实际问题与一元一次方程应用题归类汇集(实用版)
- 格式:doc
- 大小:357.50 KB
- 文档页数:19
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,配套问题,工程问题,调配问题,分配问题,比例问题,和差倍分问题,销售问题,储蓄问题,积分问题,年龄问题,几何问题、数字问题,增长率问题,古代数学问题,分段问题,方案选择问题等。
列一元一次方程解应用题的一般步骤1. 审:审题,分析题目中的数量关系;2. 设:设适当的未知数,并表示未知量;3. 列:根据题目中的数量关系列方程;4. 解:解这个方程求未知数的值;5. 检验:检验是否符合实际;6. 答:作答.(一)行程问题(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行、环形跑道问题、行船问题、火车过隧道(桥)的问题。
(3)解此类题常常借助画草图来分析,理解行程问题。
①相遇问题(同时出发“两段”)1.西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?分析:快车路程+慢车路程=总路程或 (快车速度+慢车速度)×相遇时间=相遇路程①相遇问题(不同时出发“三段”)2.西安站和武汉站相距1500km,一列慢车从西安开出,速度为60km/h,一列快车从武汉开出,速度为90km/h,若两车相向而行,慢车先开5小时,快车行驶几小时后两车相遇?分析:慢车先行路程+慢车后行路程+快车路程=总路程②追及问题(同时出发)3.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?②追及问题(不同时出发)4.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?②追及问题5.敌我两军相距32km,乱军以每小时6km的速度逃窜,我军同时以每小时16km的速度追击,在相距2km的时候发生战斗,则战斗是从开始追击后几小时发生的?③相背而行6.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
第一类、行程问题——画图分析法利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.常见的还有:相背而行;行船问题;环形跑道问题。
要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
一元一次方程应用题归类汇集一、行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间。
(2)基本类型有:①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(一)相遇:1.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
2. A、B两地相距15千米. 甲每小时走5千米,乙每小时走4千米. 甲、乙两人分别从A、B两地同时出发,相向而行,几小时后两人相遇?3. A、B两地相距15千米. 甲每小时走5千米,乙每小时走4千米. 甲、乙两人分别从A、B两地同时出发,背向而行,几小时后两人相距60千米?4.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。
求两车的速度。
5.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里,早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是多少?他去某地的路程是多远?(二)追及:1.某中学学生步行去某地参加社会公益活动,每小时行走4千米. 出发30分钟后,学校派一名通信员骑自行车以12千米/时的速度追赶队伍,问通信员用多少时间可以追上学生队伍?2.甲乙两人练习短距离赛跑,甲每秒跑7.5米,乙每秒跑7米,如果乙先跑1秒种,甲经过几秒钟可以追上乙?3. 甲、乙两人练习跑步,从同一地点出发,甲每分钟跑250米,乙每分钟跑200米,甲因找跑鞋比乙晚出发3分钟,结果两人同时到达终点,求两人所跑的路程。
4.敌我相距14千米,得知敌军于1小时前以每小时4千米的速度逃跑,现在我军以每小时7千米的速度追击敌军,问需几小时可以追上?5.甲、乙两站相距245千米,一列慢车由甲站开出,每小时行驶50千米;同时,一列快车由乙站开出,每小时行驶70千米;两车同向而行,快车在慢车的后面,经过几小时快车可以追上慢车?(三)行船问题:流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
一元一次方程应用题归类汇集(一)行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间S=vt(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例:1、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。
(1)若他们同时相向而行,则经几小时他们相遇?(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?(3)若他们同时同向而行,则经几小时乙追上甲?(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?(二)行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
流水问题有如下两个基本公式:顺水速度=船速+水速(V顺=V静+V水)逆水速度=船速-水速(V顺=V静-V水)例:一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?(三)工程问题:工程问题中的三个量及其关系为:工作总量=工作效率×工作时间经常在题目中未给出工作总量时,设工作总量为单位1。
例一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?(四)和差倍分问题(生产、做工等各类问题)1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
例:某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?(五)劳力调配问题:这类问题要搞清人数的变化.例1.某厂一车间有64人,二车间有56人。
最新整理一元一次方程应用题归类聚集(实用)和差倍分问题〔消费、做工等各类问题〕:1.甲数是乙数的3倍多12,甲乙两数的和是60,求乙数?2.某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值?3.购置甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品假设干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购置甲种物品的件数多5件,问甲、乙物品每件各是多少元?4.为了搞好水利建立,某村方案修建一条长800米,横断面是等腰梯形的水渠.〔1〕设计横断面面积为1.6米2,渠深1米,水渠的上口宽比渠底多0.8米,求水渠上口宽和渠底宽;〔2〕某施工队承建这项工程,方案在规定的时间内完成,工作4天后,改善了设备,进步了工效,每天比原方案多挖水渠10米,结果比规定的时间提早2天完成任务,求方案完成这项工程需要的天数。
数字问题1.一个两位数个位数字与十位数字的和为10,假如将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数?2、有一个三位数,百位上的数字是1,假设把1放在最后一位上,而另两个数字的顺序不变,那么所得的新数比原数大234,求原三位数。
3、一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2.假设将三个数字顺序倒过来,所得的三位数与原三位数的和是1171,求这个三位数。
工程问题1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的局部由乙单独做,需要几天完成?2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?3、整理一批图书,由一个人做需要40小时完成,如今方案由一局部人先做4小时,在增加2人和他们一起做8小时,完成这项任务。
假设这些人的工作效率都一样,详细应该先安排多少人工作?4、在西部大开发中,根底建立优先开展,甲、乙两队共同承包了一段长6500米的高速公路工程,两队分别从两端施工相向前进,甲队平均每天可完成480米,乙队平均每天比甲队多完成220米,乙队比甲队晚一天开工,乙队开工几天后两队完成全部任务?配套问题:1某厂消费一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?2.包装厂有工人42人,每个工人平均每小时可以消费圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人消费圆形或长方形铁片能合理地将铁片配套?3.某____派出一支有25人组织的小分队参加防汛抗洪斗争,假设每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥亲密配合,而正好清场干净。
一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.3.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量4.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h= r2h②长方体的体积V=长×宽×高=abc5.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.6.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利润=每个期数内的利息本金×100% 利息=本金×利率×期数1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
一元一次方程解决问题分类汇总和差倍分问题(生产、做工等各类问题):例题1、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值?变式1、已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?计分问题:例题1、在2002年全国足球甲级联赛A组的前11轮比赛中,大连队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?变式1、一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分。
某同学做了全部试题,得了70分,他一共做对了多少道题目?变式2、足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一支足球队在某个赛季比赛共需比赛14场,现已比赛8场,输了一场,得17分,则前8场比赛中,这支球队共胜了多少场,这支球队打满14场比赛,最高能得多少分?变式3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分.⑴如果㈡班代表队最后得分142分,那么㈡班代表队回答对了多少道题?⑵㈠班代表队的最后得分能为145分吗?请简要说明理由.调配问题:例题1、某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?变式1、到第二车间甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还要多15人。
求甲、乙两队原有人数各多少人?分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变式1、某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?匹配问题:例题1、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
一元一次方程应用题归类汇集(已整理)一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴将时钟的时针、分针、秒针的尖端看作一个点来研究⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:①时针的速度是0.5°/分②分针的速度是6°/分③秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.常见的还有:相背而行;行船问题;环形跑道问题。
实际问题与一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴将时钟的时针、分针、秒针的尖端看作一个点来研究⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:①时针的速度是°/分②分针的速度是6°/分③秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
解:等量关系 步行时间-乘公交车的时间=小时 列出方程是:6.3408=-x x 2、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。
解:等量关系 甲行的总路程+乙行的路程=总路程 (18千米)设乙的速度是x 千米/时,则列出方程是: 18211)1(211321=++⎪⎭⎫ ⎝⎛+x x3、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟老师提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。
方法一:设预定时间为x 小/时,则列出方程是:15(x -)=9(x +)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 4、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t 分钟后第一次相遇,t 等于 分钟。
老师提醒:此题为环形跑道上,同时同地同向的追击问题(且为第一次相遇)等量关系:快者跑的路程-慢者跑的路程=800 (俗称多跑一圈) 320t -280t =800 t =205、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米老师提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。
等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为3x 米/秒,货车的速度为2x 米/秒,则 16×3x +16×2x =200+2806、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时,骑自行车的人的速度是每小时。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
⑴ 行人的速度为每秒多少米 ⑵ 这列火车的车长是多少米老师提醒:将火车车尾视为一个快者,则此题为以车长为提前量的追击问题。
等量关系: ① 两种情形下火车的速度相等 ② 两种情形下火车的车长相等在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。
解:⑴ 行人的速度是:时=3600米÷3600秒=1米/秒骑自行车的人的速度是:时=10800米÷3600秒=3米/秒⑵ 方法一:设火车的速度是x 米/秒,则 26×(x -3)=22×(x -1) 解得x =4方法二:设火车的车长是x 米,则 2632622122⨯+=⨯+x x 7、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗 (提示:此题为典型的追击问题)解:设爸爸用x 小时追上我们,则 6x =2x +2×1解得 x = 小时<1小时45分钟 答:能追上。
8、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。
出发地到目的地的距离是60千米。
问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)老师提醒:此类题相当于环形跑道问题,两者行的总路程为一圈即 步行者行的总路程+汽车行的总路程=60×2解:设步行者在出发后经过x 小时与回头接他们的汽车相遇,则 5x +60(x -1)=60×29、一列火车长150米,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,到这列火车完全通过隧道所需时间是【 】(A )60秒 (B )50秒 (C )40秒 (D )30秒老师提醒:将车尾看作一个行者,当车尾通过600米的隧道再加上150米的车长时所用的时间,就是所求的完全通过的时间,哈哈!你明白吗解:时间=(600+150)÷15=50(秒) 选B 。
10、某人计划骑车以每小时12千米的速度由A 地到B 地,这样便可在规定的时间到达B 地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B 地,求A 、B 两地间的距离。
解:方法一:设由A 地到B 地规定的时间是 x 小时,则12x =⎪⎭⎫ ⎝⎛--⨯604602015x x =2 12 x =12×2=24(千米) 方法二:设由A 、B 两地的距离是 x 千米,则 (设路程,列时间等式)60460201512+=-x x x =24 答:A 、B 两地的距离是24千米。
温馨提醒:当速度已知,设时间,列路程等式;设路程,列时间等式是我们的解题策略。
11、甲、乙两人相距5千米,分别以2千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙,遇到乙后立即掉头奔向甲,遇到甲后又奔向乙……直到甲、乙相遇,求小狗所走的路程。
注:此为二题合一的题目,即独立的二人相遇问题和狗儿的独自奔跑。
只是他们的开始与结束时间是一样的,以此为联系,使本题顿生情趣,为诸多中小学资料所采纳。
解:设甲、乙两人相遇用 x 时,则2x +2x =5 45=x 15451212=⨯=x (千米) 答:小狗所走的路程是15千米。
12、一列火车匀速行驶,经过一条长300m 的隧道需要20s 的时间。
隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s ,根据以上数据,你能否求出火车的长度火车的长度是多少若不能,请说明理由。
老师解析:只要将车尾看作一个行人去分析即可,前者为此人通过300米的隧道再加上一个车长,后者仅为此人通过一个车长。
此题中告诉时间,只需设车长列速度关系,或者是设车速列车长关系等式。
解:方法一:设这列火车的长度是x 米,根据题意,得 1020300x x =+ x =300 答:这列火车长300米。
方法二:设这列火车的速度是x 米/秒,根据题意,得20x -300=10x x =30 10x =300 答:这列火车长300米。
13、甲、乙两地相距x 千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程得 。
答案:601510=-x x 14、列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千米,就可以将耽误的时间补上解:设走x 千米就补上耽误的时间,则6065040=-x x x =20 答:走20千米就补上耽误的时间。
15、两列火车分别行驶在平行的轨道上,其中快车车长为100米,慢车车长150米,已知当两车相向而行时,快车驶过慢车某个窗口所用的时间为5秒。
⑴ 两车的速度之和及两车相向而行时慢车经过快车某一窗口所用的时间各是多少⑵ 如果两车同向而行,慢车速度为8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到 快车的车尾离开慢车的车头所需的时间至少是多少秒老师解析:① 快车驶过慢车某个窗口时:研究的是慢车窗口的人和快车车尾的人的相遇问题,此时行驶的路程和为快车车长!② 慢车驶过快车某个窗口时:研究的是快车窗口的人和慢车车尾的人的相遇问题,此时行驶的路程和为慢车车长!③ 快车从后面追赶慢车时:研究的是快车车尾的人追赶慢车车头的人的追击问题,此时行驶的路程和为两车车长之和!解:⑴ 两车的速度之和=100÷5=20(米/秒)慢车经过快车某一窗口所用的时间=150÷20=(秒)⑵ 设至少是x 秒,(快车车速为20-8)则 (20-8)x -8x =100+150 x =答:至少秒快车从后面追赶上并全部超过慢车。
16、甲、乙两人同时从A 地前往相距千米的B 地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B 地后,立即由B 地返回,在途中遇到乙,这时距他们出发时已过了3小时。
求两人的速度。
解:设乙的速度是 x 千米/时,则3x +3 (2x +2)=×2 ∴ x =5 2x +2=12答:甲、乙的速度分别是12千米/时、5千米/时。