2009级高数下期末试卷
- 格式:doc
- 大小:116.00 KB
- 文档页数:4
2008~2009学年第二学期试题一、单项选择题(本题共4小题,每小题4分,共计16分)1.设函数(,)f x y 在点(0,0)的某邻域内有定义,且(0,0)3x f =,(0,0)1y f =-,则[ ] (A)(0,0)3dzdx dy =-;(B) 曲面(,)z f x y =在点(0,0,(0,0))f 的一个法向量为(3,1,1)-;(C)曲线(,)0z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的一个切向量为(1,0,3);(D) 曲线(,)0z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的一个切向量为(3,0,1)2. 设10 (1,2,)n u n n≤<= ,则下列级数中必收敛的是[ ](A)1n n u ∞=∑; (B)1(1)nnn u∞=-∑; (C)n ∞=; (D)21(1)nnn u∞=-∑.3. 如果81lim1=+∞→nn n a a ,则幂级数∑∞=03n n n x a [ ] (A) 当8<x 时收敛; (B) 当2<x 时收敛; (C) 当81>x 时发散; (D) 当21>x 时发散.4. 设Ω是由球面2222x y z a ++=所围成的闭区域,则222x y z dv Ω++⎰⎰⎰= [ ] .(A) 545a π; (B) 44a π; (C) 543a π; (D) 525a π.二、填空题(本题共6小题,每小题4分,共计24分)1. 曲面2222321x y z ++=在点(1,2,2)-处的法线方程为 .2. 函数),(y x f 22y xy x +-=在点)1,1(处的全微分为 .3. 已知曲线L 为连接(1,0)和(0,1)两点的直线段,则曲线积分()Lx y ds +⎰= .4. 由曲面2243()z x y =-+与曲面22z x y =+所围立体的体积为 .5. 设∑为平面1234x y z++=在第一卦限中的部分,则曲面积分()234x y z dS ∑++⎰⎰= . 6. 设()f x 是周期为4的周期函数,它在[2,2)-上的表达式为0, 20()3, 022x f x x -≤<⎧⎪=⎨≤<⎪⎩,()f x 的Fourier 级数的和函数为()s x ,则(4)s = .三、计算下列各题 (本题共5小题,每小题6分,共计30分) 1. 求过点1(1,1,1)M 和2(0,1,1)M -且与平面0x y z ++=垂直的平面方程.2. 设z = f (e xsin y , x 2+ y 2), 其中f 具有二阶连续偏导数,求2zx y∂∂∂.3. 设(,,)F x y z 具有连续偏导数,且对任意实数t 有(,,)F tx ty tz (,,)k t F x y z =(k 为自然数),试证:曲面(,,)0F x y z =上任意一点的切平面相交于一定点(设在任意点处2220x y z F F F ++≠).4. 计算二重积分Dxydxdy ⎰⎰,其中D 是由两条抛物线y x =,2y x =所围成的闭区域.5. 将函数()arctan f x x =展开成关于x 的幂级数,并求展开式成立的区间. 四、 (8分) 设曲线积分[]⎰-+BA x dy x f ydx x f e )()(与路径无关,且21)0(=f ,求)(x f ,并求当A ,B 分别为(0,0),(1,1)时的曲线积分值.五、(8分) 计算积分222(I x dydz y dzdx z dxdy ∑=++⎰⎰,其中∑是抛物面22z x y =+被平面4z =截下的有限部分的下侧.六、(8分) 3.(10分)平面通过球面x 2 + y 2 +z 2 = 4(x - 2y - 2z )的中心, 且垂直于直线L : 00x y z =⎧⎨+=⎩, 求平面与球面的交线在xOy 平面上的投影, 并求投影与(1, -4,1)点的最短和最长距离.七、(6分) )判断级数111ln n n n n ∞=+⎛⎫- ⎪⎝⎭∑的敛散性.解答一、1. 【解】应选择C.),(),,(0000y x f y x f y x 存在只是全微分存在的必要条件,故A 是错误的。
扬州大学2009级《高等数学I (2)》统考试题(A)卷班级班级 学号学号 姓名姓名 得分得分一、单项选择题(每小题3分,共18分) 1.设函数),(y x f 在),(00y x 处不连续,则【处不连续,则【 】(A)),(y x f 在),(00y x 处必不可微处必不可微 (B)),(lim ),(),(00y x f y x y x ®必不存在必不存在 (C)),(0y x f 必不存在必不存在 (D)),(0y x f x¢与),(00y x f y¢必不存在必不存在2.设函数),(y x f z =在点)0 ,0(处具有偏导数,且3)0 ,0(=¢xf ,1)0 ,0(=¢yf ,则【则【 】(A) yx z d d 3d )0,0(+=(B) 曲面),(y x f z =在点))0 ,0(,0,0(f 的法向量为)1 ,1 ,3( (C) 曲线îíì==0),(y y x f z 在点))0 ,0(,0 ,0(f 的切向量为)3 ,0 ,1( (D) 曲线îíì==0),(y y x f z 在点))0 ,0(,0 ,0(f 的切向量为)1 ,0 ,3( 3.设L 是2y x =上从)0,0(O 到)1,1(A 的一段弧,则22d d Lxy x x y +=ò【 】(A) 2 (B) 1- (C) 0 (D) 1 4.设函数),(y x f 连续,且y x y x f xy yx f Ddd ),(),(òò+=,其中D 是由是由 2 ,1 ,0x y x y ===所围成的闭区域,则=),(y x f 【 】(A) 81+xy (B) xy (C) xy 2 (D)1+xy 5.下列级数中,发散的是【.下列级数中,发散的是【 】(A) å¥=+1)11ln(1n nn (B) å¥=++112 2n nn n n (C) å¥=12sin n nn (D) å¥=1!n nn n 6.若幂级数nn n x a )1(1+å¥=的收敛半径为R ,则nn n x a 21å¥=的收敛半径为【的收敛半径为【 】 (A) R (B) 2R (C) 1-R (D) R题号题号 选择题选择题 填空题填空题 13~14 15~16 17~19 20~21 22~23 扣分扣分扣分2-e xy-..被三坐标面割下的面积为..处取得极大值.处取得极大值.的收敛区间为.,yxxyz15.计算y x y x Dd d )cos(òò+,其中D 是由直线x y =,0=y 及2p=x 所围成的闭区域.所围成的闭区域.16.计算曲线积分s e Ly xd22ò+,其中L 为圆周222a y x =+, 直线x y =及x 轴在第一象限内所围成的扇形的整个边界.轴在第一象限内所围成的扇形的整个边界.扣分扣分17. 求半球面223y x z --=与旋转抛物面)(2122y x z +=所围立体的体积.所围立体的体积.18.计算曲面积分S z xòòSd 2,其中S 为球面4222=++z y x被平面1=z 截出的顶部.截出的顶部.19. 计算曲面积分y x z z x z y z y x d )d 3( d d 2 d d 2-++òòS, 其中S 是锥面22y x z +=位于平面1=z 下方部分的下侧.下方部分的下侧.扣分扣分扣分20.求幂级数å¥=----112112)1(n n n n x 的收敛域及和函数,并求å¥=----1113 )12()1(n n n n .21.将函数2234)(x x x f -+=展开成)2(-x 的幂级数,并指出展开式的成立范围.扣分扣分( -nnz z 6¶¶222000z y x 0z y x 000z y x xyz z y x z y x 222z y x z y x l l l15.原式y x y x D d d )cos(1òò+=y x y x D d d )cos(2òò+-+…………………………………………………………(2(2分) 其中}40 ,2|),{(1pp££-££=y y x y y x D }24 ,2|),{(2pp p££££-=x x y x y x D x y x y yy d )cos(d 240òò-+=p py y x xx xd )cos(d 224òò--+-p p p ……………………………………(4(4分))421()214(pp---=12-=p ……………………………………………………………………………………(6(6分)16.s e Ly x d22ò+s e s e s e L y x L y x Ly x d d d 322222122òòò+++++=………………………………(1(1分)其中其中 )0( 0 :1a x y L ££=,)40( sin ,cos :2p ££==t t a y t a x L ,)220( :3a x x y L ££= 且 1d d 1d 002122-==×=òòò++aax ax L y x e x e x es ea a Lyxae t a e s e 4d d 42220p p=×=òò+1d 2d 22022322-=×=òò++aa x x L y x e x es e…………………………………………………………(5(5分) 故 s e Ly xd22ò+aaa a aae e e ae e 4)1(2141pp+-=-++-= ……………………(6(6分)17.所围立体W 在xOy 面上的投影区域2:2222£+y x Dxy.òòòW =V V d …………………………………………………………………………………………………………………………………………(1(1分)z d d d 222132020òòò-=r r pr r q ………………………………………………………………………………………………(4(4分) r r r r p )d 21-3(22220-=òp )3532(-=……………………………………………………(6(6分)18.原式y x y x y x x xyD d d 42422222----=òòy x x y x d d 23222òò£+=……………………(3(3分)òò×=302220d cos d 2r r q r q pp 29=…………………………………………………………………………(6(6分) 19.设1S 为平面) 1 ( 122£+=y x z 的上侧,W 为S 和1S 所围成的空间闭区域,所围成的空间闭区域,则y x z z x z y z y x d )d 3( dd 2 d d 21-++òòS +S v z d 2òòòW=y x z z zD d d 2 d 1òòò=ò×=102d 2 z z z p 2p= ……………………………………(3(3分)又y x z z x z y z y x d )d 3( d d 2 d d 21-++òòS y x y x d d 2122òò£+-=p 2-=故原式)2(2p p--=p 25=……………………………………………………………………………………………………(6(6分)20.nn n u u1lim+¥®12)1(12)1(lim 12112--+-=--+¥®n x nx n nn n n =2x 当12<x 即1<x 时,幂级数绝对收敛;当12>x 即1>x 时,幂级数发散;时,幂级数发散;所以收敛半径1=R ,收敛区间)1 ,1(-. 当1=x 时,原级数为å¥=---1112)1(n nn ,收敛;,收敛; 当1-=x 时,原级数为å¥=--112)1(n nn ,收敛;,收敛;故原级数的收敛域为]1 ,1[- ……………………………………………………………………………………………………(3(3分)设 å¥=----=112112)1()(n n n n x x S ,)1 ,1(-Îx , 则 å¥=---=¢1221)1()(n n nxx S 211x +=, x x S a r c t an )(=Þå¥=----=112112)1(n n n n x ,)1 ,1(-Îx ……………………………………(5(5分) 在上式中,令31=x 得 6)31()31(121)1(1211p==---¥=-åS n n n n 故 å¥=----1113 )12()1(n n nn p 63=……………………………………………………………………………………………………(6(6分)3x (32-)p d )(4òxy p 214ò=21tan ò21ò=å--11)1(nn å11n 发散;发散; å-1)1(n 为一交错级数,收敛;为一交错级数,收敛; nn+. 。
2009级高等数学第二学期期末试卷(A 类,170学时)一、单项选择题(每小题3分,共15分)1. 已知 ()()dy y x bx dx y x ay 22+++ 是某函数的全微分,则 ( ) (A )a b =; (B )a b =-; (C )b a 2=; (D )2b a =。
2. 设S 为球面:2222x y z R ++=的外侧,在下列四组积分中,同一组的两个积分均为零的是: ( )(A )⎰⎰S dS x 2,⎰⎰S dydz x 2; (B )⎰⎰S xdS ,⎰⎰Sxdydz ;(C )⎰⎰S xdS ,⎰⎰S dydz x 2; (D )⎰⎰S xydS ,⎰⎰Sydzdx 。
3. 设L 为圆422=+y x ,则()=-⎰ds y x L2232 ( )(A )π27; (B )π27-; (C )π8; (D )π8-。
4. 设有无穷级数1n n a ∞=∑和1n n b ∞=∑,那么 ( )(A )当lim 0n n n a b →∞=时,1n n a ∞=∑和1n n b ∞=∑中至少有一收敛; (B )当lim 1n n n a b →∞=时,1n n a ∞=∑和1n n b ∞=∑中至少有一发散; (C )当lim 0n n na b →∞=时, 1n n b ∞=∑收敛⇒1n n a ∞=∑收敛; (D )当lim n n n a b →∞=∞时,1n n b ∞=∑发散⇒1n n a ∞=∑发散。
5. 设幂级数1n n n a x ∞=∑与1n n n b x ∞=∑收敛半径分别为1与2,则幂级数1()n n n n b na x n∞=+∑的收敛半径为 ( )(A )1 ; (B )2; (C )3; (D )无法确定。
二、填空题(每小题3分,共15分)6. 设向量场()()()()k j i xyz cxz z z xy by x axz z y x F 2,,222-+-++++=,其中a 、b 和c 是常数。
2008 — 2009学年第二学期《高等数学B 》期末试题(A )答案及评分标准一、单选题(每题3分,共15分)CCDDD二、填空(每题3分,共18分)1.3222.''2'20y y y -+= 3.1 4.ln 2 5.23cos 4()d f d πϕπϕρρρ⎰⎰6. (4,6)三、解答题(每题8分,共40分)1.求解微分方程3"2'3cos xy y y ex --=+的通解解:先求齐次化方程 03'2"=--y y y则特征方程为 0322=--r r ---- ------------------------ (2分) 得特征根 1,321-==r r ,于是齐次化微分方程的通解为x x e C e C y -+=231------------------------(4分)分别求得非齐次项 xe 3属x m e x P λ)(型)(3,0==λm ,由于3=λ是特征方程0322=--r r 的单根,所以设特解为3x*1bxe =y代人解得 41=b , 即特解 3x41*1xe =y -----------------(6分) 类似对于非齐次项x cos 属)sin B cos (x x A e x ωωλ+型)0,1,1,0(====B A ωλ,由于0=λ不是特征方程0322=--r r 的特征根,所以可设特解为x c x a y sin cos *2+=,代入解得10151,-=-=c a ,即特解为xx y sin cos 10151*2--= 故原方程的通解为xx e C e C y x x sin cos xe 10151x 341231--++=-------------(8分) 2. 求函数(sin ,cos ,)x yz f x y e +=的二阶偏导数2zx y∂∂∂,其中函数f 具有二阶连续的偏导数解:''13cos x y zxf e f x +∂=+∂ -------------------------------------------------------------(4分) 2"""22"'121332333cos sin cos sin x y x y x y x y z x yf xe f e yf e f e f x y++++∂=-+-++∂∂ --------------------------------------(8分) 3. 计算二重积分22(1())Dy xf x y dxdy ++⎰⎰,其中D 是由曲线2y x =与1y =所围成的闭区域.解:积分区域 D 如图令22(,)()g x y xf x y =+,因为D 是关于y 轴对称且(,)(,)g x y g x y -=-,所以22()0Dxf x y dxdy +=⎰⎰-------------------------(3分)从而2112214(1())5xDDy xf x y dxdy ydxdy dx ydy -++===⎰⎰⎰⎰⎰⎰-------------(8分) 4. 求原点到曲面22()1x y z --=的最短距离.解:设曲面22()1x y z --=上任一点为(,,)x y z ,则根据两点距离公式 222l x y z =++,要求 l 最小,等价要求2l 最小.--------------(2分)记 2222S l x y z ==++,根据拉格郎日乘数法令22222(,,,)(()1)G x y z x y z x y z λλ=+++------------------(3分)()()()()2222()0122()022203()104Gx x y x G y x y yG z z z G x y z λλλλ∂⎧=+-=-------⎪∂⎪∂⎪=--=-------⎪∂⎪⎨∂⎪=-=--------⎪∂⎪∂⎪=---=-------⎪∂⎩-------------------------(4分) 由(3)可得 1λ=或0z =,若1λ=,代入(1),(2)可得4242x y y x =⎧⎨=⎩,易得00x y =⎧⎨=⎩结合(4)可知矛盾,故舍去.------------(6分) 从而取0z =,以及由(1),(2)可得1xy=-,代入(4)易得 12120x y z =⎧⎪=-⎨⎪=⎩,或者12120x y z =-⎧⎪=⎨⎪=⎩,结合实际情况可知这两点到原点距离最小且相等, 故2min 2l =---------------------------------------------(8分)5. 判断级数21sin ln n n n π∞=⎛⎫+ ⎪⎝⎭∑是绝对收敛,条件收敛,还是发散.解:由于1111sin()sin cos cos sin (1)sin ln ln ln ln n n n n n n n nπππ+=+=-----(2分) 当3n ≥时,易得1sin 0ln n>且单调递减趋于零,根据莱布尼茨判别法 可得 2211sin (1)sin ln ln nn n n n n π∞∞=-⎛⎫+=- ⎪⎝⎭∑∑收敛.---------------(4分)又因为11ln ln 22sin()sin nn n n n π∞∞==+=∑∑ -------------------------(6分)根据比较判别法可得(对任意0δ>)1ln 1sin limlim ln nn n n n n δδ→∞→∞==+∞,由于21(01)n n δδ∞=<<∑发散,故21sinln n n ∞-∑也发散. 综上所述, 可知级数21sin ln n n n π∞=⎛⎫+ ⎪⎝⎭∑是条件收敛.---------(8分)四(共10分)判断函数⎪⎩⎪⎨⎧=+≠++=000),(2222263y x y x y x yx y x f 在(0,0)点连续性,并求),(),,(y x f y x f y x .解: 分别取路径 3,0x y x ==,可得,0lim 26300=+=→y x y x x y 21lim lim 66330263033=+=+=→=→x x x x y x y x xy x xy x , 可得函数),(y x f 在)0,0(不连续.-------------------------------------------(4分)2382262222330(,)()00x x y x y x y f x y x y x y ⎧-+≠⎪=+⎨⎪+=⎩93222622220(,)()00y x x y x y f x y x y x y ⎧-+≠⎪=+⎨⎪+=⎩-------------(10分)五(10分)求幂级数41141n n x n ∞+=+∑的收敛区间,并求在收敛区间内的和函数()s x . 解:收敛区间为(1,1)------------------------------------------------------------------------(3分)令:4101()41n n s x x n ∞+==+∑, 441()1n n s x x x ∞='==-∑---------------------(7分) 111()ln arctan (1,1)412x s x x x x +=+∈-------------------------------(10分)六(7分)设()f u 连续,试证:111()()x y f x y dxdy f u du -+≤+=⎰⎰⎰证11111011()()()xxxx x y f x y dxdy dx f x y dy dx f x y dy +-----+≤+=+++⎰⎰⎰⎰⎰⎰——(3分)令x y u +=,012111121()()xx dx f u du dx f u du +--+⎰⎰⎰⎰=11121112()()u u f u du dx f u du +---=⎰⎰⎰-----------------(7分)。
华南农业大学期末考试试卷(A 卷)2008--2009学年第2学期 考试科目:高等数学A Ⅱ考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一.填空题(本大题共5小题,每小题3分,共15分。
将答案写在横线上) 1.微分方程"2'40y y y ++=的通解为_______________。
(今年不作要求) 2.设y z x =,则dz = 。
3.设L 是圆周221x y +=,L 取逆时针方向,则 2Lydx xdy +=⎰Ñ__________。
4.设0,||3,||1,||2a b c a b c ++====u r, 则a b b c c a ⋅+⋅+⋅= 。
5. 级数1(1)n n ∞-=-∑是____________级数(填绝对收敛,条件收敛或发散)。
二.单项选择题(本大题共5小题,每小题3分,共15分。
)1.过点(2,3,1)-且垂直于平面2310x y z +++=的直线方程是( )A .231231x y z -++==B .231231x y z -+-==-- C.231231x y z -+-== D .231231x y z ---==- 2.设22()z y f xy =+-,其中()f u 是可微函数,则zy ∂=∂ ( )A .22'12()yf x y +-B .22'12()yf x y --C .2222'1()()x y f x y +--D .222'1()y f x y -- 3.下列级数中收敛的是( )A .1n ∞=B .11n nn ∞=+∑C .112(1)n n ∞=+∑D .n ∞=4. 设D:4122≤+≤y x ,f 在D 上连续,则⎰⎰+Dd y x f σ)(22在极坐标系中等于( )A. dr r rf ⎰21)(2π B. dr r rf ⎰212)(2πC. ⎰⎰-1222])()([2dr r f r dr r f r π D. ⎰⎰-1222])()([2dr r rf dr r rf π5. 一曲线过点,且在此曲线上任一点),(y x M 的法线斜率ln xk y x=-,则此曲线方程为( )A. 21ln 22x y e=B. 21ln 21)2x y e =C. 21ln 2122x y x e =+ D. 21ln 2x y e =三.计算题(本大题共6小题,每小题5分, 共30分)1.已知2sin()z y xy x =+,求z x∂∂,2z x y ∂∂∂。
09级高数(下)期末考试题及参考答案一、选择题(每小题2分, 共计12分) 1. 微分方程 是( B )(A )可分离变量方程 (B )齐次方程 (C )一阶线性方程 (D )伯努利方程2. 函数 的定义域是( A )(A )}1),{(22<+=y x y x D (B )}1),{(22≥+=y x y x D (C )}1),{(22=+=y x y x D (D )}1),{(22≤+=y x y x D 3. 对于函数 , 在点 处下列陈述正确的是( C )(A )偏导数存在⇒连续 (B )可微⇔偏导数存在 (C )可微⇒连续 (D )可微⇔偏导数连续4. 设 : 则三重积分 等于( B )(A )4⎰⎰⎰202013cos sin ππρϕϕρϕθd d d (B )⎰⎰⎰ππρϕϕρϕθ202013cos sin d d d(C )⎰⎰⎰2012sin ππρϕρϕθd d d (D )⎰⎰⎰ππρϕϕρϕθ2013cos sin d d d5. 设有界闭区域D 由分段光滑曲线L 所围成, L 取负方向, 函数 在D 上具有一阶连续偏导数, 则 A (A )⎰⎰∂∂-∂∂Ddxdy x Q y P )((B )⎰⎰∂∂-∂∂Ddxdy x P y Q )( (C )⎰⎰∂∂-∂∂D dxdy y Q x P )( (D )⎰⎰∂∂-∂∂D dxdy y P x Q )( 二、填空题(每小题2分, 共计12分) 1. 微分方程 的通解为___ ____.2. 设函数 , 则 。
3. 交换积分次序后, ____ ____4. 设平面区域D : , 则5.设曲线L 是连接 和 的直线段, 则曲线积分 ____ 6. 函数 在 处的泰勒级数为____ _____. 三、求解下列问题(每题7分, 共63分) 1. 求微分方程 的通解 解:令 , 则 , , 分离变量: 两边积分, 得 即 , , 2.设 , 求222y xy x y x x z +++=∂∂,222y xy x y x y z +++=∂∂所以 =∂∂+∂∂y z y x z x 2222y xy x xy x +++2222yxy x y xy ++++2= 3. 设 , 且 具有二阶连续偏导数.求 解: , ,)(2221212112xf f y f xf f yx z++++=∂∂∂2221211)(xyf f f y x f ++++= 4. 求椭球面 在点(1, 1, 1)处的切平面方程和法线方程。
2009级本科高等数学(二)期末试题与解答A(本科、经管类)一、选择题(本大题共5小题,每小题3分,共15分)1.到两点(1,1,0)A 和(2,0,2)B 距离相等的点的轨迹为( C ).A .230x y z ;B .230x y z ;C .230xyz ; D .230xyz .2.微分方程2xyy yex 的非齐次特解形式可令为( A ).A .2x Ax e Bx C ;B .xAeBxC ;C .2()xAex BxC ;D .xAxe BxC .3.函数22(,)(4)(6)f x y yy xx 的驻点个数为( B ).A.9; B. 5; C. 3; D. 1.4.设D 是xoy 面上以)1,1(),1,1(),1,1(为顶点的三角形区域,1D 是D 中在第一象限的部分,则积分Ddy x yx )sin cos (33=( D ).A.d y x D 1sin cos 23; B.132D yd x ;C.1)sin cos (433D dy x yx ; D.0.5.下列级数中,绝对收敛的级数为( C ).A.111(1)n n n; B.11(1)1n n n n ;C.111(1)3n nn ; D.111(1)n n n.二、填空题(本大题共5小题,每小题3分,共15分)6.函数22221(,)arcsin()ln 2f x y xy xy的连续域为221(,)12x y xy.7.2211(),lim(2)nnnn xya a d 设级数收敛则3.8.设ln(ln )zxy ,则1z z y xy.9.交换420(,)ydyf x y dx 积分次序得220(,)x dx f x y dy .10.投资某产品的固定成本为36(万元),且成本对产量x 的变化率(即边际成本)为()240C x x(万元/百台),则产量由4(百台)增至6(百台)时总成本的增值为100万元.三、试解下列各题(本大题共6小题,每小题8分,共48分)11.求解微分方程2xy yy 满足初始条件11x y 的特解.解:分离变量得d d (1)y x y y x(2分)两端积分得ln ln ln 1y x C y ,即1y Cxy (5分)由11x y,得12C故所求通解为21y xy 或2x yx(8分)12.设y x z z,由方程3zxy e z所确定,求221x e y ez z x及221x e y ez z y.解:令3),,(z xyez y x F z,则y F x,x F y,1zz e F (4分)所以zey xz 1,zexyz 122121x e y ez z exe ,22121x e y ez z eye . (8分)13.(,),,.x yy zzzf e f xx y且可微求,解:122x yz y ef f x x(4分)121x yz ef f yx(8分)14.设(,)sin()f x y x xy ,求(,)22xx f ,(,)22yy f .解:sin()cos()xf x y x x y ,cos()yf x x y (2分)2cos()sin()xxf xy x xy (4分)sin()yy f x x y (6分)(,)222xx f ,(,)22yy f (8分)15.求幂级数1nn nx 的收敛区间与和函数.解:收敛半径为1R ,收敛区间为(1,1)(2分)111nn n n nxxnx,令11()n n S x nx,则(4分)111()()1x xn nn n x S x dxnxdx xx(6分)所以在(1,1)内21()(())()1(1)xnn x x nxxS x x S x dx x x x (8分)16.dxdy e IDy 2,其中D 是第一象限中由直线x y与曲线3x y所围成的闭区域.解:2231y y y yDIe dxdydy e dx(3分)213()y yy e dy (5分)112e (8分)四、试解下列各题(本大题共2小题,每小题6分,共12分)17.某种产品的生产原料由,A B 构成,现投入原料,A B 各,x y 单位,可生产出产品的数量为20.01zx y .,A B 原料的单价分别为10元和20元,欲用3000元购买原料,问两种原料各购买多少单位时,使生产数量最大?解:目标函数:20.01zx y ,约束条件:1020300x y 设2(,,)0.01(1020300)F x y x yx y (2分)。
级高等数学(二)期末试卷4.若曲面∑:2222a z y x =++,则S d z y x ⎰⎰++∑)(222=( ).A. 4a p ;B. 42a p ;C. 44a p ;D. 46a p .5.已知函数22(,)f x y xy x y +=+,则(,)(,)f x y f x y x y∂∂+∂∂=( ). A.22x y +; B.22x -; C.22x y -; D.22x +.二、填空题(本大题共5小题,每小题3分,共15分)6.直线32321x y z++==-与平面2260x y z +++=的交点为 . 7.幂级数11212n n n x n-+∞-=∑的收敛半径为 .8.设)(x f 是周期为π的周期函数,它在区间(0,]π上定义为2,(0)2()1,()2x x f x x x πππ⎧<<⎪⎪=⎨⎪+≤≤⎪⎩,则)(x f 的傅立叶级数在π处收敛于 .9.0(,)xudu f u v dv =⎰⎰变换积分次序 .10.设空间立体Ω所占闭区域为1,0,0,0x y z x y z ++≤≥≥≥,Ω上任一点的体密度是(,,)1x y z ρ=,则此空间立体的质量为. 三、解答题(本大题共6小题,每小题8分,共48分)11.2lim x y π→→求.12.已知2(,)x y f x y e =,求(1,1)x f ,(1,1)y f .13.设函数(,)z z x y =由方程22ln()0xz xyz xyz -+=确定,求(1,1)dz.14.设2(,2)z f x y x y =-,其中f 具有二阶连续偏导数,求2z x y∂∂∂.15.1111(1)5()2n n n n n n n n a x na x -∞∞-==-+∑∑设级数的收敛半径为,求的收敛半径.16.设Ω是由2221x y z +-=,2z =-,2z =所围的有界闭区域.试计算2(1)I z dV Ω=-⎰⎰⎰.四、解答题(本大题共2小题,每小题6分,共12分)17.设)(x f 可微,1)0(=f 且曲线积分2[2()]()x Lf x e ydx f x dy ++⎰与路径无关,求)(x f .18.计算∑,其中∑为下半球面z =侧.五、证明题(本大题共2小题,每小题5分,共10分)19.设级数1nn a∞=∑绝对收敛,1n n b ∞=∑条件收敛,证明()1n n n a b ∞=+∑条件收敛.20.设{}1),(22≤+=y x y x D ,),(y x u 与),(y x v 在D 上具有一阶连续偏导数,j y v x v i y u x u G j y x u i y x v F ⎪⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=+=,),(),(,且在D 的边界曲线L (正向)上有y y x v y x u ≡≡),(,1),(,证明: πσ-=⎰⎰⋅d G F D.。
高等数学下册试卷2021.7.1姓名: 学院与专业: 学号: 一、填空题[共24分]1、[4分]函数(),f x y 在点(),x y 处可微是它在该点偏导数z x∂∂与z y ∂∂连续的 条件(填必要、充分或充要),又是它在该点有方向导数的 条件(填必要、充分或充要)2、[4分]向量场()2cos xy A e i xy j xz k =++的散度为向量场()()()2332B z y i x z j y x k =-+-+-的旋度为3、[4分] ]设()(),,,z f x xy f u v =有连续偏导数,则dz =4、[4分] 交换二次积分的积分次序()2220,yy dy f x y dx =⎰⎰5、[4分]设曲面∑为柱面221x y +=介于平面0z =与1z =部分的外侧,则曲面积分()22x y dxdy ∑+=⎰⎰ ,()22x y dS ∑+=⎰⎰6、设()3322,339,0f x y x y x y x x =-++->,则它有极小值二、[8分] 设ze xyz =,求22z x ∂∂三、 [7分] 设长方形的长x 、宽y 、高z 满足1111x y z++=,求体积最小的长方体。
四、 [7分] 求球面2224x y z ++=含在圆柱面222x y x +=内部的那部分面积五、 [7分] 计算三重积分()2x y z dv Ω--⎰⎰⎰,其中Ω.是由单位球面2221x y z ++=围成的闭区域六、[7分]计算曲面积分()()()23z x dydz x y dzdx y z dxdy ∑+-+-+⎰⎰,其中∑是圆锥面z =位于平面0z =和2z =之间下方部分的下侧七[7分] 计算曲线积分()2L ydx xdy x y --⎰,其中L 表示第四象限内以(0,1)A -为起点(1,0)B 为终点的光滑曲线。
八、 [7分]求微分方程()3sin 1cos 0x x e ydx e ydy +-=的通解九、 [7分]计算满足下述方程的可导函数()y y x =,()()0cos 2sin 1xy x x y t tdt x +=+⎰十、 [6分](化工类做,即不学级数一章的同学做)求解初值问题()()2001y y x y y ''⎧+=⎪⎨'==⎪⎩十一、 [6分](化工类做,即不学级数一章的同学做)设l 是曲线22260x y z x y z ⎧++=⎨++=⎩在点()1,2,1-处的切向量,求函数(),,f x y z xy yz zx =++在该点沿l 的方向导数十二、 [7](化工类做,即不学级数一章的同学做)给定曲面,0,,,x a y b F a b c z c z c --⎛⎫= ⎪--⎝⎭为常数,其中(),F u v 有连续偏导数,证明曲面的切平面通过一个定点。
2009-2010学年第二学期高等数学(2)期末试卷及其答案2009 至 2010 学年度第 2 期 高等数学(下)课程考试试题册A试题使用对象 : 2009 级 理科各 专业(本科)命题人: 考试用时 120 分钟 答题方式采用:闭卷说明:1.答题请使用黑色或蓝色的钢笔、圆珠笔在答题纸上书写工整.2.考生应在答题纸上答题,在此卷上答题作废.一.填空题(本题共15 分,共5 小题,每题 3 分) 1.已知(2,1,),(1,2,4)a mb ==r r,则当m = 时,向量a b⊥r r .2.(,)(2,0)sin()limx y xy y →= .3.设区域D 为22y x +≤x 2,则二重积分Dd σ=⎰⎰ .4.函数(,),(,)P x y Q x y 在包含L 的单连通区域G 内具有一阶连续偏导数,如果曲线积分(,)(,)LP x y dx Q x y dy+⎰与路径无关,则(,),(,)P x y Q x y 应满足条件 .5. 当p 时,级数211pn n +∞=∑收敛.二.选择题(本题共15分,共5小题,每题3 分)1.直线221:314x y z L -+-==-与平面:6287x y z π-+=的位置关系是 .A .直线L 与平面π平行;B .直线L 与平面π垂直;C .直线L 在平面π上;D .直线L 与平面π只有一个交点,但不垂直.2. 函数(,)f x y 在点(,)x y 可微分是(,)f x y 在该点连续的( ).A .充分条件; B. 必要条件; C. 充分必要条件; D. 既非充分也不必要条件 3.改变积分次序,则100(,)y dy f x y dx⎰⎰.A .1(,)xdx f x y dy ⎰⎰; B .11(,)dx f x y dy ⎰⎰;C .11(,)x dx f x y dy ⎰⎰;D .11(,)xdx f x y dy ⎰⎰4.下列级数中收敛的是 . A .∑∞=+1884n n nn B .∑∞=-1884n n nn C .∑∞=+1824n n nnD .1248n nn n ∞=⨯∑.5.级数1...-++A. 发散B. 绝对收敛C. 条件收敛D. 既绝对收敛又条件收敛 三. 求解下列各题(本题共70分,共9小题,1~2每题7 分,3~9每题8 分). 1.设sin uz e v=,而u xy =,v x y =- 求xz .2.设22(,tan())u f x y xy =-,其中f 具有一阶连续偏导数,求yz . 3.求旋转抛物面221z x y =+-在点(2,1,4)处的切平面方程及法线方程. 4.计算 22Dx d y σ⎰⎰,其中D 是由直线y x =.2x =和曲线1xy =所围成的闭区域. 5.计算L⎰,其中L 是圆周222x y a +=(0a >).6.计算22()(sin )Lxy dx x y dy--+⎰,其中L 是上半圆周y =x 轴所围区域的边界,沿逆时针方向.7.将函数1()3f x x =+展开成(3)x -的幂级数. 8.计算曲面积分xydydz yzdzdx xzdxdy ∑++⎰⎰,其中∑为1x y z ++=,0,x =y =,0z =所围立体的外侧.9.求抛物面22z xy =+到平面10x y z +++=的最短距离.2009 至 2010 学年度第 2 期高等数学(下)课程试题A 参考答案试题使用对象: 2009 级 理科各专业(本科) 向瑞银一.填空题(本题共15 分,共5 小题,每题 3 分) 1. 1-; 2. 2; 3. π; 4.y P ∂∂=xQ ∂∂; 5.12p >二.选择题(本题共15分,共5小题,每题3 分) 1.B ; 2.A ; 3.D ; 4.C ; 5.C 三. 求解下列各题(本题共70分,共9小题,1~2每题7 分,3~9每题8 分).1.z z u z vx u x v x∂∂∂∂∂=+∂∂∂∂∂……4分sin cos u u ye v e v=+(sin()cos())xy e y x y x y =-+-……7分 2.2212()(tan())y y uf x y f xy y∂''''=⋅-+∂ ……4分2122sec ()()yyf f xy xy '''=-+2122sec ()yf xf xy ''=-+……7分 3. 令22(,,)1F x y z xy z=+--,则法向量(2,2,1)n x y =-r,(2,1,4)(4,2,1)n=-r ……3分在点(2,1,4)处的切平面方程为 4(2)2(1)(4)0x y z -+---=.即4260x y z +--=. (6)分法线方程为214421x y z ---==-. ……8分 4.22Dx d yσ⎰⎰22121xxx dx dy y=⎰⎰……4分221/11()x xx dxy=-⎰……6分231()x x dx =-⎰322111()42x x =-94=……8分5.令cos ,sin x a y a θθ==,则sin ,cos x a y a θθ''=-=,ds θ=ad θ= ……3分20a Le ad πθ=⎰⎰ ……6分=2aae π ……8分6.2P xy=-,1P y ∂=-∂ ,2(sin )Q x y =-+,1Q x∂=-∂ , ……4分()0DDQ PI dxdy dxdy x y∂∂=-=∂∂⎰⎰⎰⎰ ……6分=……8分 7.1136(3)x x =++-113616x =-+ ……4分 当316x -<,即 39x -<<时,13x +013()66nn x +∞=-=-∑ ……8分8. ⎰⎰∑++zxdxdy yzdzdx xydydz=()x y z dxdydz Ω++⎰⎰⎰……4分 =1110()xx ydx dy x y z dz---++⎰⎰⎰……6分81=……8分9.设抛物面一点(,,)x y z ,它到平面的距离为1d x y z =+++满足条件220x y z +-= ……3分 拉格朗日函数为222(1)()3x y z L x y z λ+++=++- ……5分2(1)203x x y z L x λ+++=+=,2(1)203yx y z Ly λ+++=+=2(1)3z x y z L λ+++=-=,220Lx y z λ=+-=解方程组得,12x y ==-,12z =. 由问题本身知最短距离存在,所以最短距离为0.5,0.5,0.5)d --=6=……8分。
2009-2010学年第二学期《高等数学》期末试卷
一、填空题(每小题4分,共32分)
1. 设()2,1,2-=a ,向量x 与a 平行,且18-=⋅x a ,则=x。
2. 曲线⎪⎩⎪⎨⎧-=+=22222x z y x z 在xOy 平面上的投影曲线为 。
3. 设()()
⎪⎩⎪⎨⎧≥+<+--=21,21,1ln ,222222y x A y x y x y x f ,要使()y x f ,处处连续,则=A 。
4. 曲线3231,2,t z t y t x =
==在点⎪⎭⎫ ⎝
⎛31,2,1处的切线方程是 。
5. 二次积分()dy y x f dx x ⎰⎰-21010,在极坐标系下先对r 积分的二次积分为 。
6. 设∑:2222R z y x =++,则
=⎰⎰∑dS z 2 。
7. 设()⎪⎩
⎪⎨⎧≤≤<≤=121,0210,x x x x f ,已知()x S 是()x f 的以2为周期的正弦级数展开式的和函数,则 =⎪⎭
⎫ ⎝⎛47S 。
8. 若某个二阶常系数线性齐次微分方程的通解为21C e C y x += ,其中21,C C 为独立的任意常数,则该方程为 。
二、计算题(每小题6分,共30分)
1. 设()y x y x f x z -+=,2
,其中()v u f ,有连续二阶偏导数,求x z ∂∂和y x z ∂∂∂2。
2. 设Ω是由z y x ≤+22及41≤≤z 所确定的有界闭区域。
试计算⎰⎰⎰Ω=
zdv I 。
3. 计算曲线积分
⎰+-L xdy ydx ,式中L 是由点()b a A ,沿直线段到()0,0O 再沿直线段至()a b B , (0≠ab )。
4. 判别级数
()∑∞=--1121n n
n n 是否收敛?若收敛,是绝对收敛还是条件收敛?
5. 求方程y xy x y '=-22的通解。
三、综合题(满分38分)
1. (8分)设()x f 二阶连续可微,且()00=f ,()10=' f , 试确定()x f ,使
方程()[]()[]01=+'-+dy x x f ydx x f 是全微分方程。
2. (10分)修建一座形状为长方体的仓库,已知仓库顶每平方米造价为300元,墙壁每平方米造价
为200元,地面每平方米造价为100元,其它的固定费为2万元,现投资14万元,问如何设计方能使仓库的容积最大?
3. (10分)计算⎰⎰∑
++dxdy z dzdx y dydz x 222,其中∑是由曲面0=z ,222y x a z --=及 222b y x ≤+所围的含Oz 轴的那部分立体的表面外侧,a 和b 都是正数且b a >。
4. (10分)求幂级数 ++++
9639161311x x x 的和。