2.1.1 简单随机抽样
- 格式:ppt
- 大小:923.50 KB
- 文档页数:32
2.1.1 简单随机抽样1.理解并掌握简单随机抽样的定义、特点和适用范围.2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.1.简单随机抽样(1)定义:一般地,设一个总体含有N个个体,从中__________地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都____,就把这种抽样方法叫做简单随机抽样.(2)说明:我们所讨论的简单随机抽样都是______的抽样,即抽取到某个个体后,该个体不再____总体中.常用到的简单随机抽样方法有两种:______(抓阄法)和________.简单随机抽样具有下列特点:①简单随机抽样要求总体中的个体数N是有限的.②简单随机抽样抽取样本的容量n小于或等于总体中的个体数N.③简单随机抽样中的每个个体被抽到的可能性均为nN.④当总体中的个体无差异且个体数目较少时,采用简单随机抽样抽取样本.⑤逐个抽取即每次仅抽取一个个体.⑥简单随机抽样是不放回的抽样,即抽取的个体不再放回总体.【做一做1】在简单随机抽样中,某一个个体被抽中的可能性()A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定2.抽签法一般地,抽签法就是把总体中的N个个体____,把号码写在____上,将号签放在一个容器中,搅拌____后,每次从中抽取____号签,连续抽取n次,就得到一个容量为__的样本.抽签法抽取样本的步骤:①将总体中的个体编号为1~N.②将所有编号1~N写在形状、大小相同的号签上.③将号签放在一个不透明的容器中,搅拌均匀.④从容器中每次抽取一个号签,并记录其编号,连续抽取n次.⑤从总体中将与抽取到的签的编号相一致的个体取出.操作要点是:编号、写签、搅匀、抽取样本.【做一做2】抽签法中确保样本代表性的关键是()A.编号B.制签、搅拌均匀C.逐一抽取D.抽取不放回3.随机数法随机数法即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.这里仅介绍随机数表法.用随机数表法抽取样本的步骤:①将总体中的个体____.②在随机数表中________数作为开始.③规定一个方向作为从选定的数读取数字的____.④开始读取数字,若不在编号中,则____,若在编号中则____,依次取下去,直到取满为止.(相同的号只计一次)⑤根据选定的号码抽取样本.操作要点是:编号、选起始数、读数、获取样本.虽然产生随机数的方法很多,但在高中数学中,仅学习用随机数表产生随机数来抽样,即随机数表法.【做一做3】用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是__________.(填序号)答案:1.(1)逐个不放回相等(2)不放回放回抽签法随机数法【做一做1】B在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.2.编号号签均匀一个n【做一做2】B3.①编号②任选一个③方向④跳过取出【做一做3】①③②1.抽样的必要性剖析:由样本估计总体是统计的基本思想,其原因是:(1)有些试验具有破坏性,只能研究其样本而不能研究总体.例如,检验一批钢筋的强度,不能把这批钢筋全部拉断.考察产品的寿命和食品的质量问题等也是这样.(2)在现实生活中,由于资金、时间有限,人力、物力不足,再加上不断变化的环境条件,做普查是不可能的,也是不必要的.如调查城市居民出行情况.(3)当总体是连续或无限时,直接研究是不可能的.例如对大气环境污染情况的分析.(4)由于受随机因素的影响,即便直接研究总体,得到的结果也是一个近似值,同研究样本得到的结果差不多.例如天气预报等.(5)某些特殊总体,要求具有相当资格的调查员才能进行,为此只能采用抽样调查,例如对某科学技术方面总体的调查.总体:统计中所考察对象的全体叫总体;个体:总体中的每一个考察对象叫个体;样本:从总体中抽取的一部分个体叫做样本;样本容量:样本的个体的数目叫做样本容量;总体容量:总体的个体的数目叫做总体容量.2.应用随机数表法抽取样本时,对总体中的个体进行编号的方法剖析:利用随机数表法抽取样本的关键是对所有个体的编号的位数要一致;若不一致,需先调整到一致再进行抽样.例如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的编号都用两位数字表示即可,即00~99号.如果选择从1开始编号,那么所有个体的号码都必须用三位数字表示,比如001~100.很明显每次读两个数字要比每次读三个数字节省时间.3.抽签法与随机数法的异同点剖析:相同点:(1)都是简单随机抽样,并且要求被抽取样本的总体所含的个体是有限的;(2)都是从总体中逐个地、不放回地抽取.不同点:(1)抽签法比随机数法简单;(2)随机数法更适用于总体中的个体数较多的时候,而抽签法适用于总体中的个体数相对较少的情况,所以当总体中的个体数较多时,应当选用随机数法,这样可以节约大量的人力和制作号签的成本.题型一如何选择简单随机抽样【例题1】下列问题中,最适合用简单随机抽样方法的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人.其中行政人员16人,教师112人,后勤人员32人.教育部门为了了解他们对学校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量反思:如果一个总体满足下列两个条件,那么可用简单随机抽样抽取样本:①总体中的个体之间无差异;②总体中的个体数不多.题型二抽签法的应用【例题2】某大学为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组,请用抽签法确定志愿小组成员,并写出抽样步骤.分析:编号→制签→搅匀→抽签→成样反思:利用抽签法抽取样本时应注意以下问题:①编号时,如果已有编号(如学号,标号等),可不必重新编号.②号签要求大小、形状完全相同.③号签要搅拌均匀.④要逐一不放回地抽取.题型三随机数表法的应用【例题3】某车间工人加工了一批零件共40件,为了了解这批零件的质量情况,要从中抽取10件进行检验,如何采用随机数表法抽取样本?写出抽样步骤.反思:在随机数表法抽样的过程中要注意:①编号要求位数相同.②第一个数字的抽取是随机的.③读数的方向是任意的,且事先定好.题型四易错辨析【例题4】某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件进行检查,对100件产品采用下面的编号方法:①1,2,3,...,100;②001,002,003, (100)③00,01,02,…,99.其中最恰当的序号是________.错解:因为是对100件产品编号,则编号为1,2,3,…,100,所以①最恰当.错因分析:用随机数表法抽样时,如果所编号码的位数不相同,那么无法在随机数表中读数,因此,所编号码的位数要相同.答案:【例题1】B根据简单随机抽样的特点进行判断.A项中的总体容量较大,用简单随机抽样法比较麻烦;B项中的总体容量较小,用简单随机抽样法比较方便;C项中,由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D项中,总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法.【例题2】解:抽样步骤是:第一步,将18名志愿者编号,号码是01,02, (18)第二步,将号码分别写在同样的小纸片上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,与所得号码对应的志愿者就是志愿小组的成员.【例题3】解:抽样步骤是:第一步,先将40件零件编号,可以编为00, 01,02,…,38,39.第二步,在随机数表中任选一个数作为开始,例如从教材附表的随机数表中的第8行第9列的数5开始.为便于说明,我们将随机数表中的第6行至第10行摘录如下:16 22 77 94 3949 54 43 54 8217 37 93 23 78 87 35 20 96 4384 26 34 91 6484 42 17 53 3157 24 55 06 8877 04 74 47 67 21 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 75 12 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 38 15 51 00 13 4299 66 02 79 5457 60 86 32 4409 47 27 96 5449 17 46 09 62 90 52 84 77 2708 02 73 43 28第三步,从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.与这10个号码对应的零件即是抽取的样本个体.【例题4】正解:只有编号时数字位数相同,才能达到随机等可能抽样.所以①不恰当.②③的编号位数相同,都可以采用随机数表法,但②中号码是三位数,读数费时,所以③最恰当.1.下列抽样方法是简单随机抽样的是()A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从整数集中逐个抽取10个分析奇偶性D.运动员从8个跑道中随机抽取一个跑道2.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是__________位.3.从60件产品中抽取5件进行检查,请用抽签法抽取产品,并写出抽样过程.4.有一批机器,编号为1,2,3,…,112.请用随机数表法抽取10台入样,并写出抽样过程.5.现在有一种游戏,其用具为四副扑克,包括大小鬼(又称为王)在内共216张牌,参与人数为6人,并围成一圈.游戏开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定抓牌的先后,这6人依次从216张牌中抓取36张牌,问这种抓牌的方法是否是简单随机抽样?答案:1.D A项中是一次性抽取5个,不是逐个抽取,则A项不是简单随机抽样;B项中是有放回抽取,则B项也不是简单随机抽样;C项中整数集是无限集,总体容量不是有限的,则C项也不是简单随机抽样;很明显D项是简单随机抽样.2.四由于所编号码的位数和读数的位数要一致,因此所编号码的位数最少是四位.从0000到1000,或者是从0001到1001等.3.解:抽签步骤:第一步,将60件产品编号,号码是01,02, (60)第二步,将号码分别写在同样的纸条上,揉成团,制成号签;第三步,将号签放入不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取5个号签,并记录上面的编号;第五步,与所得号码对应的产品就是要抽取的对象.4.解:各机器的编号位数不一致,用随机数表直接读数不方便,需将编号进行调整.第一步,将原来的编号调整为001,002,003, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第9行第7个数“3”,向右读;第三步,从“3”开始向右读,每次读取三位,凡不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,对应原来编号74,100,94,52,80,3,105,107,83,92的机器就是要抽取的对象.5.分析:根据简单随机抽样的特点来判断.解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始的牌,其他各张牌虽然是逐张抓牌,但是各张在谁手里已被确定,只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌被抽取的可能性不相同,所以不是简单随机抽样.。
2.1.1 简单随机抽样、系统抽样、分层抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧ 抽签法随机数法3.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.4.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.5.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k,对编号进行分段.当Nn(n是样本容量)是整数时,取k=Nn ;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.6.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.7.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案 B 解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.2.下列抽样实验中,用抽签法方便的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验答案B解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.3.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100答案 D 解析:此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310答案A5.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案C解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.6.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,32答案B解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B.7.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A.抽签法B.随机数表法C.系统抽样D.分层抽样答案D8.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A.70 B.20 C.48 D.2答案B由于70070=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=20(所).9.下列问题中,最适合用分层抽样方法抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验答案C解析A的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.10.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A.5个B.10个C.20个D.45个答案A解析由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个).11.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性相等C.与第几次抽样有关,最后一次抽到的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案B解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.二、填空题12.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案抽签法13.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案①③②14.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.答案16解析用系统抽样的方法是等距离的.42-29=13,故3+13=16.15.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.答案7,4,6解析应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6.16.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.答案20解析由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为2k5k+3k+2k×100=20.17.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.答案88解析在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=2+3+5+12×16=88.。