材料科学与工程导论 第7章 复合材料(Ⅱ)
- 格式:ppt
- 大小:13.29 MB
- 文档页数:88
第一章 绪论复合材料的定义: 复合材料(Composite materials),是由界面分明、物理化学性质不同的组分材料,通过物理或化学的方法构成的性能优越的多相材料。
各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。
复合材料应具有以下三个特点:(1)复合材料是由两种或两种以上不同性能的材料组元通过宏观或微观复合形成的一种新型材料,组元之间存在着明显的界面。
(2)复合材料中各组元不但保持各自的固有特性而且可最大限度发挥各种材料组元的特性,并赋予单一材料组元所不具备的优良持殊性能。
(3)复合材料具有可设计性。
复合材料的发展现状(1)玻璃钢和树脂基复合材料 非常成熟 广泛的应用(2)金属基复合材料 开发阶段 某些结构件的关键部位(3)陶瓷基复合材料及功能复合材料等 尚处于研究阶段 有不少科学技术问题有待解决 复合材料的组成结构特点和分类*细观复合:一种或几种制成细微形状的材料均匀分散于另一种连续材料中宏观复合:两层以上不同材料的叠合,层合复合材料可以是几种单成分材料,也可以细观复合材料细观复合材料的组成结构特点:1基体相(连续相):Co 包围增强相并相对较软和韧的贯连材料,作用是粘结保护分散相材料和传递应力2界面:位于增强相和基体相之间并使两相彼此相连的、化学成分和力学性质与相邻两相有明显区别、能够在相邻两相间起传递载荷作用的区域3增强相(分散相):被基体相包裹分隔,具有比基体相高的模量和强度,起到抵抗变形和破坏的作用 细观复合材料的分类细观复合材料的分类 (按分散相分类)1纤维增强复合材料 (包括连续纤维增强:“纤维的两端达到制成的复合材料构件的边界” 和 短纤维增强:"将长纤维或纤维束切断分散于基体中")2 颗粒增强复合材料 3晶须增强复合材料按连续相分类 非金属基复合材料 金属基复合材料 聚合物基复合材料碳基复合材料 陶瓷基复合材料 热固性树脂 热塑性树脂第二章复合材料增强体(1.纤维2.颗粒3.晶须)一纤维增强纤维的分类:有机纤维:芳纶纤维聚乙烯纤维尼龙纤维无机纤维:玻璃纤维碳纤维硼纤维氧化铝纤维碳化硅纤维氮化硼纤维纤维增强体的形态复合材料中的纤维连续是合成纤维,是上万跟纤维组成的基本无捻的长丝束/纱,称为粗纱。
高分子复合材料第一讲:序论就单一的材料而言,高分子材料性能无疑是最全面的,因为…….但高分子材料同时并非最完美的,因为……材料科学的目的:就是制备性能完美,功能更多,价格更便宜的材料。
高分子复合材料的学习要求你们有更博大的胸怀,是高分子和其他材料的交叉科学。
2.1 复合是自然界的基本规律天然材料是最完美的材料,人的心脏,75*60分*24小时*365天*80年=3,153,600,000跳/一生该完美的特性就来源于复合与自修复----细胞,是细胞膜、细胞基质、细胞核的复合体,各自担任营养、信息表达和力学支撑的作用。
即使细胞膜也是有磷脂双分子层,蛋白质组成的复合功能体系。
2.3 复合是科学的基本思想超分子科学诺贝尔奖白川英树导电聚合物vs导电复合材料材料发展简史---石器时代纤维增强聚合物基复合材料Copyright reserved旧石器时代—早在100万年以前,人类开始以石头做工具新石器时代—1万年前,人类对石头进行加工材料发展简史---陶器时代纤维增强聚合物基复合材料Copyright reserved 新石器后期,人类发明了用粘土成型,再火烧固化而制成陶器,从而进入陶器时代。
目前考古发现的陶器,在亚洲有中国江西省万年县大源乡仙人洞的陶器和日本最早的绳纹陶(公元前8000年左右);在欧洲,在希腊半岛发现的陶瓷约在公元前6000至5000年;在美洲大陆,已发现的陶器约在公元前6000年前左右。
陶器时代是人类文明史上的重要飞跃,陶器的发明不仅成为这一阶段的最重要的物质文明的创造,同时也成为这一时期最重要的生产工具。
纤维增强聚合物基复合材料Copyright reserved烧制陶器过程中还原出金属铜和锡,创造了炼铜技术,生产出各种青铜器物,进入了青铜时代。
古希腊大约在公元前3000年以前,埃及是公元前2500年前,中国是夏代(公元前2000年左右),欧洲是公元前1800年前后进入青铜器时代。
这是人类大量利用金属的开始,是人类文明发展的重要里程碑。
陶瓷基复合材料摘要: 材料是科学技术发展的基础,材料的发展可以推动科学技术的发展,材料主要有金属材料、聚合物材料、无机非金属材料和复合材料四大类. 复合材料是不同的材料结合在一起、形成一种结构较为复杂的材料。
近年来,通过往陶瓷中加入或生成成颗粒、晶须、纤维等增强材料,使陶瓷的韧性大大地改善,而且强度及模量也有一定的提高。
陶瓷复合基材料就是以陶瓷材料为基体,并以陶瓷、碳纤维、难熔金属纤维、晶须、晶片和颗粒等为增强体,通过适当的复合工艺所构成的复合材料。
本文主要综述了陶瓷基复合材料的发展状况,分类,基体,增强体,以及制备工艺等内容。
关键词:陶瓷基复合材料、基体、增强、制备。
1 陶瓷基复合材料的发展概况。
陶瓷材料作为技术革命的新材料早在十几年前就引起了美国的关注。
近年来由于日本、美国、欧洲的竞相研究陶瓷材料技术得到迅速发展。
作为能适应各种环境的新型结构材料陶瓷材料已步入了实用化阶段。
为使陶瓷在更大范围内达到实用化国内外都对能改善陶瓷韧性陶瓷基复合材料进行了广泛研究。
陶瓷基复合材料(CMC)由于具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,是制造推重比10 以上航空发动机的理想耐高温结构材料。
一方面,它克服了单一陶瓷材料脆性断裂的缺点,提高了材料的断裂韧性;另一方面,它保持了陶瓷基体耐高温、低膨胀、低密度、热稳定性好的优点。
陶瓷基复合材料的最高使用温度可达1650℃,而密度只有高温合金的70%。
因此,近几十年来,陶瓷基复合材料的研究有了较快发展。
目前CMC 正在航空发动机的高温段的少数零件上作评定性试用。
2 陶瓷基复合材料的分类按增强材料形态分类,陶瓷基复合材料可分为颗粒增强陶瓷复合材料、纤维增强陶瓷复合材料、片材增强陶瓷复合材料。
按基体材料分类,陶瓷基复合材料可分为氧化物基陶瓷复合材料、非氧化物基陶瓷复合材料、碳/碳复合材料、微晶玻璃基复合材料。
3 瓷基体的种类陶瓷基体材料主要以结晶和非结晶两种形态的化合物存在,按照组成化合物的元素不同,又可以分为氧化物陶瓷、碳化物陶瓷、氮化物陶瓷等。
复合材料导论复合材料是由两个或两个以上的不同材料组成的材料。
这些材料可以是金属、塑料、陶瓷或其他材料。
复合材料具有比单一材料更好的性能,例如更高的强度、更高的刚度和更高的耐热性。
复合材料被广泛应用于航空、汽车、建筑和医疗等领域。
复合材料的种类很多,如玻璃纤维增强塑料(GFRP)、碳纤维增强塑料(CFRP)、金属基复合材料(MMC)和陶瓷基复合材料(CMC)等。
这些复合材料的性能不同,适用于不同的应用领域。
GFRP是一种常见的复合材料,由玻璃纤维和塑料组成。
它们具有轻质、高强度、耐腐蚀和耐热性等优点,被广泛应用于航空、汽车和建筑等领域。
CFRP是一种高强度、高刚度的材料,由碳纤维和树脂组成。
它们被广泛应用于航空、汽车和体育器材等领域。
MMC是一种由金属和陶瓷组成的复合材料。
它们具有高强度、高刚度和耐磨损的性能,被广泛应用于航空、汽车和船舶等领域。
CMC 是一种由陶瓷和有机物质组成的复合材料。
它们具有高温、高压和耐磨损的性能,被广泛应用于航空、石油化工和火箭等领域。
复合材料的制造方法也有很多种。
最常见的方法是层压法和注塑法。
层压法是将纤维和树脂层层叠加,经过高温和高压处理,形成所需形状的复合材料。
注塑法是将树脂和纤维混合后注入模具中,经过加热和压力处理,形成所需形状的复合材料。
复合材料的应用领域很广,例如航空、汽车、建筑和医疗等领域。
在航空领域,复合材料被广泛应用于飞机的机身、机翼和尾翼等部件,以提高飞机的性能和减轻重量。
在汽车领域,复合材料被广泛应用于汽车的车身、底盘和发动机等部件,以提高汽车的性能和减轻重量。
在建筑领域,复合材料被广泛应用于建筑的外墙、屋顶和地板等部件,以提高建筑的耐候性和减轻重量。
在医疗领域,复合材料被广泛应用于人工骨骼和牙齿等部件,以提高治疗效果和减轻重量。
总之,复合材料是一种具有很多优点的材料,被广泛应用于各个领域。
随着科技的不断发展,复合材料的种类和性能将会不断提高,为人类的生活带来更多的便利和福利。