出发20分钟,出发后1小时40分追上丙,那么甲出发后需用 分钟才能追上乙。
10.有一个俱乐部,里面的成员可以分成两类,第一类是老实人,永远说真话;第二类是骗子,永远说假话。
某天俱乐部全体成员围着一张圆桌坐下,每个老实人的两旁都是骗子,每个骗子的两旁都是老实人。
记者问俱乐部成员张三:俱乐部共有多少成员?张三回答:有45人。
李四说:张三是老实人。
那么张三是老实人还是骗子?张三是 。
_FFF EFAG ABCBD小队合干需要7天完成;如果由第二、四、五小队合干4天完成;如果由第一、三、四小队合干需要42天才能完成。
1991—2001年小学数学奥林匹克参考答案预赛A 1、7又256分之1 2、321 3、119 4、7 5、18 6、3 7、840 8、6727 9、14 10、1200 11、22 12、185 决赛B 1、5/2 2、15/33 3、五4、120 5、4200 6、2又5分之2 7、1628 10、30 11、8 12、202000年小学数学奥林匹克参考答案预赛A 1、5151 2、89 3、130 4、250 5、196、487、180008、6429、245 2、34 3、109 4、星期一5、8 6、1047、12时8又29分之8分8、137 9、80 10、47 11、1002 12、225 决赛A 1、2又8分之5 2、170 3、19 4、98 5、1024 6、4 7、16 8、69 9、97 10、76 11、9 12、3/8 决赛B 1、100 2、1996 3、715 4、488 5、35 6、25 7、18 8、8 9、6 10、51 11、249734 2、29又280分之201 3、12 4、40 5、50平方厘米6、11比7 7、32或36 8、2 9、1999 10、2231 2、16又20分之9 3、9 4、20 5、85 6、7或28 7、3 8、12 9、115度12、a=5,b=1决赛B1、85051998年小学数学奥林匹克参考答案预赛A: 1、10 2、15805 3、1又8分之1 4、81 提示9828等于2的平方乘3 的立方乘7乘13,三个连续自然数是26、27、28 5、168 提示97+71=89+79 6、998 7、36个8、192把9、7套10、152个11、119 12、62 2、19425 3、3又8分之1 4、21 5、30 6、140 7、52 8、333棵9、49元10、12人11、12分12、840米决赛A: 1、325平方厘米4、21354 5、727 6、23个7、571个8、19735 9、25%10、8点15分11、15只12、24%决赛B: 1、375元预赛B 1、088 7、135 8、A+大,大8平方厘米9、除1997外,还有1799、1979、1889、1988、189867%5、同决赛A卷第5题6、46个7、81分8、587元9、25天10、56 11、同决赛A卷第11题12、同决赛A卷第12题决赛: 1、同决赛B卷第2题2、同决赛A卷第1题3、同决赛B卷第3题4、同决赛A卷第3题5、1:3 6、同决赛A卷第6题7、同决赛B卷第7题8、同决赛B卷第8题9、同决赛A卷第9题10、396 11、同决赛B卷第10题。
小学数学(shùxué)奥林匹克五年级预赛试卷A卷及答案(dáàn) 1.计算(jì suàn):8 -1.2×1.5 +742 ÷〔2.544÷2.4〕= __________。
2.计算(jì suàn): __________。
3.那么(nà me)x= __________。
4.设a*b表示,计算:〔2021*1004〕*〔1004*502〕=__________。
5.图中的大长方形分别由面积为12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形所组成。
那么图中阴影局部的面积为__________平方厘米。
6.自然数12321,90009,41014 ……有一个共同特征:它们倒过来写还是原来的数,那么具有这种“特征〞的五位偶数有__________个。
7.将从1开始的自然数如图排列,那么:(1) 位于第10行、第10列的数是__________;(2) 2022在第_______行、第_______列上。
8.将+、-、×、÷四个运算符号分别填在下面算式的方格中,每个运算符号都用上,每一格内填一个符号,使这四个算式的答数之和尽可能的大,那么这四个数之和是__________。
, , ,9.有四个正方体,棱长分别(fēnbié)为1,1,2,3。
今把它们的外表(wàibiǎo)粘在一起,所得的立体图形的外表积可能取得的最小值是__________。
10.两个不同(bù tónɡ)的单位分数之和是,且这两个单位分数(fēnshù)的分母都是四位数,那么这两个单位分数的分母的差的最小值是__________。
11.从5双不同尺码(chǐmǎ)的鞋子中任取4只,其中至少有2只配成一双,共有_______种不同的取法。
小学数学奥林匹克六年级预赛试卷A卷及答案1.计算:2008+2007+2006+2005-2004-2003-2002-2001+2000+1999+1998+5-1994-1993+1992+…+6+5-4-3-2-1=__________2.计算:=__________。
3.算式:的计算结果用循环小数表示是__________。
4.从1开始依次把自然数一一写下去得到:16……。
从第12个数字起,首次出现3个连排1。
那么从第_________个数字起将首次出现5个连排2。
5.两个二进制的4位数其乘法算式如右(省略中间过程),则这两个二进制数是____________。
6.如图,在长方形内有四条线段,把长方形分成若干块。
已知有三块图形的面积分别是13,35,49。
那么图中阴影部分的面积是__________。
7.小明家的电话号码是七位数,将前四位数组成的数与后三位数组成的数相加得9534;将前三位数组成的数与后四位数组成的数相加得2523。
小明家的电话号码是________。
8.在自然数中,恰好有4个约数的两位数共有_________个。
9.已知一个自然数与199的乘积的末尾是13579,这个数至少是___________。
10.一项工程,如果由甲、乙、丙共同工作,45天可以完成,需付工程款2700元;如果由甲、乙丁共同工作,40天可以完成,需付工程款2800元;如果由乙、丙、丁共同完成,36天可以完成,需付工程款2880元;如果由甲、丙、丁共同工作,30天可以完成,需付工程款2700元。
现在决定将工程承包给一个工程队,确保工程在100天以内完成,且支付的工程款尽量的少,那么应将工程交给_______工程队,支付的工程款是________元。
11.学校提早放学,女儿自己回家,走10分钟后碰到父亲来接,坐父亲摩托车回家,到家时比平时迟到1分钟,原因是父亲迟到了7分钟,那么学校提早放学_________分钟。
(共8套)世界少年奥林匹克数学竞赛真题 六年级至四年级专版(全)绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛(2016年10月)选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
六年级试题(A卷)(本试卷满分120分 ,考试时间90分钟 )一、填空题。
(每题5分,共计50分)1、有甲、乙两个两位数,甲数的27等于乙数的 23,这个两位数的差最多是 。
2、如果15111111111111111*=++++,242222222222*=+++,33*=3+33+333,那么7*4= 。
3、由数字0,2,8(既可全用也可不全用)组成的非零自然数,按照从小到大排列,2008排在第 个。
4、如图,正方形的边长是2(a+b ),已知图中阴影部分B 的面积是7平方厘米,则阴影部分A 和C 面积的和是 平方厘米。
5、一辆出租车与一辆货车同时从甲地出发,开往乙地出租车4小时到达,货车6小时到达,已知出租车 比货车每小时多行35千米。
甲乙两地相距 千米6、一个长方体铁块,被截成两个完全相同的正方体铁块,两个正方体铁块的棱长之和比原来长方体铁块的棱长之和增加了16厘米,则原来长方体铁块的长是 。
7、四袋水果共46个,如果第一袋增加1个,第二袋减少2个,第三袋增加1倍,第四袋减少一半,那么四袋水果的个数就相等了,则第四袋水果原先有 个。
8、有23个零件,其中有一个次品,不知它比正品轻还是重,用天平最少 次可以找出次品。
9、123A5能被55整除,则A= 。
10、在一次数学游戏中,每一次都可将黑板上所写的数加倍或者擦去它的末位数,假定一开始写的数是458,那么经过 次上述变化得到14.二、计算题。
(每题6分,共计12分)11、123200112320012002200220022002++++12、6328862363278624⨯-⨯省 市 学校 姓名 赛场 参赛证号∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕∕〇∕∕∕∕∕∕ 密 〇 封 〇 装 〇 订 〇 线 ∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕密 封 线 内 不 要 答 题a +六年级 第3页 六年级 第4页三、解答题。
1992年全国小学奥林匹克数学竞赛预赛(A)卷1.计算:4.25×5.24×1.52×2.51=________。
2.计算:=________.3.有八个半径为1毫米的小圆,用它们圆周的一部分连成一个花瓣图形(如图),图中黑点是这些圆的圆心。
如果圆周率π=3.1416,那么花瓣圆形的面积是________平方厘米4.如果六位数1992□□能被105整除,那么它的最后两位数是________。
5.如图,长方形的面积是小于100 的整数,它的内部有三个边长是整数的正方形,正方形(2)的边长是长方形长的,正方形(1)的边长是长方形宽的。
那么,图中阴影部分的面积是________。
6.比大,比7小,分母是6的最简分数有________个。
7.有一类小于200的自然数,每个数的各位数字之和是奇数,而且都是两个两位数的乘积(例如:144=12×12)。
那么这一类自然数中,第三大的数是________。
8.一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的倍。
上午去甲工地的人数是去乙工地的3倍;下午这批工人中的去甲工地,其他工人到乙工地。
到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天。
那么,这批工人有________人。
9一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。
这两只蚂蚁每秒分别爬行1秒、3秒、5秒……(连续奇数),就掉头爬行。
那么,它们相遇时,已爬行的时间是________秒。
10.有一堆糖果,其中,奶糖占45%。
再放入16块水果糖后,奶糖就只占25%。
那么,这堆糖中有奶糖________块。
11.10个连续的自然数,上题的答数是其中第三大的数。
把这10个数填到下图的方格中,每格填一个数,要求图中三个2×2的正方形中四数之和相等。
那么,这个和数最小是________。
12.某种考试已举行的次数恰好是上题的答数,共出了426题。
小学数学奥林匹克试题预赛及决赛(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)1997小学数学奥林匹克试题预赛(A)卷1.计算:111111×999999+999999×777777=_________。
2.比较分数、、、的大小。
3.用一台天平和重1克、3克、9克的砝码各一个,可称量不同的重量有_________种。
4.六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另一个人的2倍,则丙手中卡片上的数是_________。
5.右面算式中不同字母表示不同的数字,相同字母表示相同的数字,那么被除数是_____。
6.设数A共有9个不同约数,B共有6个不同约数,C共有8个不同约数,这三个数中的任何两个都互不整除,则三个数之积的最小值是_________。
7.上、下两册书的页码共有687个数字,且上册比下册多5页,则上册书有_________页。
8.学校一学期共安排86节数学课,单周一、三、五每天两节,双周二、四每天两节。
开学第一周星期一开学典礼没上课,从星期三开始上,则最后一节数学课是星期_________上的。
9.设正方形的面积为1,右图中E、F分别为AB、AD 的中点,,则阴影部分的面积为_________。
10.某公司彩电按原价格销售,每台获利润60元;现在降价销售,结果彩电销售量增加了一倍,获得的总利润增加了0.5倍,则每台彩电降价_________元。
11.一件工程,甲队独做12天可以完成,甲队做3天后乙队做2天恰可完成一半,现在甲、乙两队合作若干天后,由乙队单独完成,做完后发现两段所用时间相等,则共用_________天。
12.费均以整分为单位计时收费(不足1分钟按1分钟计算)。
市内三分钟内一律收费0.30元,超过三分钟则为0.30元/分,夜间21:00后对折收费。
绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
五年级试题(A卷)(本试卷满分120分 ,考试时间90分钟 )一、填空题。
(每题5分,共计50分)1、一瓶喝去一半水的矿泉水连瓶子重310克,已知瓶子10克,则一瓶矿泉水连瓶子重 克。
2、一条绳子对折3次后,从中间剪开,这条绳子被分成 段。
3、韩梅梅家的电话号码共7位,前三位数字相同,后四位数字也相同,把这些数字加起来,所得的和正好等于左起第三、四位组成的两位数,这个电话号码是 。
4、一列数,第一个数是3,第二个数是4,从第三个数开始,每个数是前两个数之和,问这列数的第2016个数除以3余 。
5、学校钟楼的大钟3点钟敲3下,用了6秒,9点时敲9下用了 秒。
6、如图有一长方形草坪,长30米,宽25米,草坪中间留了宽1米的路,路把草坪分成4块,则草坪的实有面积是 平方米.7、苹果比桃子多20个,如果每天吃2个苹果、1个桃子,桃子吃完后,苹果还剩5个。
原来有苹果 个。
8、韩梅梅从家里去书店,每分钟走525米,预计40分钟到达,但走到一半路程时,遇到了熟人,聊天用了5分钟,如果仍要按预计的时间到达,每分钟应比原来快 米。
9、32016表示2016个3连乘,它的结果个位上的数是 。
10、有数列如下1,1,2,3,5,8,……问第20个数是 。
二、计算题。
(每题6分,共计12分)11、 587+589+584+585+588+586+583+590+581+58212、 1998×1997-1997×1996-1996×1995+1995×1994省 市 学校 姓名 赛场 参赛证号∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕∕〇∕∕∕∕∕∕ 密 〇 封 〇 装 〇 订 〇 线 ∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕密 封 线 内 不 要 答 题三、解答题。
22961班级姓名成绩1.计算:(0.×0.1875+)×65=2.计算:(2×9+7×9.625)×65=3.在下面的数之间适当填上+、一、×、÷运算符号及括号,使算式的结果等于20042 2 2 2 2 2 2 2 2 2=20044.自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有___ _______个5.在算式A×(B+C)=110+C中,A、B、C是三个互不相等的质数,那么B=_______6.在12、22、32、42、……中,1、4、9、16、……叫做"完全平方数"。
从1到500这500个整数中,去掉所有的"完全平方数",剩下的整数的和是__________。
7.下面各数的和是______________。
8.有一次考试中,甲、乙两人考试结果如下:甲答错了全部试题的,乙答错了7题,甲、乙答错的试题占全部试题的,那么甲、乙都答对的试题至少有___________题。
9.如图,设AD=AB、BE =BC FC =AC。
如果三角形DEF的面积是19平方厘米,那么三角形ABC的面积是_________。
10.张先生以标价的95%买下一套房子,经过一段时间后,他又以超出原标价的40%的价格将房子卖出。
这段时间物价的总涨幅为20%,张先生买进和卖出这套房子所得的利润为_____%11.某人到商店买红蓝两种笔,红笔定价5元,蓝笔定价9元,由于购买量较多,商店给予优惠:红笔85折,蓝笔8折,结果此人付的钱比原来节省了18%,已知他买了蓝笔30支,那么红笔买了_________ __支。
12.一位富豪有350万元遗产,在临终前,他对怀孕的妻子写下这样的一份遗嘱:如果生下来是个男孩,就把遗产的三分之二给儿子,母亲拿三分之一;如果生下来是个女孩,就把遗产的三分之一给女儿,三分之二给母亲。
小学数学奥林匹克试题1预赛 A卷及答案
1.计算: 12-22+32-42+52-62+…-1002+1012=________。
2.一个两位数等于其个位数字的平方与十位数字之和,这个两位数是________。
3.五个连续自然数,每个数都是合数,这五个连续自然数的和最小是________。
4.有红、白球若干个。
若每次拿出一个红球和一个白球,拿到没有红球时,还剩下50个白球;若每次拿走一个红球和3个白球,则拿到没有白球时,红球还剩下50个。
那么这堆红球、白球共有________个。
5.一个年轻人今年(2000年)的岁数正好等于出生年份数字之和,那么这位年轻人今年的岁数是________。
6.如右图, ABCD是平行四边形,面积为72平方厘米,E,F分别为AB,BC的中
点,则图中阴影部分的面积为_____平方厘米。
7.a是由2000个9组成的2000位整数,b是由2000个8组成的2000位整数,
则a×b的各位数字之和为________。
8.四个连续自然数,它们从小到大顺次是3的倍数、5的倍数、7的倍数、9的倍数,这四个连续自然数的和最小是____。
9.某区对用电的收费标准规定如下:每月每户用电不超过10度的部分,按每度0.45元收费;超过10度而不超过20度的部分,按每度0.80元收费;超过20度的部分,按每度1.50元收费。
某月甲用户比乙用户多交电费7.10元,乙用户比丙用户多交3.75元,那么甲、乙、丙三用户共交电费
________元(用电都按整度数收费)。
10.一辆小汽车与一辆大卡车在一段9千米长的狭路上相遇,必须倒车,才能继续通行。
已知小汽车的速度是大卡车的速度的3倍,两车倒车的速度是各自速度的;小汽车需倒车的路程是大卡车需倒车的路程的4倍。
如果小汽车的速度是50千米/时,那么要通过这段狭路最少用________小时。
11.某学校五年级共有110人,参加语文、数学、英语三科活动小组,每人至少参加一组。
已知参加语文小组的有52人,只参加语文小组的有16人;参加英语小组的有61人,只参加英语小组的有15人;参加数学小组的有63人,只参加数学小组的有21人。
那么三组都参加的有________人。
12.有8级台阶,小明从下向上走,若每次只能跨过一级或两级,他走上去可能有________种不同方法。
参考答案
1.5151
2.89
3.130
4.250
5. 19
6. 48
7. 18000
8. 642
9. 24.05
10. 9/10
11. 8
12. 34。