2012年沈阳市中考数学试卷(试题及答案word版)
- 格式:doc
- 大小:564.00 KB
- 文档页数:9
辽宁各市2012年中考数学试题分类解析汇编专题1:实数一、选择题1. (2012辽宁鞍山3分) 6的相反数是【 】A .-6B .16C .±6D 【答案】A 。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此6的相反数是-6。
故选A 。
2. (2012辽宁鞍山3分)据分析,到2015年左右,我国纯电驱动的新能源汽车销量预计达到250000辆,250000用科学记数法表示为【 】A .2.5×106B .2.5×104C .2.5×10﹣4D .2.5×105【答案】D 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
250000一共6位,从而250000=2.5×105。
故选D 。
3. (2012辽宁本溪3分)-3的相反数是【 】 A 、3 B 、 -3 C 、13D 、13-【答案】A 。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此-3的相反数是3。
故选A 。
4. (2012辽宁朝阳3分)有理数15-的绝对值为【 】 A.15 B. -5 C. 15- D.5 【答案】A 。
【考点】绝对值。
【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的义,在数轴上,点15-到原点的距离是错误!未找到引用源。
,所以15-的绝对值是错误!未找到引用源。
故选A 。
5. (2012辽宁朝阳3分)为鼓励大学生创业,我市为在开发区创业的每位大学生提供无息贷款125000元,这个数据用科学计数法表示为(保留两位有效数字)【 】A. 51.2510⨯B. 51.210⨯C. 51.310⨯D. 61.310⨯ 【答案】C 。
325a a.故选=8【考点】单项式乘单项式,幂的乘方与积的乘方【解析】10-<,又20>,∴【提示】根据一次函数判定该函数图象所经过的象限.【考点】一次函数的性质【解析】正方形2)180540=.故答案为2)180,把5=n 代入可求五边形内角和,解不等式①得ABC,△ABC的周长为【解析】△∽△3【提示】根据相似三角形周长的比等于相似比计算即可得解【解析】点,又△AOB的面积为【解析】第,60A,AB∠=根据菱形的对称性与等边三角形的对称性可得,2(2)列表得:画树状图:,又∥AD BC,)四边形=BM DN,∴四边形BMDN是平行四边形.(3)A组人数:50020%100⨯=人,C组人数:50035%175⨯=人,补全统计图如图:)⊥OD AC )=OB OD ,30∴∠OBD ,303060∴∠+=,又⊥OD AC 90=OEA ,180180906030∴∠-∠-∠=--=OEA AOD ,又AB 为O 的直径,90=ACB ,在△Rt ACB 12=BC AB ,12=OD AB ,∴=BC OD . )由OD 为半径,根据垂径定理,即可得ABC ;为O 90,继而可证得度角的直角三角形,垂径定理)①点,∥CD y ,点②(3,)C a a ,矩形3=⨯CF CD a 15=a ,故点坐标为(3,1)C=PA PB 120,AB 60(等腰三角形的“三线合一”的性质),在sin ∠APQ 323sin 6032∴==AP 90(垂直的定义)360360906090120-∠-∠-∠=---=OSP SOP OTP ,120∠=SPT ,又90∠=ASP ,AP =PS PT (全等三角形的对应边相等)1 25.【答案】(1)如图①,A-(2,0)AB∴=2OC AB=又抛物线)=OA OB90,45,又45∠=∠∠+∠BEO AOE AOE45+∠BEF =∠BEF AOE3)当△EOF①当=OE OF45,180180454590-∠-∠=--=OEF OFE,又90∠=AOB,则此时点E于点A重合,不符合题意,此种情况不成立;②如图2,45,在△180180454590-∠-∠=--=OEF EOF,9090180∠=+=EFO,45,又由(45=ABO,EH OB⊥90,AOB EHB,∴∠=∴∥EH AO45,在Rt BEH,45∠==cos452⨯OH OB,2∴=如图④所示,∥FN EH,1)(22=ST11 / 11。
2012年沈阳市中考试题数 学(试题满分150分 考试时间120分钟)第一部分(选择题 共24分)参考公式:抛物线y=ax 2+bx+c 的顶点是(—a b 2,a b ac 4-42),对称轴是直线x=—a b 2. 一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.(2012辽宁沈阳,1,3分)下列各数中比0小的数是 ( )A.-3B.31 C.3 D.3 【答案】A2.(2012辽宁沈阳,2,3分)左下图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是 ( )【答案】D3.(2012辽宁沈阳,3,3分)沈阳地铁2号线的开通,方便了市民的出行。
从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学计数法表示为 ( )A.3.04×105B.3.04×106C. 30.4×105D.0.304×10 7【答案】B4.(2012辽宁沈阳,4,3分)计算(2a)3.a 2的结果是 ( )A.2a 5B.2a 6 c.8a 5 D.8a 6【答案】C5.(2012辽宁沈阳,5,3分)在平面直角坐标系中,P(-1,2)关于x 轴的对称点的坐标为 ( )A. (-1,-2)B.(1,-2)C.(2,-1)D.(-2,1)【答案】A6.(2012辽宁沈阳,6,3分)气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是 ( )A.本市明天将有30%的地区降水B.本市明天将有30%的时间降水C.本市明天有可能降水D.本市明天肯定不降水【答案】C7.(2012辽宁沈阳,7,3分)一次函数y= -x+2的图象经过 ( )A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限【答案】B8.(2012辽宁沈阳,8,3分)如图,正方形ABCD 中,对角线AC,BD 相交于点O,则图中的等腰直角三角形有( )A.4个B.6个C.8个D.10个【答案】C二、填空题(每小题4分,共计32分)9.(2012辽宁沈阳,9,4分)分解因式:m 2-6m+9=___________________.【答案】(m -3)210.(2012辽宁沈阳,10,4分)一组数据1,3,3,5,7的众数是________________________.【答案】311.(2012辽宁沈阳,11,4分)正方形的内角和为_________________度。
2012中考数学试题及答案2012年中考数学试题是每年中学生们备战中考的重要资源之一。
在本篇文章中,我们将为您提供2012年中考数学试题及答案,帮助您更好地了解试题的类型和解题方法。
1. 选择题:A. 单项选择题:1. 若一个扇形的半径为8 cm,弧长为12 cm,则该扇形的圆心角为:A) 45° B) 60° C) 90° D) 120°解析:我们知道,扇形的圆心角等于扇形所对的圆心弧的度数,而弧长占的圆周长的比值就是扇形的圆心角占的整圆的比值。
因此,设该扇形的圆心角为x,则12cm/2πr = x/360°。
代入r=8 cm,解得x = 90°。
所以答案选C。
2. 若x+2 = 5,则x的值为:A) 5 B) 3 C) 4 D) 7解析:将x+2=5两边同时减去2,得x=3。
所以答案选B。
B. 完形填空:下面是一道完形填空题,请根据上下文和所给选项,选择最佳答案。
Jonas felt nervous as he 1 to the front of the classroom. His legs feltweak and shaky. He could hear his classmates 2 softly to each other, but the teacher's 3 was low and pleasant. He looked out at the rows of faces, all ofthem 4 at him. His heart was pounding, and he felt as if he could hardly breathe. But he liked that 5 . It made him feel alive.1. A) went B) go C) was going D) is going2. A) talk B) talked C) were talking D) talking3. A) voice B) noise C) sound D) words4. A) lay B) sat C) stood D) walking5. A) situation B) idea C) feeling D) chance解析:根据上下文,我们可以知道Jonas走到了教室前面,所以选项A) went符合语境。
2012年沈阳市中等学校招生统一考试试卷数学13A(满分:150分 时间:120分钟)参考公式:抛物线y=ax 2+bx+c 的顶点是(-b2a ,4ac -b 24a),对称轴是直线x=-b2a .第Ⅰ卷(选择题,共24分)一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1.下列各数中比0小的数是( )A.-3B.13 C.3 D.√32.如图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是( )3.沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3 040 000人次,将3 040 000用科学记数法表示为( ) A.3.04×105 B.3.04×106 C.30.4×105 D.0.304×1074.计算(2a)3·a 2的结果是( ) A.2a 5 B.2a 6 C.8a 5 D.8a 65.在平面直角坐标系中,点P(-1,2)关于x 轴的对称点的坐标为( ) A.(-1,-2) B.(1,-2) C.(2,-1) D.(-2,1)6.气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是( ) A.本市明天将有30%的地区降水 B.本市明天将有30%的时间降水 C.本市明天有可能降水 D .本市明天肯定不降水7.一次函数y=-x+2的图象经过( ) A.一、二、三象限 B .一、二、四象限 C.一、三、四象限 D .二、三、四象限8.如图,正方形ABCD 中,对角线AC,BD 相交于点O,则图中的等腰直角三角形有( )A.4个B.6个C.8个D.10个第Ⅱ卷(非选择题,共126分)二、填空题(每小题4分,共32分)9.分解因式:m 2-6m+9= .10.一组数据1,3,3,5,7的众数是 . 11.五边形的内角和为 度. 12.不等式组{x +1>0,1-2x >0的解集是 .13.已知△ABC ∽△A'B'C',相似比为3∶4,△ABC 的周长为6,则△A'B'C'的周长为 .14.已知点A 为双曲线y=kx 图象上的点,点O 为坐标原点,过点A 作AB ⊥x 轴于点B,连结OA.若△AOB 的面积为5,则k 的值为 .15.有一组多项式:a+b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为 .16.如图,菱形ABCD 的边长为8 cm,∠A=60°,DE ⊥AB 于点E,DF ⊥BC 于点F,则四边形BEDF 的面积为 cm 2.三、解答题(本大题共9小题,共94分)17.(本题8分)计算:(-1)2+|√2-1|+2sin 45°.18.(本题8分)小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图,小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.(1)小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接..写出结果) (2)请你用列表法或画树状图(树形图)法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学、一个是国外大学的概率.(卡片名称可用字母表示)19.(本题10分)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连结EF,分别交AB,CD 于点M,N,连结DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.20.(本题10分)为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查.其中调查问卷设置以下选项(被调查者只能选择其中的一项):A.出台相关法律法规;B.控制用水大户数量;C.推广节水技改和节水器具;D.用水量越多,水价越高;E.其他.根据调查结果制作了统计图表的一部分如下:你认为最有效的节水措施的条形统计图(1)此次抽样调查的人数为人;(2)结合上述统计图表可得m=,n=;(3)请根据以上信息直接..补全条形统计图.13B21.(本题10分)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?22.(本题10分)如图,☉O是△ABC的外接圆,AB是☉O的直径,D为☉O上一点,OD⊥AC,垂足为E,连结BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.23.(本题12分)已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D 分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);②若矩形CDEF的面积为60,请直接..写出此时点C的坐标.24.(本题12分)已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4√3,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上;(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连结CD,DE,EF,FC,OP.①当AB⊥OP时,请直接..写出四边形CDEF的周长的值;②若四边形CDEF的周长用t表示,请直接..写出t的取值范围.25.(本题14分)已知,如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=-√2x2+mx+n的图象经过A,C两点.(1)求此抛物线的函数表达式;(2)求证:∠BEF=∠AOE;(3)当△EOF为等腰三角形时,求此时点E的坐标;(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的(2√2+1)倍.若存在,请直接..写出点P的坐标;若不存在,请说明理由.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.2012年沈阳市中等学校招生统一考试试卷一、选择题1.A正数大于0,0大于负数.故选A.2.D从几何体的左侧看,第1列为2个方块,第2列为1个方块,故选D.3.B用科学记数法表示较大的数,正确的表示形式为a×10n(1≤|a|<10,n为正整数).所以3040 000=3.04×106,故选B.4.C由幂的运算法则得(2a)3·a2=8a3·a2=8a5,故选C.5.A在平面直角坐标系中,关于x轴对称的两个点横坐标相同,纵坐标互为相反数.所以点P(-1,2)关于x轴的对称点的坐标为(-1,-2),故选A.6.C本市明天降水概率是指降水发生的可能性大小而不是指多少地区或多少时间降水,故选C.7.B因为k=-1<0,b=2>0,所以y=-x+2的图象经过第一、二、四象限.故选B.8.C正方形的两条对角线把正方形分成四个相同的小等腰直角三角形.这四个小等腰直角三角形又可以拼成四个等腰直角三角形,故选C.二、填空题9.答案(m-3)2解析m2-6m+9=(m-3)2.10.答案3解析众数是出现次数最多的数据,所以这组数据的众数为3.11.答案540解析五边形的内角和=(5-2)×180°=540°.12.答案-1<x<12解析解不等式x+1>0得x>-1;解不等式1-2x>0得x<12,所以原不等式组的解集为-1<x<12.13.答案8解析相似三角形的周长比等于相似比.由题意得△ABC的周长△A'B'C'的周长=34,因为△ABC的周长为6,所以△A'B'C'的周长=4×63=8.14.答案10或-10解析设点A坐标为(x,y).因为点A在双曲线y=kx图象上,所以xy=k.当k>0时,点A在第一、三象限,S△AOB=12xy=5,∴k=10;当k<0时,点A在第二、四象限,S△AOB=-12xy=5,∴k=-10.评析本题考查反比例函数的几何意义.解决本题的关键在于对点A所在象限的分类讨论.15.答案a10-b20解析观察多项式的首项:a,a2,a3,a4,…,显然第10个多项式的首项为a10;观察多项式的末项:b2,-b4,b6,-b8,…,第10个多项式的末项为-b20.故第10个多项式为a10-b20.评析本题是规律探索问题.主要关注单项式的系数、次数的变化情况,同时注意符号的改变与否.16.答案16√3解析连结BD.在菱形ABCD中,AD=AB,又∵∠A=60°,∴△ABD为等边三角形,∴S△ADE=S△BDE,同理S△CDF=S△BDF,∴S四边形BEDF=12S菱形ABCD=S△ABD.∵∠A=60°,∴DE=AD·sin60°=4√3cm,∴S四边形BEDF=S△ABD=12×8×4√3=16√3cm2.三、解答题17.解析原式=1+√2-1+2×√22=2√2.18.解析(1)13.(2)列表得第二次第一次A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)或画树状(形)图得由表格(或树状图/树形图)可知,共有9种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学,一个是国外大学的结果有4种:(A,C)、(B,C)、(C,A)、(C,B).∴P(两次抽取的卡片上的图片一个是国内大学、一个是国外大学)=49.19.证明(1)∵四边形ABCD是平行四边形,∴∠DAB=∠BCD,∴∠EAM=∠FCN.又∵AD∥BC,∴∠E=∠F.∵AE=CF,∴△AEM≌△CFN.(2)由(1)得AM=CN,又∵四边形ABCD是平行四边形,∴AB△CD,∴BM△DN,∴四边形BMDN是平行四边形.20.解析(1)500.(2)35%;5%.(3)21.解析设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得150 x+10=120x,解得x=40.经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.22.证明(1)∵OD⊥AC,OD为半径,∴CD⏜=AD ⏜, ∴∠CBD=∠ABD,∴BD 平分∠ABC. (2)∵OB=OD,∴∠OBD=∠ODB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°. 又∵OD ⊥AC 于E,∴∠OEA=90°, ∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°. 又∵AB 为☉O 的直径,∴∠ACB=90°, 则在Rt △ACB 中BC=12AB,∵OD=12AB,∴BC=OD.评析 本题考查垂径定理、圆周角定理、等边对等角等知识的综合运用.解决(2)问的关键在于对“30°角所对直角边等于斜边的一半”的认识.23.解析 (1)设直线l 1的表达式为y=k 1x,它过B(18,6),得18k 1=6,k 1=13,∴y=13x.设直线l 2的表达式为y=k 2x+b,它过A(0,24),B(18,6), 得{b =24,18k 2+b =6,解得{k 2=-1,b =24,y=-x+24. (2)①∵点C 在直线l 1上,且点C 的纵坐标为a, ∴a=13x,x=3a,∴点C 的坐标为(3a,a).∵CD ∥y 轴,∴点D 的横坐标为3a. ∵点D 在直线l 2上,∴y=-3a+24, ∴D(3a,-3a+24). ②C(3,1)或C(15,5).24.解析 (1)过点P 作PQ ⊥AB 于点Q.∵PA=PB,∠APB=120°,AB=4√3, ∴AQ=12AB=12×4√3=2√3, ∠APQ=12∠APB=12×120°=60°. 在Rt △APQ 中,sin ∠APQ=AQAP , ∴AP=AQsin △APQ =2√3sin60°=√3√32=4.(2)证明:过点P 分别作PS ⊥OM 于点S,PT ⊥ON 于点T, ∴∠OSP=∠OTP=90°,在四边形OSPT 中, ∠SPT=360°-∠OSP-∠SOT-∠OTP=360°-90°-60°-90°=120°,∴∠APB=∠SPT=120°,∴∠APS=∠BPT.又∵∠ASP=∠BTP=90°,AP=BP, ∴△APS ≌△BPT,∴PS=PT, ∴点P 在∠MON 的平分线上. (3)①8+4√3.②4+4√3<t ≤8+4√3.评析 本题考查角平分线性质定理、中垂线性质定理、全等三角形的判定和性质、锐角三角函数、三角形中位线定理等知识,综合性强,对学生要求较高.第(3)问的解题关键在于随∠APB 的位置变化寻找特殊图形,确定t 的取值范围. 25.解析 (1)如图①,∵A(-2,0),B(0,2),图①∴OA=OB=2,∴AB 2=OA 2+OB 2=22+22=8,∴AB=2√2,∵OC=AB, ∴OC=2√2,即C(0,2√2).又∵抛物线y=-√2x 2+mx+n 的图象经过A 、C 两点,则可得{-4√2-2m +n =0,n =2√2,解得{m =-√2,n =2√2.∴抛物线的表达式为y=-√2x 2-√2x+2√2. (2)证明:∵OA=OB,∠AOB=90°,∴∠BAO=∠ABO=45°. 又∵∠BEO=∠BAO+∠AOE=45°+∠AOE, ∠BEO=∠OEF+∠BEF=45°+∠BEF,∴∠BEF=∠AOE. (3)当△EOF 为等腰三角形时,分三种情况讨论: ①当OE=OF 时,∠OFE=∠OEF=45°, 在△EOF 中,∠EOF=180°-∠OEF-∠OFE=180°-45°-45°=90°.又∵∠AOB=90°, 则此时点E 与点A 重合,不符合题意,此种情况不成立. ②如图②,当FE=FO 时,∠EOF=∠OEF=45°.图②在△EOF 中, ∠EFO=180°-∠OEF-∠EOF=180°-45°-45°=90°, ∴∠AOF+∠EFO=90°+90°=180°, ∴EF ∥AO,∴∠BEF=∠BAO=45°. 又∵由(2)可知,∠ABO=45°,∴∠BEF=∠ABO,∴BF=EF,∴EF=BF=OF=12OB=12×2=1,∴E(-1,1).③如图③,当EO=EF时,过点E作EH⊥y轴于点H.图③在△AOE和△BEF中,∠EAO=∠FBE,EO=EF,∠AOE=∠BEF,∴△AOE≌△BEF,∴BE=AO=2.∵EH⊥OB,∴∠EHB=90°,∴∠AOB=∠EHB,∴EH∥AO,∴∠BEH=∠BAO=45°.在Rt△BEH中,∵∠BEH=∠ABO=45°,∴EH=BH=BEcos45°=2×√22=√2,∴OH=OB-BH=2-√2,∴E(-√2,2-√2).综上所述,当△EOF为等腰三角形时,所求E点坐标为(-1,1)或(-√2,2-√2).(4)P(0,2√2)或P(-1,2√2).评析本题综合考查二次函数的图象和性质、勾股定理、全等三角形、等腰三角形、锐角三角函数等知识,尤其侧重考查分类讨论的思想.。
2011年沈阳招生中考数学试题试题满分150分 考试时间120分钟参考公式:抛物线2y ax bx c =++的顶点是24(,)24b ac b a a --,对称轴是直线2bx a=-. 一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题4分,共24分)1. 下列各选项中,既不是正数也不是负数的是 A .-1B .0CD .π2.左下图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是3.下列运算中,一定正确的是A .m 5-m 2=m 3B .m 10÷m 2=m 5C . m •m 2=m 3D .(2m )5=2m 54.下列各点中,在反比例函数8y x=图象上的是 A .(-1,8) B .(-2,4)C .(1,7)D .(2,4)5.下列图形是中心对称图形的是6.下列说法中,正确的是A .为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B .在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C .某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%D .“2012年将在我市举办全运会,这期间的每一天都是晴天”是必然事件.7.如图,矩形ABCD 中,AB <BC ,对角线AC 、BD 相交于点O ,则图中的等腰三角形有 A .2个 B .4个 C .6个 D .8个8.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米 ,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .253010(180%)60x x -=+ B .253010(180%)x x -=+C .302510(180%)60x x -=+D .302510(180%)x x-=+A .BCD第2题图A .B .C 第5题图C第7题图二、填空题(每小题4分,共32分) 9.2(1)-=___________.10.不等式2-x ≤1的解集为____________.11.在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是____________.12.小窦将本班学生上学方式的调查结果绘制成如图所示的统计图,若步行上学的学生有27人,则骑车上学的学生有__________人.13.如果一次函数y =4x +b 的图象经过第一、三、四象限,那么b 的取值范围是_________. 14.如图,在□ABCD 中,点E 、F 分别在边AD 、BC 上,且BE ∥DF ,若∠EBF =45°,则∠EDF 的度数是__________度.15.16.如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且AE =EF =F A .下列结:①△ABE ≌△ADF ;②CE =CF ;③∠AEB =75°;④BE +DF =EF ;⑤S △ABE +S △ADF =S△CEF ,其中正确的是____________________________(只填写序号).一、 解答题(第17、18小题各8分,第19小题10分,共28分)17.先化简,再求值(x +1)2-(x +2)(x -2)x ,且x 为整数. 18.沈阳地铁一号线的开通运行给沈阳市民的出行方式带来了一些变化.小王和小林准备利用课余时间,以问卷的方式对沈阳市民的出行方式进行调查.如图是沈阳地铁一号线图(部分),小王和小林分别从太原街站(用A 表示)、南市场站(用B 表示)、青年大街站(用C 表示)这三站中,随机选取一站作为调查的站点.⑴在这三站中,小王选取问卷调查的站点是太原街站的概率是多少?(请直接写出结果)⑵请你用列表法或画树状图(树形图)法,求小王选取问卷调查的站点与小林选取问卷调查的站点相邻的概率.(各站点用相应的英文字母表示)第12题图第14题图F第16题图19.如图,在△ABC 中,AB =AC ,D 为BC 边上一点,∠B =30°,∠DAB =45°.⑴求∠DAC 的度数; ⑵求证:DC =AB四、(每小题10分,共20分)20.某班数学兴趣小组收集了本市4月份30天的日最高气温的数据,经过统计分析获得了两条信息和一个统计表信息1 4月份日最高气温的中位数是15.5℃;信息2 日最高气温是17℃的天数比日最高气温是18℃的天数多4天.请根据上述信息回答下列问题:⑴4月份最高气温是13℃的有________天,16℃的有_______天,17℃的有__________天.⑵4月份最高气温的众数是________℃,极差是_________℃。
某某各市2012年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1. (2012某某某某3分)下列计算正确的是【 】 A .x 6+x 3=x 9B .x 3•x 2=x 6C .(xy )3=xy 3D .x 4÷x 2=x 2【答案】D 。
【考点】合并同类项,同底数幂的乘法,幂的乘方,同底数幂的除法。
【分析】根据合并同类项,同底数幂的乘法,幂的乘方,同底数幂的除法运算法则,对各选项分析判断后利用排除法求解:A 、x 6与x 3不是同类项,不能用同底数幂相乘的运算法则计算,故本选项错误; B 、x 3•x 2=x 3+2=x 5,故本选项错误; C 、(xy )3=x 3y 3,故本选项错误; D 、x 4÷x 2=x4﹣2=x 2,故本选项正确。
故选D 。
2. (2012某某某某3分)下列计算正确的是【 】 A 、235a +a =a B 、 ()325a =a C 、2a 3a=6a ⋅D 、()23622a b=4a b【答案】D 。
【考点】合并同类项,幂的乘方和积的乘方,同底幂乘法。
【分析】根据合并同类项,幂的乘方和积的乘方,同底幂乘法运算法则逐一计算作出判断:A 、2a 和3a 不是同类项,不可以合并,选项错误;B 、()32236a =a =a ⨯,选项错误;C 、22a 3a=6a ⋅,选项错误; D 、()232322622a b=2a b =4a b ⨯,选项正确。
故选D 。
3. (2012某某某某3分)下列运算正确的是【 】 A.3412a a =a ⋅ B. ()323692a b =2a b -- C. 633a a =a ÷ D. ()222a+b =a +b【答案】C 。
【考点】同底幂乘法和除法,幂的乘方和积的乘方,完全平方公式。
【分析】根据同底幂乘法和除法,幂的乘方和积的乘方运算法则和完全平方公式逐一计算作出判断:A.343+47a a =a =a ⋅,选项错误;B. ()()32232333692a b =2a b =8a b ⨯⨯---,选项错误;C. 63633a a =a =a -÷,选项正确;D. ()222a+b =a +2ab+b ,选项错误。
2012年沈阳市中考数学试题*试题满分150分 考试时间120分钟参考公式: 抛物线c bx ax y ++=2的顶点是(a b 2-,a b ac 442-),对称轴是直线abx 2-=.一、选择题 (下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1.下列各数中比0小的数是A.-3B.311 C.3 D. 3 2.左下图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是3.沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学记数法表示为A .3.04×105B .3.04×106C .30.4×105D .0.304×107 4.计算(2a)3·a 2的结果是A .2a 5B .2a 6C .8a 5D .8a 65.在平面直角坐标系中,点P (-1,2 ) 关于x 轴的对称点的坐标为 A.(-1,-2 ) B.(1,-2 ) C.(2,-1 ) D.(-2,1 )6.气象台预报“本市明天降水概率是30%” ,对此消息下列说法正确的是 A.本市明天将有30%的地区降水 B.本市明天将有30%的时间降水 C.本市明天有可能降水 D.本市明天肯定不降水 7.一次函数y=-x+2的图象经过A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限 8.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,则图中的等腰直角三角形有 A .4个 B .6个 C .8个 D .10个二、填空题(每小题4分,共32分)9.分解因式:m 2-6m +9=____________.10.一组数据1,3,3,5,7的众数是____________. 11.五边形的内角和为____________度.12.不等式组⎩⎨⎧>->+02101x x 的解集是____________.13.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,△ABC 的周长为6,则△A ′B ′C 的周长为____________.14.已知点A 为双曲线y = kx 图象上的点,点O 为坐标原点过点A 作AB ⊥x 轴于点B ,连接OA .若△AOB 的面积为5,则k 的值为____________.15.有一组多项式:a +b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为____________.16.如图,菱形ABCD 的边长为8cm ,∠A =60°,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则四边形BEDF 的面积为____________cm 2.三、解答题(第17、18小题各8分,第19小题10分,共26分 )17.计算:(-1)2+|12|+2sin45°18.小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图.小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.(1) 小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接..写出结果) (2) 请你用列表法或画树状图(树形图) 法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学、一个是国外大学的概率.(卡片名称可用字母表示)19.已知,如图,在荀ABCD 中,延长DA 到点E ,延长BC 到点F ,使得AE =CF ,连接EF ,分别交AB ,CD 于点M ,N ,连接DM ,BN .(1)求证:△AEM ≌△CFN ;(2)求证:四边形BMDN 是平行四边形.四、(每小题10分,共20分)20.为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查.其中调查问卷设置以下选项(被调查者只能选择其中的一项):A.出台相关法律法规;B.控制用水大户数量;C.推广节水技改和节水器具;D.用水量越多,水价越高;E.其他.根据调查结果制作了统计图表的一部分如下:(1)此次抽样调查的人数为①人;(2)结合上述统计图表可得m= ②,n= ③;(3)请根据以上信息直接..在答题卡中补全条形统计图.21.甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?五、(本题10分)22.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2) 当∠ODB=30°时,求证:BC=OD.23.已知,如图,在平面直角坐标系内,点A的坐标为(0,24 ),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);②若矩形CDEF的面积为60,请直接..写出此时点C的坐标.七、(本题12分)24.已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与4,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠点O重合),且AB=3APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上;(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,P A的中点,连接CD,DE,EF,FC,OP.①当AB⊥OP时,请直接..写出四边形CDEF的周长的值;②若四边形CDEF的周长用t表示,请直接..写出t的取值范围.25.已知,如图,在平面直角坐标系中,点A 坐标为(-2,0),点B 坐标为 (0,2 ),点E 为线段AB 上的动点(点E 不与点A ,B 重合),以E 为顶点作∠OET =45°,射线ET 交线段OB 于点F ,C 为y 轴正半轴上一点,且OC =AB ,抛物线y =2-x 2+mx +n 的图象经过A ,C 两点.(1) 求此抛物线的函数表达式; (2) 求证:∠BEF =∠AOE ;(3) 当△EOF 为等腰三角形时,求此时点E 的坐标;(4) 在(3)的条件下,当直线EF 交x 轴于点D ,P 为(1) 中抛物线上一动点,直线PE 交x 轴于点G ,在直线EF 上方的抛物线上是否存在一点P ,使得△EPF 的面积是△EDG 面积的(122+) 倍.若存在,请直接..写出点P 的坐标;若不存在,请说明理由. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.数学试题 参考答案一、选择题(每小题3分,共24分)1.A2.D3.B4.C5.A6.C7.B8.C 二、填空题(每小题4分,共32分)9. (m-3)2 10.3 11. 540 12.-1<x <2113.8 14.10 或 -10 15.a 10-b 20 16. 316 三、解答题 (第17、 18小题各8分, 第19小题10分,共26分) 17.原式=1+ 2-1+2×22=22 18.解: (1)31 (2) 列表得或画树状 (形) 图得由表格 (或树状图/树形图) 可知, 共有9种可能出现的结果, 每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学, 一个是国外大学的结果有4种: (A , C )(B , C )(C , A )(C , B )∴P (两次抽取的卡片上的图片一个是国内大学一个是国外大学) =94. 19.证明:(1) ∵四边形ABCD 是平行四边形∴∠DAB =∠BCD ∴∠EAM =∠FCN 又∵AD ∥BC ∴∠E =∠F ∵AE =CF ∴△AEM ≌△CFN(2) 由(1) 得AM =CN ,又∵四边形ABCD 是平行四边形∴AB CD ∴BM DN ∴四边形BMDN 是平行四边形四、(每小题10分,共20分)20.解: (1) 500 (2) 35%, 5% (3)21.解:设乙每小时加工机器零件x 个, 则甲每小时加工机器零件(x +10) 个, 根据题意得:xx 12010150=+ 解得x =40 经检验, x =40是原方程的解 x +10=40+10=50 答: 甲每小时加工50个零件, 乙每小时加工40个零件. 五、(本题10分) 22.证明: (1) ∵OD ⊥AC OD 为半径∴∴∠CBD =∠ABD ∴BD 平分∠ABC(2) ∵OB =OD ∴∠OBD =∠ODB =30°∴∠AOD =∠OBD +∠ODB =30°+30°=60° 又∵OD ⊥AC 于E ∴∠OEA =90°∴∠A =180°-∠OEA -∠AOD =180°-90°-60°=30° 又∵AB 为⊙O 的直径 ∴∠ACB =90°则在Rt △ACB 中BC =21AB ∵OD=21AB ∴BC =OD23.解:(1)设直线l 1的表达式为y =k 1x ,它过B (18, 6) 得18k 1=6 k 1=31 ∴y =31x设直线l 2的表达式为y =k 2x +b ,它过A (0, 24), B (18, 6)得⎩⎨⎧=+=618242b k b 解得⎩⎨⎧=-=212b ky =-x +24 (2) ①∵点C 在直线l 1上, 且点C 的纵坐标为a ,∴a =31x x =3a ∴点C 的坐标为 (3a , a ) ∵CD ∥y 轴∴点D 的横坐标为3a ∵点D 在直线l 2上 ∴y =-3a +24 ∴D (3a , -3a +24) ②C (3, 1) 或C (15, 5) 七、(本题12分) 24.解: (1) 过点P 作PQ ⊥AB 于点Q ∵P A =PB , ∠APB =120° AB =43∴AQ =21AB =21×43=23 ∠APQ= 21∠APB =21×120°=60°在Rt △APQ 中, sin ∠APQ =AP AQ ∴AP= 233260sin 32sin =︒=∠APQ AQ =sin60°=4(2) 过点P 分别作PS ⊥OM 于点S , PT ⊥ON 于点T ∴∠OSP =∠OTP =90° 在四边形OSPT 中,∠SPT =360°-∠OSP -∠SOT -∠OTP =360°-90°-60°-90°=120° ∴∠APB =∠SPT =120° ∴∠APS =∠BPT 又∵∠ASP =∠BTP =90° AP =BP ∴△APS ≌△BPT ∴PS =PT ∴点P 在∠MON 的平分线上(3) ①8+43 ②4+43<t ≤8+4325.解:(1) 如答图①, ∵A (-2, 0) B (0, 2)∴OA =OB =2 ∴AB 2=OA 2+OB 2=22+22=8∴AB =22∵OC =AB ∴OC =22, 即C (0, 22)又∵抛物线y =-2x 2+mx +n 的图象经过A 、C 两点 则可得⎪⎩⎪⎨⎧==+--220224n n m 解得:⎪⎩⎪⎨⎧=-=222n m ∴抛物线的表达式为y =-2x 2-2x +22 (2) ∵OA =OB ∠AOB =90° ∴∠BAO =∠ABO =45° 又∵∠BEO =∠BAO +∠AOE =45°+∠AOE∠BEO =∠OEF +∠BEF =45°+∠BEF ∴∠BEF =∠AOE (3) 当△EOF 为等腰三角形时,分三种情况讨论 ①当OE =OF 时, ∠OFE =∠OEF =45°在△EOF 中, ∠EOF =180°-∠OEF -∠OFE =180°-45°-45°=90° 又∵∠AOB =90°则此时点E 与点A 重合, 不符合题意, 此种情况不成立. ②如答图②, 当FE =FO 时, ∠EOF =∠OEF =45°在△EOF 中,∠EFO =180°-∠OEF -∠EOF =180°-45°-45°=90°∴∠AOF +∠EFO =90°+90°=180°∴EF ∥AO ∴ ∠BEF =∠BAO =45° 又∵ 由 (2) 可知 ,∠ABO =45°∴∠BEF =∠ABO ∴BF =EF ∴EF =BF =OF =21OB=21×2=1 ∴ E (-1, 1) ③如答图③, 当EO =EF 时, 过点E 作EH ⊥y 轴于点H 在△AOE 和△BEF 中,∠EAO =∠FBE , EO =EF , ∠AOE =∠BEF ∴△AOE ≌△BEF ∴BE =AO =2∵EH ⊥OB ∴∠EHB =90°∴∠AOB =∠EHB ∴EH ∥AO ∴∠BEH =∠BAO =45° 在Rt △BEH 中, ∵∠BEH =∠ABO =45° ∴EH =BH =BE cos45°=2×22=2 ∴OH =OB -BH =2- 22∴ E (-2, 2-2)综上所述, 当△EOF 为等腰三角形时, 所求E 点坐标为E (-1, 1)或E (-2, 2- 22) (4) P (0, 22)或P (-1, 22)。
2012年辽宁省沈阳市中考数学试卷一、选择题(下列备选答案中,只有一个是正确的,共8小题,每小题3分,满分24分)1.(3分)下列各数中比0小的数是()A.﹣3 B.C.3 D.2.(3分)如图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C. D.3.(3分)沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学记数法表示为()A.3.04×105B.3.04×106C.30.4×105D.0.304×1074.(3分)计算(2a)3•a2的结果是()A.2a5B.2a6C.8a5D.8a65.(3分)在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2) C.(2,﹣1)D.(﹣2,1)6.(3分)气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是()A.本市明天将有30%的地区降水B.本市明天将有30%的时间降水C.本市明天有可能降水D.本市明天肯定不降水7.(3分)一次函数y=﹣x+2图象经过()A.一、二、三象限 B.一、二、四象限 C.一、三、四象限 D.二、三、四象限8.(3分)如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个 B.6个 C.8个 D.10个二、填空题(共8小题,每小题4分,满分32分)9.(4分)分解因式:m2﹣6m+9=.10.(4分)一组数据1,3,3,5,7的众数是.11.(4分)五边形的内角和为度.12.(4分)不等式组的解集是.13.(4分)已知△ABC∽△A′B′C′,相似比为3:4,△ABC的周长为6,则△A′B′C′的周长为.14.(4分)已知点A为双曲线y=图象上的点,点O为坐标原点,过点A作AB ⊥x轴于点B,连接OA.若△AOB的面积为5,则k的值为.15.(4分)有一组多项式:a+b2,a2﹣b4,a3+b6,a4﹣b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为.16.(4分)如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC 于点F,则四边形BEDF的面积为cm2.三、解答题(共3小题,17、18各8分,19题10分,共26分)17.(8分)计算:(﹣1)2+|﹣1|+2sin45°.18.(8分)小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图,小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机取一张卡片,放回后洗匀,在随机抽取一张卡片.(1)小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接写出结果)(2)请你用列表法或画树状图(树状图)法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学,一个是国外大学的概率.(卡片名称可用字母表示)19.(10分)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.四、(每小题10分,共20分)20.(10分)为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查,其中问卷设置以下选项(被调查者只能选择其中的一项)A.出台相关法律法规B.控制用水大户数量C.推广节水技改和节水器具D.用水量越多,水价越高.E.其他根据调查结果制作了统计图表的一部分如下:你认为最有效的节水措施的统计表:你认为最有效的节水措施的条形统计图:(1)此次抽样调查的人数为人;(2)结合上述统计图表可得m=;n=.(3)请根据以上信息直接补全条形统计图.21.(10分)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?五、(本题10分)22.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.六、(本题12分)23.(12分)已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示)②若矩形CDEF的面积为60,请直接写出此时点C的坐标.七、(本题12分)24.(12分)已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上.(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.①当AB⊥OP时,请直接写出四边形CDEF的周长的值;②若四边形CDEF的周长用t表示,请直接写出t的取值范围.八、(本题14分)25.(14分)已知,如图,在平面直角坐标系中,点A坐标为(﹣2,0),点B 坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段0B于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=﹣x2+mx+n的图象经过A,C两点.(1)求此抛物线的函数表达式;(2)求证:∠BEF=∠AOE;(3)当△EOF为等腰三角形时,求此时点E的坐标;(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF 的面积是△EDG面积的(2+1)倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.2012年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(下列备选答案中,只有一个是正确的,共8小题,每小题3分,满分24分)1.(3分)(2012•沈阳)下列各数中比0小的数是()A.﹣3 B.C.3 D.【解答】解:A、﹣3<0,故本选项正确;B、>0,故本选项错误;C、3>0,故本选项错误;D、>0,故本选项错误;故选A.2.(3分)(2012•沈阳)如图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C. D.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.故选D.3.(3分)(2012•沈阳)沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学记数法表示为()A.3.04×105B.3.04×106C.30.4×105D.0.304×107【解答】解:将3040000用科学记数法表示为3.04×106.故选B.4.(3分)(2012•沈阳)计算(2a)3•a2的结果是()A.2a5B.2a6C.8a5D.8a6【解答】解:(2a)3•a2=8a5.故选C.5.(3分)(2012•沈阳)在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2) C.(2,﹣1)D.(﹣2,1)【解答】解:点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2).故选:A.6.(3分)(2012•沈阳)气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是()A.本市明天将有30%的地区降水B.本市明天将有30%的时间降水C.本市明天有可能降水D.本市明天肯定不降水【解答】解:本市明天降水概率是30%是指明天降水的可能性问题,且可能性比较小,即本市明天有可能降水.故选C.7.(3分)(2012•沈阳)一次函数y=﹣x+2图象经过()A.一、二、三象限 B.一、二、四象限 C.一、三、四象限 D.二、三、四象限【解答】解:∵﹣1<0,∴一次函数y=﹣x+2的图象一定经过第二、四象限;又∵2>0,∴一次函数y=﹣x+2的图象与y轴交于正半轴,∴一次函数y=﹣x+2的图象经过第一、二、四象限;故选B.8.(3分)(2012•沈阳)如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个 B.6个 C.8个 D.10个【解答】解:∵正方形ABCD中,对角线AC,BD相交于点O,∴AB=BC=CD=AD,AO=OD=OC=OB,∴△ABC,△BCD,△ADC,△ABD,△AOB,△BOC,△COD,△AOD都是等腰三角形,一共8个.故选:C.二、填空题(共8小题,每小题4分,满分32分)9.(4分)(2012•沈阳)分解因式:m2﹣6m+9=(m﹣3)2.【解答】解:m2﹣6m+9=(m﹣3)2,故答案为:(m﹣3)2.10.(4分)(2012•沈阳)一组数据1,3,3,5,7的众数是3.【解答】解:3出现的次数最多,所以众数是3.故填3.11.(4分)(2012•沈阳)五边形的内角和为540度.【解答】解:五边形的内角和为(5﹣2)×180°=540°.故答案为:540.12.(4分)(2012•沈阳)不等式组的解集是﹣1<x<.【解答】解:,∵解不等式①得:x>﹣1,解不等式②得:x<,∴不等式组的解集是﹣1<x<,故答案为:﹣1<x<.13.(4分)(2012•沈阳)已知△ABC∽△A′B′C′,相似比为3:4,△ABC的周长为6,则△A′B′C′的周长为8.【解答】解:∵△ABC∽△A′B′C′,∴△ABC的周长:△A′B′C′的周长=3:4,∵△ABC的周长为6,∴△A′B′C′的周长=6×=8.故答案为:8.14.(4分)(2012•沈阳)已知点A为双曲线y=图象上的点,点O为坐标原点,过点A作AB⊥x轴于点B,连接OA.若△AOB的面积为5,则k的值为10或﹣10.【解答】解:∵点A为双曲线y=图象上的点,∴设点A的坐标为(x,);又∵△AOB的面积为5,∴S=|x|•||=5,即|k|=10,△AOB解得,k=10或k=﹣10;故答案是:10或﹣10.15.(4分)(2012•沈阳)有一组多项式:a+b2,a2﹣b4,a3+b6,a4﹣b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为a10﹣b20.【解答】解:∵第1个多项式为:a1+b2×1,第2个多项式为:a2﹣b2×2,第3个多项式为:a3+b2×3,第4个多项式为:a4﹣b2×4,…∴第n个多项式为:a n+(﹣1)n+1b2n,∴第10个多项式为:a10﹣b20.故答案为:a10﹣b20.16.(4分)(2012•沈阳)如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF的面积为16cm2.【解答】解:如图,连接BD,∵∠A=60°,AB=AD(菱形的边长),∴△ABD是等边三角形,∴DE=AD=×8=4cm,根据菱形的对称性与等边三角形的对称性可得,四边形BEDF的面积等于△ABD 的面积,×8×4=16cm2.故答案为:16.三、解答题(共3小题,17、18各8分,19题10分,共26分)17.(8分)(2012•沈阳)计算:(﹣1)2+|﹣1|+2sin45°.【解答】原式=1+﹣1+2×=2.18.(8分)(2012•沈阳)小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图,小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机取一张卡片,放回后洗匀,在随机抽取一张卡片.(1)小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接写出结果)(2)请你用列表法或画树状图(树状图)法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学,一个是国外大学的概率.(卡片名称可用字母表示)【解答】解:(1);(2)列表得:画树状图:由表格或树状图可知,共有9种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学,一个是国外大学的结果有4种:(A,B),(B,A),(B,C),(C,B),所以,P(两次抽取的卡片上的图片一个是国内大学一个是国外大学)=.19.(10分)(2012•沈阳)已知,如图,在▱ABCD中,延长DA到点E,延长BC 到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.【解答】证明:(1)四边形ABCD是平行四边形,∴∠DAB=∠BCD,∴∠EAM=∠FCN,又∵AD∥BC,∴∠E=∠F.∵在△AEM与△CFN中,,∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形,∴AB CD,又由(1)得AM=CN,∴BM DN,∴四边形BMDN是平行四边形.四、(每小题10分,共20分)20.(10分)(2012•沈阳)为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查,其中问卷设置以下选项(被调查者只能选择其中的一项)A.出台相关法律法规B.控制用水大户数量C.推广节水技改和节水器具D.用水量越多,水价越高.E.其他根据调查结果制作了统计图表的一部分如下:你认为最有效的节水措施的统计表:你认为最有效的节水措施的条形统计图:(1)此次抽样调查的人数为500人;(2)结合上述统计图表可得m=35%;n=5%.(3)请根据以上信息直接补全条形统计图.【解答】解:(1)75÷15%=500人;(2)n=×100%=5%,m=1﹣20%﹣15%﹣25%﹣5%=1﹣65%=35%,(3)A组人数:500×20%=100人,C组人数:500×35%=175人,补全统计图如图:21.(10分)(2012•沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?【解答】解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.五、(本题10分)22.(10分)(2012•沈阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D 为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.【解答】证明:(1)∵OD⊥AC OD为半径,∴=,∴∠CBD=∠ABD,∴BD平分∠ABC;(2)∵OB=OD,∴∠OBD=∠0DB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°,又∵OD⊥AC于E,∴∠OEA=90°,∴∠A=180°﹣∠OEA﹣∠AOD=180°﹣90°﹣60°=30°,又∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,BC=AB,∵OD=AB,∴BC=OD.六、(本题12分)23.(12分)(2012•沈阳)已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示)②若矩形CDEF的面积为60,请直接写出此时点C的坐标.【解答】解:(1)设直线l1的表达式为y=k1x,它过(18,6)得18k1=6 k1=∴y=x设直线l2的表达式为y=k2x+b,它过点A(0,24),B(18,6)得解得,∴直线l2的表达式为:y=﹣x+24;(2)①∵点C在直线l1上,且点C的纵坐标为a,∴a=x x=3a,∴点C的坐标为(3a,a),∵CD∥y轴∴点D的横坐标为3a,∵点D在直线l2上,∴y=﹣3a+24∴D(3a,﹣3a+24)②∵C(3a,a),D(3a,﹣3a+24)∴CF=3a,CD=﹣3a+24﹣a=﹣4a+24,∵矩形CDEF的面积为60,=CF•CD=3a×(﹣4a+24)=60,解得a=1或a=5,∴S矩形CDEF当a=1时,3a=3,故C(3,1);当a=5时,3a=15,故C(15,5);综上所述C点坐标为:C(3,1)或(15,5).七、(本题12分)24.(12分)(2012•沈阳)已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4,在∠MON的内部,△AOB 的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上.(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.①当AB⊥OP时,请直接写出四边形CDEF的周长的值;②若四边形CDEF的周长用t表示,请直接写出t的取值范围.【解答】(1)解:过点P作PQ⊥AB于点Q.∵PA=PB,∠APB=120°,AB=4∴AQ=BQ=2,∠APQ=60°(等腰三角形的“三线合一”的性质),在Rt△APQ中,sin∠APQ=∴AP====4;(2)证明:过点P分别作PS⊥OM于点S,PT⊥ON于点T.∴∠OSP=∠OTP=90°(垂直的定义);在四边形OSPT中,∠SPT=360°﹣∠OSP﹣∠SOB﹣∠OTP=360°﹣90°﹣60°﹣90°=120°,∴∠APB=∠SPT=120°,∴∠APS=∠BPT;又∵∠ASP=∠BTP=90°,AP=BP,∴△APS≌△BPT,∴PS=PT(全等三角形的对应边相等)∴点P在∠MON的平分线上;(3)①∵OP平分∠AOB,∠AOB=60°,OP⊥AB,∴AQ=BQ=AB=2,∴OQ==6,同理:PQ==2,∴OP=8,∵点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,∴CD=EF=AB,CF=DE=OP,∴四边形CDEF的周长为:8+4②CD和EF是△ABO和△ABP的中位线,则CD=EF=AB=2,CF和DE分别是△AOP和△BOP的中位线,则CF=DE=OP,当AB⊥OP时,OP为四点边形AOBP外接圆的直径时,OP最大,其值是8,OP 一定大于当点A或B与点O重合时的长度是4.则4+4<t≤8+4.八、(本题14分)25.(14分)(2012•沈阳)已知,如图,在平面直角坐标系中,点A坐标为(﹣2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段0B于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=﹣x2+mx+n的图象经过A,C两点.(1)求此抛物线的函数表达式;(2)求证:∠BEF=∠AOE;(3)当△EOF为等腰三角形时,求此时点E的坐标;(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF 的面积是△EDG面积的(2+1)倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)如图①,∵A(﹣2,0)B(0,2)∴OA=OB=2,∴AB2=OA2+OB2=22+22=8∴AB=2,∵OC=AB∴OC=2,即C(0,2)又∵抛物线y=﹣x2+mx+n的图象经过A、C两点则可得,解得.∴抛物线的表达式为y=﹣x2﹣x+2.(2)∵OA=OB,∠AOB=90°,∴∠BAO=∠ABO=45°又∵∠BEO=∠BAO+∠AOE=45°+∠AOE,∠BEO=∠OEF+∠BEF=45°+∠BEF,∴∠BEF=∠AOE.(3)当△EOF为等腰三角形时,分三种情况讨论①当OE=OF时,∠OFE=∠OEF=45°在△EOF中,∠EOF=180°﹣∠OEF﹣∠OFE=180°﹣45°﹣45°=90°又∵∠AOB=90°则此时点E与点A重合,不符合题意,此种情况不成立.②如图2,当FE=FO时,∠EOF=∠OEF=45°在△EOF中,∠EFO=180°﹣∠OEF﹣∠EOF=180°﹣45°﹣45°=90°∴∠AOF+∠EFO=90°+90°=180°∴EF∥AO,∴∠BEF=∠BAO=45°又∵由(2)可知,∠ABO=45°∴∠BEF=∠ABO,∴BF=EF,EF=BF=OB=×2=1∴E(﹣1,1)③如图③,当EO=EF时,过点E作EH⊥y轴于点H在△AOE和△BEF中,∠EAO=∠FBE,EO=EF,∠AOE=∠BEF∴△AOE≌△BEF,∴BE=AO=2∵EH⊥OB,∴∠EHB=90°,∴∠AOB=∠EHB∴EH∥AO,∴∠BEH=∠BAO=45°在Rt△BEH中,∵∠BEH=∠ABO=45°∴EH=BH=BEcos45°=2×=∴OH=OB﹣BH=2﹣∴E(﹣,2﹣)综上所述,当△EOF为等腰三角形时,所求E点坐标为E(﹣1,1)或E(﹣,2﹣).(4)假设存在这样的点P.当直线EF与x轴有交点时,由(3)知,此时E(﹣,2﹣).如图④所示,过点E作EH⊥y轴于点H,则OH=FH=2﹣.由OE=EF,易知点E为Rt△DOF斜边上的中点,即DE=EF,过点F作FN∥x轴,交PG于点N.=S△EDG,易证△EDG≌△EFN,因此S△EFN依题意,可得S△EPF=(2+1)S△EDG=(2+1)S△EFN,∴PE:NE=(2+1):1.过点P作PM⊥x轴于点M,分别交FN、EH于点S、T,则ST=TM=2﹣.∵FN∥EH,∴PT:ST=PE:NE=2+1,∴PT=(2+1)•ST=(2+1)(2﹣)=3﹣2;∴PM=PT+TM=2,即点P的纵坐标为2,∴﹣x2﹣x+2=2,解得x1=0,x2=﹣1,∴P点坐标为(0,2)或(﹣1,2).综上所述,在直线EF上方的抛物线上存在点P,使得△EPF的面积是△EDG面积的(2+1)倍;点P的坐标为(0,2)或(﹣1,2).参与本试卷答题和审题的老师有:zjx111;HJJ;zhangCF;王岑;wdzyzlhx;zcx;dbz1018;lantin;星期八;sjzx;ZJX;未来(排名不分先后)菁优网2017年3月25日。
2012年中考数学试题一、选择题:1.若x 5=,则x 的值是【 】A .5B .-5C .5±D .51 2.下列运算正确的是【 】A .5510a a a +=B .339a a a ⋅=C .()3393a 9a = D .1239a a a ÷=3.函数y x 2=-中自变量x 的取值范围是【 】A .x 2>B .x 2≥C .x 2≤D .x 2<4.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字应为【 】 A .56.7510⨯- 克 B .56.7410-⨯ 克 C .66.7410-⨯ 克 D . 66.7510-⨯克 5.若关于x 的一元二次方程2x 2x m 0-+=有两个不相等的实数根,则m 的取值范围是【 】 A .m 1< B .m 1<- C .m 1> D . m 1>- 6.下列命题中,真命题是【 】A .有两条对角线相等的四边形是等腰梯形B .两条对角线互相垂直且平分的四边形是正方形C .等边三角形既是轴对称图形又是中心对称图形D .有一个角是60°的等腰三角形是等边三角形7.如图,在△ABC 中,∠ACB =90°,∠A =20°,若将△ABC 沿CD 折叠,使B 点落在AC 边上的E 处,则∠ADE 的度数是【 】A .30°B .40°C .50°D .55°8.一组数据为2、3、5、7、3、4,对于这组数据,下列说法错误的是【 】A .平均数是4B .极差是5C .众数是3D . 中位数是6 9.若m 、n 是一元二次方程2x 5x 20--=的两个实数根,则m n mn +-的值是【 】 A .-7 B .7 C .3 D . -310.圆锥底面圆的半径为1㎝,母线长为6㎝,则圆锥侧面展开图的圆心角是【 】 A .30° B .60° C .90° D . 120°第Ⅱ卷(非选择题)二、填空题:11.因式分解:2ax 2ax a -+= ▲ .12.如图,□ABCD 中,AB =5,AD =3,AE 平分∠DAB 交BC 的延长线于F 点,则CF = ▲ .13.已知:P A 、PB 与⊙O 相切于A 点、B 点,OA =1,P A =3,则图中阴影部分的面积是 ▲ (结果保留π).14.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加优育小组,35%的人参加美术小组,则参加音乐小组的有 ▲ 人. 15.直线y (3a)x b 2=-+-在直角坐标系中的图象如图所示, 化简:2b a a 6a 92b ---+--= ▲ .16.在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 ▲ .第14题 第15题 第17题 三、计算题:本大题共2个小题,每小题6分,共12分.17.计算:)2014cos301212-⎛⎫+-⎪⎝⎭18.解方程:11x 3x 22x -+=-- 解不等式组()2x 13x 22x 4⎧--⎪⎨-⎪⎩≥<19.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为A(-3 ,0),B(-1 ,-2),C(-2 ,2).(1)请在图中画出△ABC绕B点顺时针旋转90°后的图形;(2)请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.20.如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.21.有质地均匀的A.B.C.D四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢。
2012年沈阳市中考数学试题*试题满分150分 考试时间120分钟参考公式: 抛物线c bx ax y ++=2的顶点是(a b 2-,a b ac 442-),对称轴是直线a b x 2-=. 一、选择题 (下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1.下列各数中比0小的数是A.-3B. 311C.3D. 32.左下图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是3.沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学记数法表示为A .3.04×105B .3.04×106C .30.4×105D .0.304×1074.计算(2a)3·a 2的结果是A .2a 5B .2a 6C .8a 5D .8a 65.在平面直角坐标系中,点P (-1,2 ) 关于x 轴的对称点的坐标为A.(-1,-2 )B.(1,-2 )C.(2,-1 )D.(-2,1 )6.气象台预报“本市明天降水概率是30%” ,对此消息下列说法正确的是A.本市明天将有30%的地区降水B.本市明天将有30%的时间降水C.本市明天有可能降水D.本市明天肯定不降水7.一次函数y=-x+2的图象经过A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限8.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,则图中的等腰直角三角形有A .4个B .6个C .8个D .10个二、填空题(每小题4分,共32分)9.分解因式:m 2-6m +9=____________.10.一组数据1,3,3,5,7的众数是____________.11.五边形的内角和为____________度.12.不等式组⎩⎨⎧>->+02101x x 的解集是____________. 13.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,△ABC 的周长为6,则△A ′B ′C 的周长为____________.14.已知点A 为双曲线y = kx 图象上的点,点O 为坐标原点过点A 作AB ⊥x 轴于点B ,连接OA .若△AOB 的面积为5,则k 的值为____________.15.有一组多项式:a +b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为____________.16.如图,菱形ABCD 的边长为8cm ,∠A =60°,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则四边形BEDF 的面积为____________cm 2.三、解答题(第17、18小题各8分,第19小题10分,共26分 )17.计算:(-1)2+|12| +2sin45°18.小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图.小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.(1) 小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接..写出结果) (2) 请你用列表法或画树状图(树形图) 法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学、一个是国外大学的概率.(卡片名称可用字母表示)19.已知,如图,在荀ABCD 中,延长DA 到点E ,延长BC 到点F ,使得AE =CF ,连接EF ,分别交AB ,CD 于点M ,N ,连接DM ,BN .(1)求证:△AEM ≌△CFN ;(2)求证:四边形BMDN 是平行四边形.四、(每小题10分,共20分)20.为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查.其中调查问卷设置以下选项(被调查者只能选择其中的一项):A.出台相关法律法规;B.控制用水大户数量;C.推广节水技改和节水器具;D.用水量越多,水价越高;E.其他.根据调查结果制作了统计图表的一部分如下:(1)此次抽样调查的人数为①人;(2)结合上述统计图表可得m= ②,n= ③;(3)请根据以上信息直接..在答题卡中补全条形统计图.21.甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?五、(本题10分)22.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2) 当∠ODB=30°时,求证:BC=OD.六、(本题12分)23.已知,如图,在平面直角坐标系内,点A的坐标为(0,24 ),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);②若矩形CDEF的面积为60,请直.接.写出此时点C的坐标.七、(本题12分)24.已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与4,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠点O重合),且AB=3APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上;(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,P A的中点,连接CD,DE,EF,FC,OP.①当AB⊥OP时,请直接..写出四边形CDEF的周长的值;②若四边形CDEF的周长用t表示,请直接..写出t的取值范围.八、(本题14分)25.已知,如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2 ),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线x2+mx+n的图象经过A,段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=2C两点.(1)求此抛物线的函数表达式;(2)求证:∠BEF=∠AOE;(3)当△EOF为等腰三角形时,求此时点E的坐标;(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG 面积的(122 ) 倍.若存在,请直接..写出点P 的坐标;若不存在,请说明理由. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.数学试题 参考答案一、选择题(每小题3分,共24分)1.A2.D3.B4.C5.A6.C7.B8.C二、填空题(每小题4分,共32分)9. (m-3)2 10.3 11. 540 12.-1<x <21 13.8 14.10 或 -10 15.a 10-b 20 16. 316 三、解答题 (第17、 18小题各8分, 第19小题10分,共26分)17.原式=1+2-1+2×22=22 18.解: (1)31 (2) 列表得或画树状 (形) 图得由表格 (或树状图/树形图) 可知, 共有9种可能出现的结果, 每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学, 一个是国外大学的结果有4种: (A , C )(B , C )(C , A )(C , B )∴P (两次抽取的卡片上的图片一个是国内大学一个是国外大学) =94. 19.证明:(1) ∵四边形ABCD 是平行四边形∴∠DAB =∠BCD ∴∠EAM =∠FCN 又∵AD ∥BC ∴∠E =∠F ∵AE =CF ∴△AEM ≌△CFN(2) 由(1) 得AM =CN ,又∵四边形ABCD 是平行四边形∴AB CD ∴BM DN ∴四边形BMDN 是平行四边形四、(每小题10分,共20分)20.解: (1) 500 (2) 35%, 5%(3)21.解:设乙每小时加工机器零件x 个, 则甲每小时加工机器零件(x +10) 个, 根据题意得:xx 12010150=+ 解得x =40 经检验, x =40是原方程的解 x +10=40+10=50 答: 甲每小时加工50个零件, 乙每小时加工40个零件.五、(本题10分)22.证明: (1) ∵OD ⊥AC OD 为半径∴∴∠CBD =∠ABD ∴BD 平分∠ABC(2) ∵OB =OD ∴∠OBD =∠ODB =30°∴∠AOD =∠OBD +∠ODB =30°+30°=60° 又∵OD ⊥AC 于E ∴∠OEA =90°∴∠A =180°-∠OEA -∠AOD =180°-90°-60°=30° 又∵AB 为⊙O 的直径 ∴∠ACB =90°则在Rt △ACB 中BC =21AB ∵OD=21AB ∴BC =OD23.解:(1)设直线l 1的表达式为y =k 1x ,它过B (18, 6) 得18k 1=6 k 1= 31 ∴y =31x设直线l 2的表达式为y =k 2x +b ,它过A (0, 24), B (18, 6)得⎩⎨⎧=+=618242b k b 解得⎩⎨⎧=-=212b k y =-x +24 (2) ①∵点C 在直线l 1上, 且点C 的纵坐标为a ,∴a =31x x =3a ∴点C 的坐标为 (3a , a ) ∵CD ∥y 轴∴点D 的横坐标为3a ∵点D 在直线l 2上 ∴y =-3a +24 ∴D (3a , -3a +24) ②C (3, 1) 或C (15, 5)七、(本题12分)24.解: (1) 过点P 作PQ ⊥AB 于点Q ∵P A =PB , ∠APB =120° AB =43∴AQ =21AB =21×43=23 ∠APQ= 21∠APB =21×120°=60°在Rt △APQ 中, sin ∠APQ =AP AQ ∴AP= 233260sin 32sin =︒=∠APQ AQ =sin60°=4 (2) 过点P 分别作PS ⊥OM 于点S , PT ⊥ON 于点T ∴∠OSP =∠OTP =90° 在四边形OSPT 中,∠SPT =360°-∠OSP -∠SOT -∠OTP =360°-90°-60°-90°=120°∴∠APB =∠SPT =120° ∴∠APS =∠BPT又∵∠ASP =∠BTP =90° AP =BP∴△APS ≌△BPT ∴PS =PT∴点P 在∠MON 的平分线上(3) ①8+43 ②4+43<t ≤8+4325.解:(1) 如答图①, ∵A (-2, 0) B (0, 2)∴OA =OB =2 ∴AB 2=OA 2+OB 2=22+22=8∴AB =22∵OC =AB ∴OC =22, 即C (0, 22)又∵抛物线y =-2x 2+mx +n 的图象经过A 、C 两点 则可得⎪⎩⎪⎨⎧==+--220224n n m 解得:⎪⎩⎪⎨⎧=-=222n m ∴抛物线的表达式为y =-2x 2-2x +22 (2) ∵OA =OB ∠AOB =90° ∴∠BAO =∠ABO =45°又∵∠BEO =∠BAO +∠AOE =45°+∠AOE∠BEO =∠OEF +∠BEF =45°+∠BEF ∴∠BEF =∠AOE(3) 当△EOF 为等腰三角形时,分三种情况讨论①当OE =OF 时, ∠OFE =∠OEF =45°在△EOF 中, ∠EOF =180°-∠OEF -∠OFE =180°-45°-45°=90°又∵∠AOB =90°则此时点E 与点A 重合, 不符合题意, 此种情况不成立.②如答图②, 当FE =FO 时,∠EOF =∠OEF =45°在△EOF 中,∠EFO =180°-∠OEF -∠EOF =180°-45°-45°=90°∴∠AOF +∠EFO =90°+90°=180°∴EF ∥AO ∴ ∠BEF =∠BAO =45° 又∵ 由 (2) 可知 ,∠ABO =45°∴∠BEF =∠ABO ∴BF =EF ∴EF =BF =OF =21OB=21×2=1 ∴ E (-1, 1) ③如答图③, 当EO =EF 时, 过点E 作EH ⊥y 轴于点H 在△AOE 和△BEF 中, ∠EAO =∠FBE , EO =EF , ∠AOE =∠BEF ∴△AOE ≌△BEF ∴BE =AO =2∵EH ⊥OB ∴∠EHB =90°∴∠AOB =∠EHB ∴EH ∥AO ∴∠BEH =∠BAO =45° 在Rt △BEH 中, ∵∠BEH =∠ABO =45° ∴EH =BH =BE cos45°=2×22=2 ∴OH =OB -BH =2- 22∴ E (-2, 2-2)综上所述, 当△EOF 为等腰三角形时, 所求E 点坐标为E (-1, 1)或E (-2, 2- 22)(4) P (0, 22)或P (-1, 2 2)。